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Abstract
This paper presents two inexact composite gradient methods, one inner accelerated 
and another doubly accelerated, for solving a class of nonconvex spectral compos-
ite optimization problems. More specifically, the objective function for these prob-
lems is of the form f

1
+ f

2
+ h , where f

1
 and f

2
 are differentiable nonconvex matrix 

functions with Lipschitz continuous gradients, h is a proper closed convex matrix 
function, and both f

2
 and h can be expressed as functions that operate on the sin-

gular values of their inputs. The methods essentially use an accelerated composite 
gradient method to solve a sequence of proximal subproblems involving the linear 
approximation of f

1
 and the singular value functions underlying f

2
 and h . Unlike 

other composite gradient-based methods, the proposed methods take advantage of 
both the composite and spectral structure underlying the objective function in order 
to efficiently generate their solutions. Numerical experiments are presented to dem-
onstrate the practicality of these methods on a set of real-world and randomly gener-
ated spectral optimization problems.

Keywords Composite nonconvex problem · Iteration complexity · Inexact 
composite gradient method · First-order accelerated gradient method · Spectral 
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1 Introduction

There are numerous applications in electrical engineering, machine learning, and 
medical imaging that can be formulated as nonconvex spectral optimization prob-
lems of the form

where � is the function that maps a matrix to its singular value vector (in nonin-
creasing order of magnitude), f1 and f V

2
 are continuously differentiable functions 

with Lipschitz continuous gradients, and hV is a proper, lower semicontinuous, con-
vex function. For this paper, we are interested in solving instances of (1) where: 
(i) the resolvents of ��h and ��hV , i.e., evaluations of the operators (I + ��h)−1 and 
(I + ��hV)−1 , are easy compute for any 𝜆 > 0 ; (ii) the resolvents of �(∇f2 + �h) and 
�(∇f V

2
+ �hV) cannot be computed exactly for any 𝜆 > 0 ; and (iii) both f V

2
 and hV are 

absolutely symmetric in their arguments, i.e., they do not depend on the ordering or 
the sign of their arguments.

We now describe some practical instances of (1) that satisfy all three assump-
tions above. To avoid repetition, we let R = Rs +Rn and P be two sparsity-
inducing regularizers, where Rs and P are continuously differentiable functions 
with Lipschitz continuous gradients and Rn is a proper, lower semicontinuous, 
and convex function.

• Matrix Completion Let A ∈ ℝm×n be a given data matrix and let r = min{m, n} . 
Moreover, let Ω denote a subset of the indices of A. The goal of the general 
matrix completion problem is to find a low rank approximation of A that is 
close to A in some sense. A nonconvex formulation (see, for example, [20]) of 
this problem is 

 where PΩ is the function that zeros out the entries of its input that are not in Ω . 
Note that this problem is a special instance of (1) in which f1 = ‖PΩ(⋅) − A‖2

F
∕2 , 

f V
2
= Rs , and hV = Rn.

• Phase Retrieval Given a vector x ∈ ℝn , let x[�] denote its discrete Fourier 
transform for some frequency � . Moreover, for some unknown noisy signal 
x̃ ∈ ℝn and a frequency set Ω ⊆ ℝ+ , suppose that we are given measurements 
{|x̃[𝜔]|}𝜔∈Ω and vectors a� ∈ ℂn such that �⟨a𝜔, x̃⟩� = �x̃[𝜔]� for every � ∈ Ω . 
The goal of the phase retrieval problem is to recover an approximation x of x̃ 
such that �⟨a𝜔, x⟩�2 ≈ �⟨a𝜔, x̃⟩�2 for every � ∈ Ω . A nonconvex formulation of 
this problem is 

(1)min
U∈ℝm×n

⎧
⎪⎨⎪⎩
�(U) ∶= f1(U) + ( f V

2
◦�

⏟⏟⏟
f2

)(U) + ( hV◦�
⏟⏟⏟

h

)(U)

⎫
⎪⎬⎪⎭
,

min
X∈ℝm×n

�
1

2
‖PΩ(X − A)‖2

F
+ (R◦�)(X)

�
,
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 where � denotes the function that maps matrices to their eigenvalue vec-
tor, X ⪰ 0 means that X is symmetric positive semidefinite, and the quantities 
A ∶ ℝ|Ω|×|Ω|

↦ ℝ|Ω| and b ∈ ℝ|Ω| are given by 

 Note that this problem is a special instance of (1) in which f1 = ‖A(⋅) − b‖2
F
∕2 , 

f V
2
= Rs , and hV = Rn + �ℝ|Ω|

+
 where �ℝ|Ω|

+
 is the indicator for the nonnegative ort-

hant of ℝ|Ω| . It is worth mentioning that this formulation is a generalization of 
the one in [3] where the convex function tr X is replaced with the nonconvex 
function R.

• Robust Principal Component Analysis Let M̂ ∈ ℝm×n be a given data matrix and 
let r = min{m, n} . The goal of the robust principal component analysis problem 
is to find an approximation M + E of M̂ where M is low-rank and E is sparse. A 
nonconvex formulation of this problem is 

 Note that this problem is a special instance of (1) in which 
f1 = ‖M̂ − [(⋅) − E]‖2

F
∕2 + P , f V

2
= Rs , and hV = Rn . It is worth mention-

ing that this formulation is a instance of the one in [19] where more structure is 
imposed on the functions R and P.

A natural approach for finding approximate stationary points of the above instances 
is to employ the exact composite gradient (ECG) method that, when applied to (1), 
exactly solves a sequence of matrix subproblems of the form

where 𝜆k > 0 is an appropriately chosen stepsize and the point Yk−1 is the previous 
iterate. Its computation primarily consists of computing a singular value decompo-
sition (SVD) at the point Ỹk ∶= Yk−1 − �̃�k∇(f1 + f2)(Yk−1) and an evaluation of the 
resolvent of �̃�k𝜕hV at 𝜎(Ỹk) . Accelerated ECG (A-ECG) methods solve subproblems 
similar to (2) but with Yk−1 selected in an accelerated manner. Notice that both of 
these approaches do not exploit the spectral structure in f2.

Our goal in this paper is to develop two efficient inexact composite gradient 
(ICG) methods that find approximate stationary points of (1) by exploiting the spec-
tral structure in both f2 and h. Our first prototype, called the static inner accelerated 
ICG (IA-ICG) method, inexactly solves a sequence of matrix prox subproblems of 
the form

min
X∈ℝ�Ω�×�Ω�

�
1

2
‖A(X) − b‖2 + (R◦�)(X) ∶ X ⪰ 0

�
,

[A(X)]𝜔 = tr (a𝜔a
∗
𝜔
X), b𝜔 = |x̃[𝜔]|2, ∀(X,𝜔) ∈ ℝ|Ω|×|Ω| × Ω.

min
M,E∈ℝm×n

�
1

2
‖M̂ − (M + E)‖2

F
+ (R◦�)(M) + P(E)

�
.

(2)min
U∈ℝm×n

�
�̃�k
�⟨∇(f1 + f2)(Yk−1),U⟩ + h(U)

�
+

1

2
‖U − Yk−1‖2F

�
,

(3)min
U∈ℝm×n

�
�k
�⟨∇f1(Yk−1),U⟩ + f2(U) + h(U)

�
+

1

2
‖U − Yk−1‖2F

�
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where 𝜆k > 0 is an appropriately chosen stepsize and the point Yk−1 is the previ-
ous iterate. It is shown (see Sect. 4.1) that the effort of finding the required inexact 
solution Yk of (3) consists of computing one SVD and applying an accelerated gra-
dient (ACG) algorithm to find an approximate solution to the related vector prox 
subproblem

where r = min{m, n} and ck−1 = �(Yk−1 − �k∇f1(Yk−1)) . Notice that (4) is a prob-
lem over the vector space ℝr , and hence, has significantly fewer dimensions than 
(3) which is a problem over the matrix space ℝm×n . The other prototype, called the 
static doubly accelerated ICG (DA-ICG), solves a subproblem similar to (3) but with 
Yk−1 selected in an accelerated manner (and hence its qualifier “doubly accelerated”). 
Notice that the static IA-ICG (resp. DA-ICG) can be viewed as an inexact version of 
ECG (resp. A-ECG) where, instead of h in (2), the function f2 + h is viewed as the 
composite term, i.e., the part that is not linearized in the subproblems. Moreover, 
neither IA-ICG nor DA-ICG are able to solve (3) (or its accelerated version) exactly 
due to assumption (ii) made in the first paragraph of this section.

Motivation of our approach. For high-dimensional instances of (1) where 
r = min{m, n} is large, we have that the larger the Lipschitz constant of ∇f V

2
 is, the 

better the performance of the ICG methods is compared to the performance of their 
exact counterparts. This fact immediately follows from the following two claims: 

 (i) the ICG methods inexactly solve fewer matrix subproblems compared to their 
exact counterparts when the Lipschitz constant of ∇f V

2
 is large; and

 (ii) the work of exactly solving (2) or inexactly solving (3) is comparable when r 
is large.

The justification of claim (i) is as follows. First, recall that the larger the stepizes 
�k ’s (resp. �̃�k ) are, the smaller the number of generated subproblems (3) (resp. (2)) 
is. Second, the CG stepsizes chosen in either (2) or (3) to guarantee convergence of 
the underlying CG method are inversely proportional to the Lipschitz constant of 
the gradient of the function being linearized. Hence, since the inexact CG methods 
linearize f1 only and the exact CG methods linearize both f1 and f2 , claim (i) fol-
lows. Some specific applications where the Lipschitz constant of ∇f V

2
 may be large 

in practice can be found, for example, in [1, 18, 20]. The justification for claim (ii) is 
due to the following two observations: (a) all of the above CG methods require one 
SVD per subproblem; and (b) when r is large, the computational bottleneck for solv-
ing a single subproblem is the aforementioned SVD.

Contributions and Main results To the best of our knowledge, this paper is the 
first to present ICG methods that exploit both the spectral and composite structure 
in (1).

When f2 is convex or, more generally, a key inequality is satisfied at every itera-
tion of ACG applied to (4), it is shown that for any given �̂� > 0 , both the static IA-
ICG and the static DA-ICG always obtain a pair (Ŷ, V̂) satisfying the approximate 
stationarity condition

(4)min
u∈ℝr

�
�k
�
f V
2
(u) − ⟨ck−1, u⟩ + hV(u)

�
+

1

2
‖u‖2

�
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by inexactly solving O(�̂�−2) matrix prox subproblems as in (3). If, in addition, f1 
is convex, it is shown that this bound improves to O(�̂�−2∕3) for the static DA-ICG 
method.

When f2 is nonconvex, the static IA-ICG and the static DA-ICG may fail to obtain 
a pair as in (5). To remedy this, we develop dynamic IA-ICG and DA-ICG methods 
that repeatedly invoke their static counterparts to solve (1) with (f1, f2) replaced by 
(f1,� , f2,�) = (f1 − �‖ ⋅ ‖2∕2, f2 + �‖ ⋅ ‖2∕2) for strictly increasing values of 𝜉 > 0 . 
These dynamic versions always obtain a pair as in (5) because: (i) f1 + f2 = f1,� + f2,� 
for every 𝜉 > 0 and (ii) there always exists 𝜉 > 0 such that f2,� is convex due to the 
fact that ∇f2 is Lipschitz continuous.

Numerical experiments are also given to demonstrate the practicality of our pro-
posed methods. More specifically, our experiments demonstrate that the dynamic 
methods are substantially faster (usually 10x) than other first-order methods at mini-
mizing the primal residual ‖V̂�� in terms of runtime.

Related works The earliest complexity analysis of an ACG method for solv-
ing nonconvex composite problems like the one in (1) is given in [6]. Building on 
the results in [6], many other papers [5, 7, 13] have proposed similar ACG-based 
methods.

Another common approach for solving problems like (1) is to employ an inexact 
proximal point method where each prox subproblem is constructed to be convex, 
and hence, solvable by an ACG variant. For example, papers [4, 9, 10, 16] present 
inner accelerated inexact proximal point methods whereas [12] presents a doubly 
accelerated inexact proximal point method.

Organization of the paper Section 1.1 gives some notation and basic definitions. 
Section  2 presents some necessary background material for describing the ICG 
methods. Section 3 is split into three subsections. The first one precisely describes 
the problem of interest, while the last two present the IA-ICG and DA-ICG methods. 
Section 4 describes an efficient way of solving problem (3) by modifying a solution 
of problem (4). Section 5 presents some numerical results. Section 6 establishes the 
iteration complexity of the ICG methods. Finally, some auxiliary results are pre-
sented in Appendices A to D.

1.1  Notation and basic definitions

This subsection provides some basic notation and definitions.
The set of real numbers is denoted by ℝ . The set of non-negative real numbers 

and the set of positive real numbers is denoted by ℝ+ and ℝ++ respectively. The set 
of natural numbers is denoted by ℕ . The set of complex numbers is ℂ . The set of 
unitary matrices of size n–by–n is Un . For t > 0 , define log+

1
(t) ∶= max{1, log(t)}.

Let ℝn denote a real–valued n–dimensional Euclidean space with norm ‖ ⋅ ‖ . 
Given a linear operator A ∶ ℝn

↦ ℝp , the operator norm of A is denoted by 
‖A‖ ∶= sup{‖Az‖∕‖z‖ ∶ z ∈ ℝn, z ≠ 0} . Using the asymptotic notation O , we 
denote O1(⋅) ≡ O(1 + ⋅).

(5)V̂ ∈ ∇f
1
(Ŷ) + ∇f

2
(Ŷ) + 𝜕h(Ŷ), ‖V̂‖ ≤ �̂�.
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Let (m, n) ∈ ℕ2 and let r = min{m, n} . Given matrices X ∈ ℝm×n and Y ∈ ℝn×n , 
let the quantities �(X) and �(Y) denote the singular values and eigenvalues of X and 
Y, respectively, in nonincreasing order. Let dg ∶ ℝr

↦ ℝr×r and Dg ∶ ℝm×n
↦ ℝr be 

given pointwise by

for every z ∈ ℝr, Z ∈ ℝm×n, and (i, j) ∈ {1, ..., r}2.
The following notation and definitions are for a general complete inner product 

space Z , whose inner product and its associated induced norm are denoted by ⟨⋅, ⋅⟩ 
and ‖ ⋅ ‖ respectively. Let � ∶ Z ↦ (−∞,∞] be given. The effective domain of � is 
denoted by dom𝜓 ∶= {x ∈ Z ∶ 𝜓(x) < ∞} and � is said to be proper if dom� ≠ � . 
For � ≥ 0 , the �-subdifferential of � at x ∈ dom� is denoted by

and we denote �� ≡ �0� . The set of proper, lower semi-continuous, con-
vex functions is denoted by Conv Z . The convex conjugate � is denoted 
by �∗ . The linear approximation of � at a point z0 ∈ dom� is denoted by 
𝓁� (⋅;z0) ∶= �(z0) + ⟨∇�(z0), ⋅ − z0⟩ . The indicator of a closed convex set C ⊆ Z at 
a point z ∈ Z is denoted by �C(z) , which is 1 if z ∈ C and ∞ otherwise. The local 
Lipschitz constant of ∇� at two points u, z ∈ Z is denoted by

2  Background material

Recall from Sect.  1 that our interest is in solving (1) by repeatedly solving a 
sequence of prox subproblems as in (3). This section presents some background 
material regarding (3).

This section considers the nonconvex composite optimization (NCO) problem

where Z is a finite dimensional inner product space and the functions �s and �n are 
assumed to satisfy the following assumptions: 

 (B1) �n ∈ Conv Z;
 (B2) �s is continuously differentiable on Z  and satisfies �s(u) − ��s

(u;y)

≤ M‖u − y‖2∕2 for some M ≥ 0 and every u, y ∈ Z.

Clearly, problems (1) and (3) are special cases of (7), and hence any definition or 
result that is stated in the context of (7) applies to (1) and/or (3).

[
dg z

]
ij
=

{
zi, if i = j,

0, otherwise,

[
Dg Z

]
i
= Zii,

���(z) ∶=
{
w ∈ ℝn ∶ �(z�) ≥ �(z) +

⟨
w, z� − z

⟩
− �,∀z� ∈ Z

}
,

(6)L� (x, y) =

� ‖∇�(x)−∇�(y)‖
‖x−y‖ , x ≠ y,

0, x = y,
∀x, y ∈ dom� .

(7)min
u∈Z

{
�(u) ∶= �s(u) + �n(u)

}
,
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An important notion of an approximate solution of (7) is as follows: given �̂� > 0 , 
a pair (yr, vr) is said to be a �̂�–approximate solution of (7) if

In Sect. 3, we develop prox-type methods for finding �̂�–approximate solutions of (1) 
that repeatedly solve (3) inexactly by taking advantage of its spectral decomposition.

We now discuss the inexactness criterion under which the subproblems (3) are 
solved. Again, the criterion is described in the context of (7) as follows.

Problem A ∶ Given (�, �) ∈ ℝ2
++

 and z0 ∈ Z , find (y, v, �) ∈ dom� × Z ×ℝ+ 
such that

We begin by making three remarks about the above problem. First, if (y, v, �) solves 
Problem A with � = 0 , then (v, �) = (0, 0) , and z is an exact solution of (7). Hence, 
the output (y, v, �) of Problem A can be viewed as an inexact solution of (7) when 
� ∈ ℝ++ . Second, the input z0 is arbitrary for the purpose of this section. However, 
the two methods described in Sect. 3 for solving (1) repeatedly solve (3) according 
to Problem A with the input z0 at the kth iteration determined by the iterates gener-
ated at the (k − 1)th iteration. Third, defining the function

another way to express the inclusion in (9) is Δ�(u;y, v) ≤ � for every u ∈ dom� . 
Finally, the relaxed ACG (R-ACG) algorithm presented later in this subsection will 
be shown to solve Problem A when �s is convex. Moreover, it solves a weaker ver-
sion of Problem A involving Δ� (see Problem B later on) whenever �s is not convex 
and as long as some key inequalities are satisfied during its execution.

A technical issue in our analysis in this paper lies in the ability of refining the 
output of Problem A to an approximate solution (yr, vr) of (7), i.e., one satisfying 
the inclusion in (8), in which ‖vr‖ is nicely bounded. We now present a refinement 
procedure that addresses this issue.

(8)vr ∈ ∇𝜓s(yr) + 𝜕𝜓n(yr), ‖vr‖ ≤ �̂�.

(9)v ∈ ��

�
� −

�

2
‖ ⋅ −y‖2

�
(y), ‖v‖2 + 2� ≤ �2‖y − z0‖2.

(10)Δ�(u;y, v) ∶= �(y) − �(u) − ⟨v, y − u⟩ + �

2
‖u − y‖2 ∀u ∈ dom� ,
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The result below presents the key properties of the above procedure. For the 
sake of brevity, we write (yr, vr) = RP(y, v) to indicate that the pair (yr, vr) is the 
output of the above procedure with inputs (M,�s,�n) and (y, v).

Proposition 1 Let (M,�s,�n) satisfying assumptions (B1)–(B2) and a triple 
(y, v, �) ∈ dom�n × Z ×ℝ+ be given. Moreover, let (yr, vr) = RP(y, v) , denote 
L�s

(⋅, ⋅) simply by L(⋅, ⋅) where L�s
(⋅, ⋅) is as in (6), and let Δ� be as in (10). Then, the 

following statements hold: 

(a) vr ∈ ∇�s(yr) + ��n(yr);
(b) Δ�(yr;y, v) ≥ M‖yr − y‖2∕2;
(c) if Δ�(yr;y, v) ≤ � and (y, v, �) satisfies the inequality in (9), then 

(d) if (y, v, �) solves Problem A , then Δ�(u;y, v) ≤ � for every u ∈ dom�n , and, as 
a consequence, bound (13) holds.

Proof (a) Using the definition of vr and the optimality of yr , we have that

(b) Let (y, v) ∈ dom�n × Z be fixed, and define �̃s ∶= �s − ⟨v, ⋅⟩ . Using Proposi-
tion  19 with (g, h, L) = (�̃s,�n,M) and (z, ẑ) = (y, yr) , and the definition of Δ� in 
(10), we have

(c) Using the assumption that Δ�(yr;y, v) ≤ � , part (b), and the inequality in (9), we 
have that

Using the triangle inequality, the definition of L(⋅, ⋅) , (14) and the inequality in (9) 
again, we conclude that

(13)‖vr‖ ≤ �

�
1 +

M + L(y, yr)√
M

�
‖y − z0‖;

vr = v +M(y − yr) + ∇�s(yr) − ∇�s(y) ∈ ∇�s(yr) + ��n(yr).

M

2
‖y − yr‖2 ≤ (�̃s + �n)(y) − (�̃s + �n)(yr)

= �(y) − �(yr) − ⟨v, y − yr⟩ ≤ Δ�(yr;y, v).

(14)‖y − yr‖ ≤

�
2Δ�(yr;y, v)

M
≤

�
2�

M
≤

�√
M
‖y − z0‖.

‖vr‖ ≤ ‖v‖ + �
M + L(y, yr)

�
⋅ ‖y − yr‖ ≤ �

�
1 +

M + L(y, yr)√
M

�
‖y − z0‖.
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(d) The fact that Δ�(u;y, v) ≤ � for every u ∈ dom�n follows immediately from the 
inclusion in (9) and the definition of Δ� in (10). The fact that (13) holds now follows 
from part (c).   ◻

We make a few remarks about Proposition 1. First, it follows from (a) that (yr, vr) 
satisfies the inclusion in (8). Second, it follows from (a) and (c) that if � = 0 , then 
(�, vr) = (0, 0) , and hence yr is an exact stationary point of (7). In general, (13) 
implies that the residual ‖vr‖ is directly proportional to ‖y − w‖ , and hence, becomes 
smaller as this quantity approaches zero.

Inequality (13) plays an important technical role in the complexity analysis of the 
two prox-type methods of Sect. 3. Sufficient conditions for its validity are provided 
in (c) and (d), with (c) being the weaker one, in view of (d). When �s is convex, it 
is shown that every iterate of the R-ACG algorithm presented below always satisfies 
the inclusion in (9), and hence, verifying the the validity of the sufficient condition 
in (c) amounts to simply checking whether the inequality in (9) holds. When �s is 
not convex, verification of the inclusion in (9), and hence the sufficient condition in 
(d), is generally not possible, while the one in (c) is. This is a major advantage of the 
sufficient condition in (c), which is exploited in this paper towards the development 
of adaptive prox-type methods which attempt to approximately solve (7) when �s is 
not convex.

For the sake of future reference, we now state the following problem for finding 
a triple (y, v, �) satisfying the sufficient condition in Proposition 1(c). Its statement 
relies on the refinement procedure preceding Proposition 1.

Problem B ∶ Given the same inputs as in Problem  A , find 
(y, v, �) ∈ dom� × Z ×ℝ+ satisfying the inequality in (9) and

where Δ�(⋅;⋅, ⋅) is as in (10) and yr is the first component of the refined pair 
(yr, vr) = RP(y, v).

We now state the aforementioned R-ACG algorithm which solves Problem A 
when �s is convex and solves Problem B whenever �s is not convex and two key 
inequalities are satisfied, one at every iteration (i.e., (16)) and one at the end of its 
execution.

(15)Δ�(yr;y, v) ≤ �,
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It is well-known (see, for example, [8, Proposition 2.3]) that the scalar Bj 
updated in step 1 satisfies
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The next result presents the key properties about the R-ACG algorithm.

Proposition 2 The R-ACG algorithm has the following properties: 

(a) it stops with either failure or success in 

 iterations, where K� ∶= 1 +
√
2∕�;

(b) if it stops with success, then its output (y, v, �) solves Problem B;
(c) if �s is �–strongly convex then it always stops with success and its output (y, v, �) 

solves Problem A.

Proof (a) See Appendix B.
(b) This follows from the successful checks in step 4 and 5 of the algorithm.
(c) The fact that the algorithm never stops with failure follows from Proposi-

tion 20(c)–(d) in Appendix B. The fact that the algorithm stops with success follows 
from the previous statement, the successful checks in step 4 and 5 of the algorithm, 
and the fact that the algorithm stops in a finite number of iterations in part (a).   ◻

3  Inexact composite gradient methods

This section presents the ICG methods and the general problem that they solve. It 
contains three subsections. The first one presents the problem of interest and gives 
a general outline of the ICG methods, the second one presents the IA-ICG method, 
and the third one presents the DA-ICG method. For the ease of presentation, the 
proofs in this section are deferred to Sect. 6.

3.1  Problem of interest and outline of the methods

This subsection describes the problem that the ICG methods solve and outlines their 
structure.

Instead of considering problems having the spectral structure mentioned in Sect. 1, 
this section considers a more general NCO problem where its variable u lies in a finite 
dimensional inner product space Z (and, hence, can be either a vector and/or matrix) 
and presents both ICG methods in this more general setting. Section 4 then presents 

(18)Bj ≥
1

M
max

⎧
⎪⎨⎪⎩

j2

4
,

�
1 +

�
�

4M

�2(j−1)⎫⎪⎬⎪⎭
∀j ≥ 1.

(19)O

([
1 +

√
L

�

]
log+

1

[
LK�(1 + �K�)

])
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a modification of the ACG subroutine used by both ICG methods that drastically 
improves their efficiency in the setting of the spectral problem (1).

More specifically, this section considers the problem

where the functions f1, f2, and h are assumed to satisfy the following assumptions: 

 (A1) h ∈ Conv Z;
 (A2) f1, f2 are continuously differentiable functions and there exists (m1,M1) ∈ ℝ2 

and (m2,M2) ∈ ℝ2 such that, for i ∈ {1, 2} , we have 

 (A3) for i ∈ {1, 2} , we have 

 where Li ∶= max{|mi|, |Mi|};
 (A4) 𝜙∗ ∶= infu∈Z 𝜙(u) > −∞.

Note that assumption (A2) implies that assumption (A3) holds when the interior of 
dom h is nonempty. Under the above assumptions, the proposed ICG methods find an 
approximate solution (ŷ, v̂) of (20) as in (8) with �s = f1 + f2 and �n = h , i.e.

We now outline the ICG methods. Given a starting point y0 ∈ dom�n and a special 
stepsize 𝜆 > 0 , each method continually calls the R-ACG algorithm of Sect.  2 to 
find an approximate solution of a prox-linear form of (20). More specifically, each 
R-ACG call is used to tentatively find an approximate solution of

for some reference point z0 . For the IA-ICG method, the point z0 is y0 for the first 
R-ACG call and is the last obtained approximate solution for the other R-ACG calls. 
For the DA-ICG method, the point z0 is chosen in an accelerated manner.

From the output of the kth R-ACG call, a refined pair (ŷ, v̂) = (ŷk, v̂k) is generated 
which: (i) always satisfies the inclusion of (22); and (ii) is such that mini≤k ‖v̂i‖ → 0 as 
k → ∞ . More specifically, this refined pair is generated by applying the refinement pro-
cedure of Sect. 2 and adding some adjustments to the resulting output to conform with 
our goal of finding an approximate solution as in (22). For the ease of future reference, 
we now state this specialized refinement procedure. Before proceeding, we introduce 
the shorthand notation

(20)min
u∈Z

[
�(u) ∶= f1(u) + f2(u) + h(u)

]

(21)−
mi

2
‖u − y‖2 ≤ fi(u) − �fi

(u;y) ≤
Mi

2
‖u − y‖2 ∀u, y ∈ dom h;

‖∇fi(u) − ∇fi(y)‖ ≤ Li‖u − y‖ ∀u, y ∈ dom h,

(22)v̂ ∈ ∇f
1
(ŷ) + ∇f

2
(ŷ) + 𝜕h(ŷ), ‖v̂‖ ≤ �̂�.

(23)min
u∈Z

�
�(u) = �

�
�f1

(u;z0) + f2(u) + h(u)
�
+

1

2
‖u − z0‖2

�
,

(24)M+
i
∶= max

{
Mi, 0

}
, m+

i
∶= max

{
mi, 0

}
, Li(x, y) ∶= Lfi(x, y),
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for i ∈ {1, 2} , to keep its presentation (and future results) concise.

The result below states some properties about the above procedure. For the sake 
of brevity, we write (ŷ, v̂) = SRP(y, v, z0) to indicate that the pair (ŷ, v̂) is the output 
of the above procedure with inputs (M2, f1, f2, h) , � , and (y, v, z0).

Lemma 3 Let (m1,M1) , (m2,M2) , and (f1, f2, h) satisfying assumptions (A1)–(A3) 
and a quadruple (z0, y, v, �) ∈ Z × dom�n × Z ×ℝ+ be given. Moreover, let 
(ŷ, v̂) = SRP(y, v, z0) and define

for every x, y ∈ Z . Then, the following statements hold: 

(a) v̂ ∈ ∇f
1
(ŷ) + ∇f

2
(ŷ) + 𝜕h(ŷ);

(b) if (y, v, �) solves Problem B with (�,�s,�n) as in (28), then 

It is worth recalling from Sect. 1 that in the applications we consider, the cost 
of the R-ACG call is small compared to SVD computation that is performed before 
solving each subproblem as in (23). Hence, in the analysis that follows, we present 
complexity results related to the number of subproblems solved rather than the total 
number of R-ACG iterations. We do note, however, that the number of R-ACG itera-
tions per subproblem is finite in view of Proposition 2(a).

(26)C�(x, y) ∶=
1 + �

[
M+

2
+ L1(x, y) + L2(x, y)

]
√

1 + �M+
2

,

‖v̂‖ ≤

�
L1(y,w) +

2 + 𝜃C𝜆(y, ŷ)

𝜆

�
‖y − z0‖.
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3.2  Static and dynamic IA‑ICG methods

This subsection presents the static and dynamic IA-ICG methods.
We first state the static IA-ICG method.

Note that the static IA-ICG method may fail without obtaining a pair satisfying 
(22). In Theorem 4(c) below, we state that a sufficient condition for the method 
to stop successfully is that f2 be convex. This property will be important when 
we present the dynamic IA-ICG method, which: (i) repeatedly calls the static 
method; and (ii) incrementally transfers convexity from f1 to f2 between each call 
until a successful termination is achieved.

We now make some additional remarks about the above method. First, it per-
forms two kinds of iterations, namely, ones that are indexed by k and ones that are 
performed by the R-ACG algorithm. We refer to the former kind as outer itera-
tions and the latter kind as inner iterations. Second, in view of (27), if M1 > 0 
then 0 < 𝜆 < (1 − 2𝜃2)∕(2M1) whereas if M1 ≤ 0 then 0 < 𝜆 < ∞ . Finally, the 
most expensive part of the method is the R-ACG call in step  1. In Sect.  4, we 
show that this call can be replaced with a call to a spectral version of R-ACG that 
is dramatically more efficient when the underlying problem has the spectral struc-
ture as in (1).

The next result summarizes some facts about the static IA-ICG method. Before 
proceeding, we first define some useful quantities. For 𝜆 > 0 and u,w ∈ Z , define
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Theorem 4 The following statements hold about the static IA-ICG method: 

(a) it stops in 

 outer iterations, where �∗ is as in (A4);
(b) if it stops with success, then its output pair (ŷ, v̂) is a �̂�–approximate solution of 

(20);
(c) if f2 is convex, then it always stops with success.

We now make three remarks about the above results. First, if � = O(1∕C�) then 
(30) is on the order of

Moreover, comparing the above complexity to the iteration complexity of the ECG 
method described in Sect. 1, which is known (see, for example, [16]) to obtain an 
approximate solution of (20) in

iterations, we see that (31) is smaller than (32) in magnitude when L2 is large. Notice 
also that the complexity in (31) corresponds to applying the ECG method to (1) 
where the composite function is f2 + h instead of just h. Second, Theorem  4(b) 
shows that if the method stops with success, regardless of the convexity of f2 , then 
its output pair (ŷ, v̂) is always an approximate solution of (20). Third, in view of 
Proposition 10, the quantities L1 and C� in all of the previous complexity results can 
be replaced by their averaged counterparts in (48). As these averaged quantities only 
depend on {(yi, ŷi)}ki=1 , we can infer that the static IA-ICG method adapts to the local 
geometry of its input functions.

We now state the dynamic IA-ICG method that resolves the issue of failure in 
the static IA-ICG method.

(29)�̃�(u;w) ∶= �f1
(u;w) + f2(u) + h(u), C� ∶=

1 + �(M+
2
+ L1 + L2)√

1 + �M+
2

.

(30)O1

⎛
⎜⎜⎝

�√
𝜆L1 +

1 + 𝜃C𝜆√
𝜆

�2�
𝜙(z0) − 𝜙∗

�̂�2

�⎞
⎟⎟⎠

(31)O1

⎛⎜⎜⎝

�√
𝜆L1 +

1√
𝜆

�2�
𝜙(z0) − 𝜙∗

�̂�2

�⎞⎟⎟⎠
.

(32)O1

⎛⎜⎜⎝

�√
𝜆(L1 + L2) +

1√
𝜆

�2�
𝜙(z0) − 𝜙∗

�̂�2

�⎞⎟⎟⎠
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Some remarks about the above method are in order. First, in view of (27) 
and the fact that M1 is monotonically decreasing, the parameter � does not need 
to be changed for each IA-ICG call. Second, in view of assumption (A2) and 
Theorem  4(c), the IA-ICG call in step  1 always terminates with success when-
ever m2 ≤ 0 . As a consequence, the total number of IA-ICG calls is at most 
⌈log(2m+

2
∕�0)⌉ . Third, in view of the second remark and Theorem 4(b), the method 

always obtains a �̂�–approximate solution of (20) in a finite number of IA-ICG 
outer iterations. Finally, in view of second remark again, the total number of 
IA-ICG outer iterations is as in Theorem 4(a) but with: (i) an additional multi-
plicative factor of ⌈log(2m+

2
∕�0)⌉ ; and (ii) the constants m1 and M2 replaced with 

(m1 + 2m+
2
) and (M2 + 2m+

2
) , respectively. It is worth mentioning that a more 

refined analysis, such as the one in [10], can be applied in order to remove the 
factor of ⌈log(2m+

2
∕�0)⌉ from the previously mentioned complexity.

3.3  Static and dynamic DA‑ICG methods

This subsection presents the static DA-ICG method, but omits the statement of its 
dynamic variant for the sake of brevity. We do argue, however, that the dynamic 
variant can be stated in the same way as the dynamic IA-ICG method of Sect. 6.1 
but with the call to the static IA-ICG method replaced with a call to the static 
DA-ICG method of this subsection.

We start by stating some additional assumptions. It is assumed that: 

 (i) the set dom h is closed;
 (ii) there exists a bounded set Ω ⊇ dom h for which a projection oracle exists.

We now state the static DA-ICG method.
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Note that, similar to the static IA-ICG method, the static DA-ICG method may 
fail without obtaining a pair satisfying (22). Proposition  5(c) shows that a suf-
ficient condition for the method to stop successfully is that f2 be convex. Using 
arguments similar to the ones employed to derive the dynamic IA-ICG method, 
a dynamic version of DA-ICG method can also be developed that repeatedly 
invokes the static DA-ICG in place of the static IA-ICG.

We now make some additional remarks about the above method. First, it per-
forms two kinds of iterations, namely, ones that are indexed by k and ones that are 
performed by the R-ACG algorithm. We refer to the former kind as outer itera-
tions and the latter kind as inner iterations. Second, in view of the update for 
yk in (36), the collection of function values {�(yi)}ki=0 is non-increasing. Third, 
in view of (34), if M1 > 0 then 0 < 𝜆 < (1 − 2𝜃2)∕(2M1) whereas if M1 ≤ 0 then 
0 < 𝜆 < ∞ . Finally, the most expensive part of the method is the R-ACG call in 
step 2. In Sect. 4, we show that this call can be replaced with a call to a spectral 
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version of R-ACG that is dramatically more efficient when the underlying prob-
lem has the spectral structure as in (1).

It is worth mentioning that the outer iteration scheme of the DA-ICG method is 
a monotone and inexact generalization of the A-ECG method in [6]. More specifi-
cally, this A-ECG method is a version of the DA-ICG method where: (i) � = 0 ; (ii) 
the R-ACG algorithm in step 2 is replaced by an exact solver of (23); (iii) the update 
of xk in (36) is replaced by an update involving the prox evaluation of the function 
ak−1h ; and (iv) both f1 and f2 are linearized instead of just f2 in the DA-ICG method. 
Hence, the DA-ICG method can be significantly more efficient when its R-ACG call 
is more efficient than an exact solver of (23) and/or when the projection onto Ω is 
more efficient than evaluating the prox of ak−1h.

The next result summarizes some facts about the DA-ICG method. Before pro-
ceeding, we introduce the useful constants

Theorem 5 The following statements hold about the static DA-ICG method: 

(a) it stops in 

 outer iterations;
(b) if it stops with success, then its output pair (ŷ, v̂) is a �̂�–approximate solution of 

(20);
(c) if f2 is convex, then it always stops with success in 

 outer iterations.

We now make three remarks about the above results. First, in the “best” scenario 
of max{m1,m2} ≤ 0 , i.e., f1 and f2 are convex, we have that (39) reduces to

(37)

Dh ∶= sup
u,z∈dom h

‖u − z‖, DΩ ∶= sup
u,z∈Ω

‖u − z‖, Δ0
�
∶= �(y0) − �∗,

d0 ∶= inf
u∗∈Z

{‖y0 − u∗‖ ∶ �(u∗) = �∗}, E�,� ∶=
√
�L1 +

1 + �C�√
�

.

(38)O1

(
E2
𝜆,𝜃
[m+

1
D2

h
+ Δ0

𝜙
]

�̂�2
+

E𝜆,𝜃[m
+
1
+ 1∕𝜆]1∕2DΩ

�̂�

)

(39)O1

(
E2
𝜆,𝜃
m+

1
D2

h

�̂�2
+

E𝜆,𝜃[m
+
1
]1∕2DΩ

�̂�
+

E
2∕3

𝜆,𝜃
d
2∕3

0
𝜆−1∕3

�̂�2∕3

)

O1

([
L1 +

1

𝜆

]2∕3[d
2∕3

0

�̂�2∕3

])
,
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which has a smaller dependence on �̂� when compared to (31). In the “worst” sce-
nario of min{m1,m2} > 0 , if we take � = O(1∕C�) , then (38) reduces to

which has the same dependence on �̂� as in (31). Second, part (c) shows that if the 
method stops with an output pair (ŷ, v̂) , regardless of the convexity of f2 , then that 
pair is always an approximate solution of (20). Third, in view of Proposition 18, the 
quantities L1 and C� in all of the previous complexity results can be replaced by 
their averaged counterparts in (63). As these averaged quantities only depend on 
{(ya

i
, ŷi, x̃i−1)}

k
i=1

 , we can infer that the static DA-ICG method, like the static IA-ICG 
method of the previous subsection, also adapts to the local geometry of its input 
functions.

4  Exploiting the spectral decomposition

Recall that at every outer iteration of the ICG methods in Sect.  3, a call to the 
R-ACG algorithm is made to tentatively solve Problem B (see Sect. 3.1) associated 
with (23). Our goal in this section is to present a more efficient version of R-ACG 
(based on the idea outlined in Sect. 1) when the underlying problem has the spectral 
structure as in (1).

The content of this section is divided into two subsections. The first one presents 
the aforementioned algorithm, whereas the second one proves its key properties.

4.1  Spectral R‑ACG algorithm

This subsection presents the R-ACG algorithm mentioned above. Throughout our 
presentation, we let Z0 represent the starting point given to the R-ACG algorithm by 
the two ICG methods.

We first state the aforementioned efficient algorithm.

O1

⎛
⎜⎜⎝

�√
𝜆L1 +

1√
𝜆

�2�
m+

1
D2

h
+ 𝜙(y0) − 𝜙∗

�̂�2

�⎞
⎟⎟⎠
,
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We now make three remarks about the above algorithm. First, the matrices P and 
Q in step 1 can be obtained by computing an SVD of Z�

0
 . Second, in view of Propo-

sition 20(a) and the fact that (�,M) in (41) and (28) are the same, the iteration com-
plexity is the same as the vanilla R-ACG algorithm. Finally, because the functions 
�V

s
 and �V

n
 in (41) have vector inputs over ℝr , the steps in the spectral R-ACG algo-

rithm are significantly less costly than the ones in the R-ACG algorithm, which use 
functions with matrix inputs over ℝm×n.

The following result, whose proof is in the next subsection, presents the key prop-
erties of this algorithm.

Proposition 6 The spectral R-ACG algorithm has the following properties: 

(a) if it stops with success, then its output triple (Y,V , �) solves Problem B associated 
with (23);

(b) if f2 is convex, then it always stops with success and its output (Y,V , �) solves 
Problem A associated with (23).

4.2  Proof of Proposition 6

For the sake of brevity, let (�s,�n) be as in (28) and, using P and Q from the spectral 
R-ACG algorithm, define for every (u,U) ∈ ℝr ×ℝm×n , the functions
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The first result relates (�s,�n) to (�V

s
,�V

n
).

Lemma 7 Let (y, v, �) and (Y,V) be as in the spectral R-ACG algorithm. Then, the 
following properties hold: 

(a) we have 

 where B�
0
∶= �f1(Z0) − �⟨∇f1(Z0), Z0⟩ + ‖Z0‖2F∕2;

(b) we have 

Proof (a) The relationship between �V

n
 and �n is immediate. On the other hand, 

using the definitions of Y, f2 , and B�
0
 , we have

(b) Let S0 = V + Z�
0
− Y  and s0 = v + �(Z�

0
) − y , and note that S0 = M(s0) . Moreo-

ver, in view of part (a) and the definition of � , observe that the left inclusion in (42) 
is equivalent to S

0
∈ ��(�[f2 + h])(Y) . Using this observation, the fact that S0 and 

Y  have a simultaneous SVD, and Theorem 23 with (S, s) = (S0, s0) , Ψ = �[f2 + h] , 
and ΨV = �[f V

2
+ hV] , we have that the left inclusion in (42) is also equivalent to 

s
0
∈ ��(�[f

V

2
+ hV])(y) . The conclusion now follows from the observation that the 

latter inclusion is equivalent to the the right inclusion in (42).   ◻

We are now ready to give the proof of Proposition 6.

Proof of Proposition 6 (a) Since (y, v) = (V(Y),V(V)) , notice that the successful ter-
mination of the algorithm implies that the inequality in (9) and (15) hold. Using this 
remark, the fact that ‖V‖2

F
= ‖v‖2 , and the bound

we then have that the inequality in (9) also holds with (y, v) = (Y,V).

M(u) ∶=P(dg u)Q∗, V(U) ∶= Dg (P∗UQ),

�(U) ∶=�s(U) + �n(U), �V(u) ∶= �V

s
(u) + �V

n
(u).

�V

n
(y) = �n(Y), �V

s
(y) + B�

0
= �s(Y),

(42)V ∈ ��

�
� −

1

2
‖ ⋅ −Y‖2

F

�
(Y) ⟺ v ∈ ��

�
�V −

1

2
‖ ⋅ −y‖2

�
(y).

�V

s
(y) + B�

0
= �f2(Y) − ⟨Z�

0
, Y⟩ + 1

2
‖Y‖2

F
+ B�

0

= �
�
f2(Y) + f1(Z0) + ⟨∇f1(Z0), Y − Z0⟩

�
+

1

2
‖Y − Z0‖2F = �s(Y).

(43)
�2‖zj − z0‖2 = �2

�‖zj‖2 − 2⟨zj,V(z0)⟩ + ‖Z0‖2F
�
+ �2(‖V(z0)‖2 − ‖Z0‖2F)

≤ �2
�‖Zj‖2F − 2⟨Zj, Z0⟩ + ‖Z0‖2F

�
= �2‖Zj − Z0‖2F,
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To show the corresponding inequality for (15), let (Yr,Vr) = RP(Y,V) using the 
refinement procedure in Sect. 2. Moreover, let (yr, vr) = RP(y, v) and ΔV

1
(⋅;⋅, ⋅) be as 

in (10), where (�s,�n) = (�V

s
,�V

n
) . It now follows from (11), (12), Lemma 22 with 

Ψ = �n and S = V +MY − ∇�s(Y) , and Lemma 21(b) that Yr, Y,V  , and Vr have a 
simultaneous SVD. As a consequence of this, the first remark, and Lemma 7(a), we 
have that

and hence that (15) holds with (y, v) = (Y,V).
(b) This follows from part (a), Proposition 2(c), and Lemma 7(b).   ◻

5  Computational results

This section presents computational results that highlight the performance of the 
dynamic IA-ICG and dynamic DA-ICG methods, and it contains three subsections. 
The first one describes the implementation details, the second presents computa-
tional results related to a set of spectral composite problem, while the third gives 
some general comments about the computational results.

5.1  Implementation details

This subsection precisely describes the implementation of the methods and experi-
ments of this section. Moreover, all of the code needed to replicate these experi-
ments is readily available online.1

We first describe some practical modifications to the dynamic IA-ICG method. 
Given 𝜆 > 0 and (zj, z0) ∈ Z

2 , denote

where �̃� is as in (29). Motivated by the first inequality in the descent condition (46), 
we relax (17) in the R-ACG call to the three separate conditions: 
‖zj − z0‖2 ≤ Δ�

�
, ‖rj‖2 ≤ Δ�

�
 , and 2�j ≤ Δ�

�
.

We now describe some modifications and parameter choices that are common 
to both methods. First, both ICG methods use the spectral R-ACG algorithm of 
Sect. 4.1 in place of the R-ACG algorithm of Sect. 2. Moreover, this R-ACG vari-
ant uses a line search subroutine for estimating the upper curvature M that is used 

� ≥ ΔV

1
(yr;y, v) = �V(y) − �V(yr) − ⟨v, y − yr⟩ + 1

2
‖yr − y‖2

= �(Y) − �(Yr) − ⟨V , Y − Yr⟩ + 1

2
‖Yr − Y‖2 = Δ1(Yr;Y,V),

Δ�
�
= 4�

�
�(z0) − �̃�(zj;z0) −

M1

2
‖zj − z0‖2

�

1 See https:// github. com/ wwkong/ nc_ opt/ tree/ master/ tests/ papers/ icg.

https://github.com/wwkong/nc_opt/tree/master/tests/papers/icg


695

1 3

Accelerated inexact composite gradient methods for nonconvex…

during its execution. Second, when each of the dynamic ICG methods invokes their 
static counterparts, the parameters A0 and y0 are set to be the last obtained param-
eters of the previous invocation or the original parameters if it is the first invoca-
tion, i.e., we implement a warm–start strategy. Third, we adaptively update � at each 
outer iteration as follows: given the old value of � = �old at the kth outer iteration, the 
new value of � = �new at the (k + 1)th iteration is given by

Fourth, we take � = 1∕2 rather than � = 1 for each of R-ACG calls in order to 
reduce the possibility of a failure from the R-ACG algorithm. Fifth, in view of (43), 
we relax condition (17) in the vector-based R-ACG call of Sect. 4.1 to

where � ∶= �2(‖Z0‖2F − ‖z0‖2) ≥ 0 . Finally, both ICG methods choose the common 
hyperparameters (�0, �, �) = (M1, 5∕M1, 1∕2) at initialization.

We now describe the five other benchmark methods considered. Throughout their 
descriptions, we let m = m1 + m2 , M = M1 +M2 , and L = max{m,M} . The first 
method is Nesterov’s efficient ECG method of [15] with (�, �u, �d) = (100∕L, 2, 2) . 
The second method is the accelerated inexact proximal point (AIPP) method of [10] 
with (�, �, �) = (1∕m, 4, 10[�M + 1]) and the R-AIPPv2 stepsize scheme. The third 
method is a variant of the A-ECG method of [6, Algorithm  2], which we abbre-
viate as AG. In particular, this variant chooses its parameters as in [6, Corollary 
2] with LΨ replaced by M, i.e., �k = 1∕(2M) for every k (implying a more aggres-
sive stepsize policy). It is worth mentioning that we tested the more conservative 
AG variant with �k = 1∕(2LΨ) and observed that it performed substantially less 
efficient than the above aggressive variant. The fourth method is a special imple-
mentation of the adaptive A-ECG method in [7] with (�1, �2, �3) = (0.4, 0.4, 1.0) and 
(�, �) = (10−2, 10−10) , which we abbreviate as UP. More specifically, we consider 
the UPFAG-fullBB method described in [7, Section 4], which uses a Barzilai-Bor-
wein type stepsize selection strategy. The last is the A-ECG method of [13], named 
NC-FISTA, with (�, �) = (1.05m, 0.99∕M) , which we abbreviate as NCF.

Finally, we state some additional details about the numerical experiments. First, 
the problems considered are of the form in (1) and satisfy assumptions (A1)–(A4) 
with f2 = f V

2
◦� and h = hV◦� . Second, given a tolerance �̂� > 0 and an initial point 

Y0 ∈ dom h , every method in this section seeks a pair (Ŷ, V̂) ∈ dom h ×ℝm×n 
satisfying

and stops after 1000 seconds if such a point cannot be found. Third, to be concise, 
we abbreviate the IA-ICG and DA-ICG methods as IA and DA, respectively. Finally, 

𝜆new =

⎧⎪⎨⎪⎩

𝜆old, rk ∈ [0.5, 2.0],

𝜆old ⋅
√
0.5, rk < 0.5,

𝜆old ⋅
√
2, rk > 2.0,

rk =

�
𝜆(M+

2
+ 2m+

2
) + 1

�‖yk − ŷk‖
‖v̂k −

�
𝜆(M+

2
+ 2m+

2
) + 1

�
(yk − ŷk)‖

.

‖rj‖2 + 2�j ≤ �2‖zj − z0‖2 + �,

V̂ ∈ ∇f
1
(Ŷ) + ∇(f V

2
◦𝜎)(Ŷ) + 𝜕(hV◦𝜎)(Ŷ),

‖V̂‖
‖∇f

1
(Y

0
) + (f V

2
◦𝜎)(Y

0
)‖ + 1

≤ �̂�,
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all described algorithms are implemented in MATLAB 2020a and are run on Linux 
64-bit machines that contain at least 8 GB of memory.

5.2  Spectral composite problems

This subsection presents computational results of a set of spectral composite optimi-
zation problems and contains two sub-subsections. The first one examines a class of 
nonconvex matrix completion problems, while the second one examines a class of 
blockwise matrix completion problems.

5.2.1  Matrix completion

Given a quadruple (�, �,�, �) ∈ ℝ4
++

 , a data matrix A ∈ ℝ�×n , and indices Ω , this 
subsection considers the following constrained matrix completion (MC) problem:

where PΩ is the linear operator that zeros out any entry that is not in Ω and

for every z ∈ ℝn . Here, the function �� + �� is a nonconvex generalization of the 
convex elastic net regularizer (see, for example, [17]), and it is well-known (see, for 
example, [20]) that the function �� − �‖ ⋅ ‖∗ is concave, differentiable, and has a 
(2��∕�2)-Lipschitz continuous gradient.

We now describe the different data matrices that are considered. Each matrix 
A ∈ ℝ�×n is obtained from a different collaborative filtering system where each row 
represents a unique user, each column represents a unique item, and each entry rep-
resents a particular rating. Table 1 lists the names of each data set, where the data 
originates from (in the footnotes), and some basic statistics about the matrices.

We now describe the experiment parameters considered. First the starting point 
Z0 is randomly generated from a shifted binomial distribution that closely follows 

min
U∈ℝm×n

1

2
‖PΩ(U − A)‖2

F
+ ��◦�(U) + ��◦�(U)

s.t.‖U‖2
F
≤
√
𝓁n ⋅max

i,j
�Aij�,

��(z) =
��

�

n�
i=1

log

�
1 +

�zi�
�

�
, ��(z) = ��

�
1 − exp

�
−
‖z‖2

2

2�

��

Table 1  Description of the MC 
data matrices A ∈ ℝm×n

2See the subset of the ratings from https:// www. kaggle. com/ Coope 
rUnion/ anime- recom menda tions- datab ase where each user has rated 
at least 720 items.
3See the ratings in the file “ratings.txt” under the FilmTrust section 
in https:// www. librec. net/ datas ets. html

Name � n % nonzero mini,j Aij maxi,j Aij

Anime2 506 9437 10.50% 1 10

FilmTrust3 1508 2071 1.14% 0.5 8

https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://www.librec.net/datasets.html
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the data matrix A. More specifically, the entries of Z0 are distributed according to a 
BINOMIAL(a,�∕a) − A distribution, where � is the sample average of the nonzero 
entries in A, the integer a is the ceiling of the range of ratings in A, and A is the min-
imum rating in A. Second, the decomposition of the objective function is as follows

where F = {U ∈ ℝm×n ∶ ‖U‖F ≤
√
𝓁n ⋅maxi,j �Aij�} is the set of feasible solutions. 

Third, in view of the previous decomposition, the curvature parameters are set to be

where it can be shown that the smallest and largest eigenvalues of ∇2��(z) are 
bounded below and above by −2�� exp(−3�∕2)∕� and ��∕� , respectively, for every 
z ∈ ℝn . Finally, each problem instance uses a specific data matrix A from Table 1, 
the hyperparameters (�, �,�) = (10, 20, 2) and �̂� = 10−6 , different values of the 
parameter � , and Ω to be the index set of nonzero entries in the chosen matrix A.

We now present the results. Figure 1 presents two subplots for the results of the 
Anime dataset under a value of � = 10−1 . The first subplot contains the log objec-
tive value against runtime, while the second one contains the log of the minimal 
subgradients, i.e. mini≤k ‖V̂i‖ , against runtime. Tables  2 to 3 present the minimal 
subgradient size obtained within the time limit of 1000. Moreover, each row of these 
tables corresponds to a different choice of � and the bolded numbers highlight which 
algorithm performed the best in terms of the size obtained in a run.

5.2.2  Blockwise matrix completion

Given a quadruple (�, �,�, �) ∈ ℝ4
++

 , a block decomposable data matrix A ∈ ℝ�×n 
with blocks {Ai}

k
i=1

⊆ ℝp×q , and indices Ω , this subsection considers the following 
constrained blockwise matrix completion (BMC) problem:

(44)

f1 =
1

2
‖PΩ(⋅ − A)‖2

F
, f V

2
= �

�
��(⋅) −

�

�
‖ ⋅ ‖1

�
+ ��(⋅), hV =

��

�
‖ ⋅ ‖1 + �F(⋅),

(45)m1 = 0, M1 = 1, m2 =
2��

�2
+

2��

�
exp

(
−3�

2

)
, M2 =

��

�
,

Fig. 1  Function values and minimum subgradients for the Anime dataset with � = 10
−1
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Table 2  Minimum subgradient sizes for the Anime dataset. Times are in seconds and “-” indicates a run 
that did not generate a subgradient within the given time limit

Parameters Time Minimum Subgradient Size ( mini≤k ‖V̂i‖)
(�,m,M)

T t ECG AIPP AG UP NCF IA DA

⎡⎢⎢⎣

1

169

201

⎤⎥⎥⎦

100 1088.6 1421.0 1568.9 1599.4 1488.8 13.0 78.5

200 1088.6 221.9 1510.2 132.6 1362.4 11.6 39.2
400 1088.6 55.6 1284.6 7.5 1147.9 11.6 11.1
800 1088.6 7.7 716.7 7.5 862.7 11.6 11.1

⎡⎢⎢⎣

0.1

11443

2001

⎤⎥⎥⎦

100 1542.0 1595.8 1593.8 - 1595.0 189.7 1345.1

200 1489.9 1595.0 1591.5 1595.2 1594.2 23.1 378.1
400 1391.0 1587.8 1584.3 1595.1 1592.3 13.0 60.6
800 1276.3 990.5 1557.2 1594.3 1589.2 13.0 13.0

⎡⎢⎢⎣

0.01

839400

20001

⎤⎥⎥⎦

100 1594.6 1595.9 1595.6 1595.8 1595.9 162.9 452.0

200 1592.8 1595.6 1595.0 1595.8 1595.8 33.5 68.0
400 1589.8 1569.5 1592.2 1595.8 1595.8 15.3 14.7
800 1583.8 861.8 1582.3 1595.7 1595.7 15.3 14.1

Table 3  Minimum subgradient sizes for the FilmTrust dataset. Times are in seconds and “-” indicates a 
run that did not generate a subgradient within the given time limit

Parameters Time Minimum Subgradient Size ( mini≤k ‖V̂i‖)
(�,m,M)

T t ECG AIPP AG UP NCF IA DA

⎡⎢⎢⎣

1

169

201

⎤⎥⎥⎦

100 127.1 328.6 328.5 - 326.2 77.7 342.4

200 106.7 326.2 326.8 330.0 319.4 60.7 203.1
400 106.7 294.6 319.2 330.0 305.9 60.7 186.4
800 106.7 107.4 291.0 251.9 280.5 60.7 186.4

⎡⎢⎢⎣

0.1

11443

2001

⎤⎥⎥⎦

100 309.0 330.0 329.6 329.9 329.9 71.0 242.3

200 287.0 326.9 327.8 329.9 329.5 71.0 235.4
400 248.0 188.7 321.9 329.8 328.8 71.0 202.7
800 186.9 188.7 301.8 329.4 327.4 71.0 202.7

⎡⎢⎢⎣

0.01

839400

20001

⎤⎥⎥⎦

100 330.1 330.2 330.2 - 330.2 91.8 263.9

200 330.0 330.2 330.2 330.2 330.2 91.8 262.1
400 329.7 330.2 330.1 330.2 330.2 91.8 262.1
800 329.2 328.7 329.7 330.2 330.2 91.8 262.1
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where PΩ , �� , and �� are as in Sect. 5.2.1 and Ui ∈ ℝp×q is the ith block of U with the 
same indices as Ai with respect to A.

We now describe the two classes of data matrices that are considered. Every 
data matrix is a 5-by-5 block matrix consisting of 50-by-100 sized submatrices. 
Every submatrix contains only 25% nonzero entries and each data matrix gener-
ates its submatrix entries from different probability distributions. More specifi-
cally, for a sampled probability p ∼ UNIFORM[0, 1] specific to a fixed submatrix, 
one class uses a BINOMIAL(n, p) distribution with n = 10 , while the other uses a 
TRUNCATEDNORMAL(�, �) distribution with � = 10p , �2 = 10p(1 − p) , and upper 
and lower bounds 0 and 10, respectively.

We now describe the experiment parameters considered. First, the the decompo-
sition of the objective function and the quantities Z0 , (m1,M1) , (m2,M2) , �̂� , and Ω 
are the same as in Sect. 5.2.1. Second, we fix (�, �,�) = (10, 20, 2) and vary (�,A) 
across the different problem instances.

We now present the results. Figure 2 contains the plots of the log objective func-
tion value against the runtime for the binomial data set, listed in increasing order 
of M2 . The corresponding plots for the truncated normal data set are similar to the 
binomial plots so we omit them for the sake of brevity. Tables 4 and 5 present the 
minimal subgradient size obtained within the time limit of 1000. Moreover, each 
row of these tables corresponds to a different choice of � and the bolded numbers 
highlight which algorithm performed the best in terms of the size obtained in a run.

5.3  General comments

This subsection makes two comments about the results obtained in the previous sub-
section. First, within the alloted time (i.e., 1000 seconds), the DA-ICG and IA-ICG 

min
U∈ℝm×n

1

2
‖PΩ(U − A)‖2

F
+

k�
i=1

�
��◦�(Ui) + ��◦�(Ui)

�

s.t.‖U‖2
F
≤
√
𝓁n ⋅max

i,j
�Aij�,

Fig. 2  Function values and minimum subgradients for the truncated normal dataset with � = 10
−1
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Table 4  Minimum subgradient sizes for the binomial dataset. Times are in seconds and “-” indicates a 
run that did not generate a subgradient within the given time limit

Parameters Time Minimum Subgradient Size ( mini≤k ‖V̂i‖)
(�,m,M)

T t ECG AIPP AG UP NCF IA DA

⎡⎢⎢⎣

1

169

201

⎤⎥⎥⎦

100 392.4 500.3 501.2 506.0 482.5 33.9 75.5

200 392.4 478.4 492.3 506.0 465.0 33.9 43.2
400 392.4 182.2 455.9 57.1 407.0 33.9 43.2
800 392.4 36.7 320.6 57.1 284.3 33.9 43.2

⎡⎢⎢⎣

0.1

11443

2001

⎤⎥⎥⎦

100 489.1 505.9 505.7 - 505.8 43.4 416.0

200 476.9 505.6 505.3 505.5 505.5 43.4 76.9
400 449.5 503.4 503.1 505.5 505.0 43.4 53.8
800 399.4 240.8 496.2 505.3 503.9 43.4 53.8

⎡⎢⎢⎣

0.01

839400

20001

⎤⎥⎥⎦

100 505.6 505.9 505.8 505.9 505.9 48.6 137.5

200 505.1 505.9 505.7 505.9 505.9 48.6 58.6
400 504.1 498.1 504.9 505.9 505.9 48.6 58.6
800 502.2 176.9 502.1 505.9 505.9 48.6 58.6

Table 5  Minimum subgradient sizes for the truncated normal dataset. Times are in seconds and “-” indi-
cates a run that did not generate a subgradient within the given time limit

Parameters Time Minimum Subgradient Size ( mini≤k ‖V̂i‖)
(�,m,M)

T t ECG AIPP AG UP NCF IA DA

⎡⎢⎢⎣

1

169

201

⎤⎥⎥⎦

100 - 564.3 562.7 - 552.2 39.1 362.3

200 433.5 551.8 554.1 566.6 536.2 30.0 80.3
400 433.5 351.5 526.6 566.6 501.7 30.0 40.8
800 433.5 35.6 433.7 55.8 435.7 30.0 40.8

⎡⎢⎢⎣

0.1

11443

2001

⎤⎥⎥⎦

100 533.8 566.4 566.2 - 566.2 41.0 465.0

200 507.4 566.1 565.7 566.0 566.0 41.0 81.4
400 478.2 563.6 561.8 566.0 565.6 41.0 50.0
800 417.6 159.0 549.9 565.8 564.4 41.0 50.0

⎡⎢⎢⎣

0.01

839400

20001

⎤⎥⎥⎦

100 565.5 566.4 566.2 566.4 566.4 45.8 54.3

200 564.6 563.9 565.5 566.4 566.4 45.8 54.3
400 562.7 186.1 563.1 566.3 566.4 45.8 54.3
800 559.1 143.6 555.6 566.3 566.3 45.8 54.3
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methods obtained approximate solutions with small primal residual ‖V̂k‖ much faster 
than the other first-order methods. More specifically, the former methods were able 
to obtain higher quality solutions much sooner than the latter ones, i.e, within the 
first 100 seconds. Second, the larger the ratio m/M is, the more efficient the ICG 
methods are compared to the other benchmarked methods.

6  Static ICG iteration complexities

This section establishes the iteration complexities for each of the static ICG methods 
in Sect. 3.

6.1  Static IA‑ICG iteration complexity

This subsection establishes the key properties of the static IA-ICG method.

Lemma 8 Let {(yi, ŷi, v̂i)}ki=1 be the collection of iterates generated by the static IA-
ICG method. For every i ≥ 1 , we have

where �̃� is as in (29).

Proof Let i ≥ 1 be fixed and let (yi, vi, �i) be the point output by the ith successful 
call to the R-ACG algorithm. Moreover, let Δ1(⋅;⋅, ⋅) be as in (10) with (�s,�n) 
given by (28). Using the definition of �̃� , step  2 of the method, and fact that 
(ya, v, �) = (yi, vi, �i) solves Problem B in Sect. 2 with (�,�s,�n) as in (28), we have 
that

Rearranging the above inequality and using assumption (A2), (27), and the fact that 
⟨a, b⟩ ≥ −‖a‖2∕2 − ‖b‖2∕2 for every a, b ∈ Z yields

(46)

1

4�
‖yi−1 − yi‖2 ≤ �(yi−1) − �̃�(yi;yi−1) −

M1

2
‖yi − yi−1‖2 ≤ �(yi−1) − �(yi),

�i ≥ Δ1(yi−1;yi, vi) = ��̃�(yi;yi−1) − ��(yi−1) − ⟨vi, yi − yi−1⟩ + ‖yi − yi−1‖2.

(47)

��(yi−1) − ��̃�(yi;yi−1) ≥ ⟨vi, yi−1 − yi⟩ − �i + ‖yi − yi−1‖2

=
1

2
‖yi − yi−1‖2 − 1

2

�‖vi‖2 + 2�i
�
≥

�
1 − �2

2

�
‖yi − yi−1‖2

=
�M1

2
‖yi − yi−1‖2 +

�
1 − �M1 − �2

2

�
‖yi − yi−1‖2

=
�M1

2
‖yi − yi−1‖2 + 1

4
‖yi − yi−1‖2.
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Rearranging terms yields the first inequality of (46). The second inequality of (46) 
follows from the first inequality, the fact that �̃�(yi;yi−1) +M1‖yi − yi−1‖2∕2 ≥ �(yi) 
from assumption (A2), and the definition of �̃� .   ◻

The next results establish the rate at which the residual ‖v̂i‖ tends to 0.

Lemma 9 Let p > 1 be given. Then, for every a, b ∈ ℝk , we have

Proof Let p > 1 and a, b ∈ ℝk be fixed and let q ≥ 1 be such that p−1 + q−1 = 1 . 
Using the fact that ⟨x, y⟩ ≤ ‖x‖p‖y‖q for every x, y ∈ ℝk , and denoting ã and b̃ to be 
vectors with entries |ai|1∕p and |bi|1∕p , respectively, we have that

Dividing by k, taking the pth power on both sides, and using the fact that 
p∕q = p − 1 , yields

  

Proposition 10 Let {(yi, ŷi, v̂i)}ki=1 be as in Lemma 8 and define the quantities

where C�(⋅, ⋅) and C� are as in (26) and (29), respectively. Then, we have

Proof Using Lemma  3 with (y,w) = (yi, yi−1) and the fact that C�(⋅, ⋅) ≤ C� and 
L1(⋅, ⋅) ≤ L1 , we have ‖v̂i‖ ≤ Ei‖yi − yi−1‖ , for every i ≤ k , where

min
1≤i≤k

��aibi�
�
≤ k−p‖a‖1‖b‖1∕(p−1).

k min
1≤i≤k

��aibi�
�1∕p

≤

k�
i=1

�aibi�1∕p

≤ ‖ã‖p‖b̃‖q = ‖a‖1∕p
1

�
k�

i=1

�bi�q∕p
�1∕q

=
�‖a‖1‖b‖q∕p

�1∕p
.

min
1≤i≤k

��aibi�
�
≤ k−p‖a‖1‖b‖q∕p = k−p‖a‖1‖b‖1∕(p−1).

(48)

L
avg

1,k
∶=

1

k

k�
i=1

L1(yi, yi−1), C
avg

𝜆,k
∶=

1

k

k�
i=1

C𝜆(ŷi, yi),

D
avg

k
∶=L

avg

1,k
+

𝜃

𝜆
C
avg

𝜆,k
, 𝛽1 ∶=

�
1 + C𝜆

𝜆

�
+
√
2

�
2 + 𝜆L1 + 𝜃C𝜆

𝜆

�
,

min
i≤k

‖v̂i‖ = O1

��√
𝜆L

avg

1,k
+

1 + 𝜃C
avg

𝜆,k√
𝜆

��
𝜙(z0) − 𝜙∗

k

�1∕2�
+

�̂�

2
.

Ei ∶=
2 + 𝜆L1(yi, yi−1) + 𝜃C𝜆(ŷi, yi)

𝜆
∀i ≥ 1.

◻
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As a consequence, using the sum of the second bound in Lemma 8 from i = 1 to k, 
the definitions in (48), and Lemma 9 with p = 3∕2 , ai = Ei , and bi = ‖yi − yi−1‖ for 
i = 1 to k, yields

  ◻

We are now ready to give the proof of Theorem 4.

Proof of Theorem 4 (a) This follows from Proposition 10, the fact that C�(⋅, ⋅) ≤ C� 
and Lf1(⋅, ⋅) ≤ L1 , and the stopping condition in step 3.

(b) The fact that (ŷ, v̂) = (ŷk, v̂k) satisfies the inclusion of (22) follows from 
Lemma 3 with (y, v,w) = (yk, vk, yk−1) . The fact that ‖v̂‖ ≤ �̂� follows from the stop-
ping condition in step 3.

(c) This follows from Proposition  2(c) and the fact that method stops in finite 
number of iterations from part (a).   ◻

6.2  Static DA‑ICG iteration complexity

This subsection establishes several key properties of static DA-ICG method.
To avoid repetition, we assume throughout this subsection that k ≥ 1 denotes 

an arbitrary successful outer iteration of the DA-ICG method and let

denote the sequence of all iterates generated by it up to and including the kth itera-
tion. Observe that this implies that the ith DA-ICG outer iteration for any 1 ≤ i ≤ k is 
successful, i.e., the (only) R-ACG call in step 2 of the DA-ICG method does not stop 
with failure and Δ1(yi−1;y

a
i
, vi) ≤ �i . Moreover, throughout this subsection we let

The first set of results present some basic properties about the functions �̃i and �i as 
well as the iterates generated by the method.

Lemma 11 Let Δ1(⋅;⋅, ⋅) be as in (10) with (�s,�n) given by (28). Then, the following 
statements hold for any s ∈ dom h and 1 ≤ i ≤ k : 

(49)

min
i≤k

‖v̂i‖ ≤ min
i≤k

Ei‖yi − yi−1‖ ≤
1

k3∕2

�
k�

i=1

Ei

��
k�

i=1

‖yi − yi−1‖2
�1∕2

= O1

��√
𝜆L

avg

1,k
+

1 + 𝜃C
avg

𝜆,k√
𝜆

��
𝜙(z0) − 𝜙∗

k

�1∕2�
.

{(ai,Ai, yi, y
a
i
, xi, x̃i−1, ŷi, v̂i, vi, 𝜀i)}

k
i=1

(50)

�𝛾i(u) = �f1
(u;x̃i−1) + f2(u) + h(u), 𝛾i(u) = �𝛾i(y

a
i
) +

1

𝜆
⟨vi + x̃i−1 − ya

i
, u − ya

i
⟩.
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(a) �i(y
a
i
) = �̃i(y

a
i
);

(b) xi = argminu∈Ω
�
�ai−1�i(u) + ‖u − xi−1‖2∕2

�
;

(c) ya
i
− vi = argminu∈Z

�
𝜆𝛾i(u) + ‖u − x̃i−1‖2∕2

�
;

(d) −M1‖u − x̃i−1‖2∕2 ≤ �𝛾i(u) − 𝜙(u) ≤ m1‖u − x̃i−1‖2∕2;
(e) �(yi−1) ≥ �(yi) and �(ya

i
) ≥ �(yi).

Proof To keep the notation simple, denote

(a) This is immediate from the definitions of � and �̃  in (50).
(b) Define �xi ∶= xk−1 − ak−1

(
vk + x̃k−1 − ya

k

)
 . Using the definition of � in (50), we 

have that

(c) Using the definition of � in (50), we have that

and hence, the point ya
+
− v is the global minimum of 𝜆𝛾 + ‖ ⋅ −x̃‖2∕2.

(d) This follows from inequality (21) with i = 1 and the definition of �̃  in (50).
(e) This follows immediately from the update rule of yi in (36).   ◻

Lemma 12 Let w = x̃i−1 , the pair (�n,�s) be as in (28), and Δ1(⋅;⋅, ⋅) be as in (10) 
with (�s,�n) given by (28). Then, following statements hold: 

(a) the triple (ya
i
, vi, �i) solves Problem B and satisfies Δ1(yi−1;y

a
i
, vi) ≤ � , and hence 

(b) if f2 is convex, then (ya
i
, vi, �i) solves Problem A;

(c) Δ1(s;y
a
i
, vi) = �[�i(s) − �̃i(s)];

(d) Δ1(yi;y
a
i
, vi) ≤ �.

Proof (a) This follows from step 2 of the DA-ICG method and Proposition 2(b).
(b) This follows from steps 2 and 3 of the DA-ICG method, the fact that h is con-

vex, and Proposition 2(c) with 𝜓s = �𝛾i + ‖ ⋅ −x̃i−1‖2∕2.
(c) Using the definitions of (�s,�n) and (� , �̃) in (28) and (50), respectively, we 

have that

(51)
(ya

+
, y+, y, x̃) =(y

a
i
, yi, yi−1, x̃i−1), (x+, x) = (xi, xi−1),

(A+,A, a) =(Ai,Ai−1, ai−1), (v, 𝜀) = (vi, 𝜀i).

argmin
u∈Ω

�
𝜆a𝛾(u) +

1

2
‖u − x‖2

�
=argmin

u∈Ω

�
a
�
v + x̃ − ya

+
, u − x

�
+

1

2
‖u − x‖2

�

=argmin
u∈Ω

1

2

���u −
�
x − a

�
v + x̃ − ya

+

�����
2

=argmin
u∈Ω

1

2
��u −�x+

��2 = x+.

𝜆∇𝛾
(
ya
+
− v

)
+ (ya

+
− v) − x̃ = (v + x̃ − ya

+
) + (ya

+
− v) − x̃ = 0,

(52)‖vi‖ + 2𝜀i ≤ 𝜃2‖ya
i
− x̃i−1‖2, Δ1(u;y

a
i
, vi) ≤ 𝜀i ∀u ∈ {ŷi, yi−1},
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(d) If yi = yi−1 , then this follows from step 3 of the method. On the other hand, if 
yi = ya

i
 , then this follows from part (c).   ◻

We now state (without proof) some well-known properties of Ai and ai−1.

Lemma 13 For every 1 ≤ i ≤ k , we have that: 

(a) a2
i−1

= Ai;
(b) i2∕4 ≤ Ai ≤ i2.

The next two lemmas are technical results that are needed to establish the key 
inequality in Proposition 16.

Lemma 14 For every u ∈ dom h and 1 ≤ i ≤ k , we have that

Proof Throughout the proof, we use the notation in (51). Using the relation 
(p + q)2 ≤ 2p2 + 2q2 for every p, q ∈ ℝ , Lemma 13(a), the fact that A ≤ A+ , x ∈ Ω , 
and y ∈ dom h , and the definitions of x̃ in (35) and of DΩ and Dh in (37), we con-
clude that

The conclusion now follows from dividing both sides of the above inequalities by 2 
and using the fact that Dh ≤ DΩ .   ◻

Lemma 15 For every u ∈ dom h and 1 ≤ i ≤ k , we have that

Δ1(s;y
a
+
, v) = (𝜓s + 𝜓n)(y

a
+
) − (𝜓s + 𝜓n)(s) −

�
v, ya

+
− s

�
+

1

2
‖s − ya

+
‖2

=
�
𝜆�𝛾(ya

+
) +

1

2
‖ya

+
− x̃‖2

�
−
�
𝜆�𝛾(s) +

1

2
‖s − x̃‖2

�
−
�
v, ya

+
− s

�
+

1

2
‖s − ya

+
‖2

=
�
𝜆𝛾(s) +

1

2
‖s − x̃‖2

�
−
�
𝜆�𝛾(s) +

1

2
‖s − x̃‖2

�
= 𝜆𝛾(s) − 𝜆�𝛾(s).

1

2

�
Ai−1‖yi−1 − x̃i−1‖2 + ai−1‖u − x̃i−1‖2

�
≤ 2D2

Ω
+ ai−1D

2
h
.

A‖y − x̃‖2 + a‖u − x̃‖2 = A
�����
a

A+

(y − x)
�����

2

+ a
�����
A

A+

(u − y) +
a

A+

(u − x)
�����

2

≤
A

A+

�
‖(y − u) + (u − x)‖2 + 2a

�
A2

A2
+

‖u − y‖2 + a2

A2
+

‖u − x‖2
��

≤
2A

A+

�‖u − y‖2 + ‖u − x‖2� + 2a‖u − y‖2 + 2a

A+

‖u − x‖2

≤ 2
�‖u − x‖2 + (1 + a)‖u − y‖2� ≤ 2[D2

Ω
+ (1 + a)D2

h
].
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Proof Throughout the proof, we use the notation in (51). We first present two key 
expressions. First, using the definition of � in (50) and Lemma 11(c), it follows that

Second, Lemma  11(b) and the fact that the function a� + ‖ ⋅ −x‖2∕(2�) is (1∕�)–
strongly convex imply that

Using (54), Lemma 11(d)–(e), Lemma 13(a), and the fact that � is affine, we have 
that

The conclusion now follows from combining (55) with (56).   ◻

We now present an inequality that plays an important role in the analysis of the 
DA-ICG method.

Proposition 16 Let Δ1(⋅;⋅, ⋅) be as in (10) with (�s,�n) as in (28), and define

For every u ∈ dom h satisfying Δ1(u;y
a
i
, vi) ≤ � and 1 ≤ i ≤ k , we have that

(53)
Ai

�
𝜙(yi) +

�
1 − 𝜆M1

2𝜆

�
‖ya

i
− x̃i−1‖2 −

‖vi‖2
2𝜆

�
+

1

2𝜆
‖u − xi‖2

≤ Ai−1𝛾i(yi−1) + ai−1𝛾i(u) +
1

2𝜆
‖u − xi−1‖2.

(54)

min
u∈Z

�
𝜆𝛾(u) +

1

2
‖u − x̃‖2

�
= 𝜆�𝛾(ya

+
) −

�
v + x̃ − ya

+
, v
�
+

1

2

���v + x̃ − ya
+

���
2

= 𝜆�𝛾(ya
+
) − ‖v‖2 − �

v, x̃ − ya
+

�
+

1

2

���v + x̃ − ya
+

���
2

= 𝜆�𝛾(ya
+
) −

1

2
‖v‖2 + 1

2
‖x̃ − ya

+
‖2.

(55)a�
�
x+
�
+

1

2�
‖x+ − x‖2 ≤ a�(u) +

1

2�
‖u − x‖2 − 1

2�
‖u − x+‖2.

(56)

A+

�
𝜙(y+) +

�
1 − 𝜆M1

2𝜆

�
‖ya

+
− x̃‖2

�
≤ A+

�
�𝛾
�
ya
+

�
+

1

2𝜆
‖ya

+
− x̃‖2

�

= A+

�
min
u∈Z

�
𝛾(u) +

1

2𝜆
‖u − x̃‖2

�
+

‖v‖2
2𝜆

�

≤ A+

�
𝛾

�
Ay + ax+

A+

�
+

1

2𝜆

�����
Ay + ax+

A+

−
Ay + ax

A+

�����

2

+
‖v‖2
2𝜆

�

= A𝛾(y) + a𝛾
�
x+
�
+

a2

2𝜆A+

‖x − x+‖2 +
A+

2𝜆
‖v‖2

= A𝛾(y) + a𝛾
�
x+
�
+

1

2𝜆
‖x − x+‖2 +

A+

2𝜆
‖v‖2

(57)�i(u) ∶= Ai

�
�(yi) − �(u)

�
+

1

2�
‖u − xi‖2 ∀i ≥ 0.
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Proof Throughout the proof, we use the notation in (51) together with the notation 
� = �i−1 and �+ = �i . Let u ∈ dom h be such that Δ1(u;y

a
+
, v) ≤ � . Subtracting A�(u) 

from both sides of the inequality in (53) and using the definition of �+ we have

Moreover, using Lemma 12(a) and (c), and with our assumption that Δ1(u;y
a
+
, v) ≤ � , 

we have that

Combining (59), (60), and Lemma 14 then yields

Re-arranging the above terms and using (34) together with the first inequality in 
(52), we conclude that

  ◻

The following result describes some important technical bounds obtained by 
summing (58) for two different choices of u (possibly changing with i) from i = 1 to 
k.

Proposition 17 Let Δ0
�
 and d0 be as in (37) and define

(58)
Ai

4𝜆
‖ya

i
− x̃i−1‖2 ≤ m+

1

�
ai−1D

2
h
+ 2D2

Ω

�
+ 𝜃i−1(u) − 𝜃i(u).

(59)

A+

2𝜆

�
(1 − 𝜆M1)‖ya+ − x̃‖2 − ‖v‖2� + 𝜋+(u)

=
A+

2𝜆

�
(1 − 𝜆M1)‖ya+ − x̃‖2 − ‖v‖2� + A+

�
𝜙(y+) − 𝜙(u)

�
+

1

2𝜆
‖u − ya

+
‖2

≤ A𝛾(y) + a𝛾(u) − A𝜙(u) +
1

2𝜆
‖u − x‖2

= a[𝛾(u) − 𝜙(u)] + A
�
𝛾(y) − 𝜙(y)

�
+ 𝜋(u).

(60)𝛾(s) − 𝜙(s) = �𝛾(s) − 𝜙(s) +
Δ1(s;y

a
+
, v)

𝜆
≤

m+
1

2
‖s − x̃‖2 + 𝜀

𝜆
∀s ∈ {u, y}.

A+

2𝜆

�
(1 − 𝜆M1)‖ya+ − x̃‖2 − ‖v‖2� + 𝜋+(u)

≤
m+

1

2

�
a‖u − x̃‖2 + A‖y − x̃‖2� + 𝜀A+

𝜆
+ 𝜋(u) ≤ m+

1

�
aD2

h
+ 2D2

Ω

�
+

𝜀A+

𝜆
+ 𝜋(u).

m+
1

�
aD2

h
+ 2D2

Ω

�
+ 𝜋(u) − 𝜋+(u) ≥

A+

2𝜆

�
(1 − 𝜆M1)‖ya+ − x̃‖2 − ‖v‖2 − 2𝜀

�

≥
A+(1 − 𝜆M1 − 𝜃2)

2𝜆
‖ya

+
− x̃‖2 ≥ A+

4𝜆
‖ya

+
− x̃‖2.

(61)Sk ∶=
1

4𝜆

k�
i=1

Ai‖yai − x̃i−1‖2.
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Then, the following statements hold: 

(a) Sk = O1(k
2[m+

1
D2

h
+ Δ0

�
] + k[m+

1
+ 1∕�]D2

Ω
);

(b) if f2 is convex, then Sk = O1(k
2m+

1
D2

h
+ km+

1
D2

Ω
+ d2

0
∕�).

Proof (a) Let Δ1(⋅;⋅, ⋅) be defined as in (10) with (�s,�n) given by (28). Using (57), 
the fact that xi, yai ∈ Ω , the fact that Ai is nonnegative and increasing, and the defini-
tions of �i and DΩ in (57) and (37), respectively, we have that

Moreover, noting Lemma  12(d) and using Proposition  16 with u = yi , we con-
clude that (58) holds with u = yi for every 1 ≤ i ≤ k . Summing these k inequali-
ties and using (62), the definition of Sk in (61), and Lemma 13(b) yields the desired 
conclusion.

(b) Assume now that f2 is convex and let y∗ be a point such that �(y∗) = �∗ 
and ‖y0 − y∗‖ = d0 . It then follows from Lemma  12(b) and Proposition  1(d) with 
(y, v) = (ya

i
, vi) that Δ1(y∗;y

a
i
, vi) ≤ � for every 1 ≤ i ≤ k . The conclusion now follows 

by using an argument similar to the one in (a) but which instead sums (58) with 
u = y∗ from i = 1 to k, and uses the fact that

where the inequality is due to the fact that �k(y∗) ≥ 0 (see (57)) and A0 = 0 .   ◻

We now establish the rate at which the residual ‖v̂i‖ tends to 0.

Proposition 18 Let Sk be as in (61). Moreover, define the quantities

where C�(⋅, ⋅) and C� are as in (26) and (29), respectively. Then, we have

(62)

k�
i=1

�
�i−1(yi) − �i(yi)

�
≤

k�
i=1

Ai−1

�
�(yi−1) − �(yi)

�
+

1

2�

k�
i=1

‖yi − xi−1‖2

≤ Ak

k�
i=1

�
�(yi−1) − �(yi)

�
+

k

2�
D2

Ω
≤ Ak

�
�(y0) − �∗

�
+

k

2�
D2

Ω
.

k�
i=1

�
�i−1(y∗) − �i(y∗)

�
= �0(y∗) − �k(y∗) ≤

1

2�
‖y0 − y∗‖2 =

d0

2�
,

(63)

L
avg

1,k
∶=

1

k

k�
i=1

L1(y
a
i
, x̃i−1), C

avg

𝜆,k
∶=

1

k

k�
i=1

C𝜆(ŷi, y
a
i
),

D
erg

k
∶= L

erg

1,k
+

𝜃

𝜆
C
erg

𝜆,k
, 8

√
2

�
2 + 𝜆L1 + 𝜃C𝜆

𝜆

�
,

min
i≤k

‖v̂i‖ = O1

��√
𝜆L

avg

1,k
+

1 + 𝜃C
avg

𝜆,k√
𝜆

��
Sk

k3

�1∕2�
+

�̂�

2
.
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Proof Let � = ⌈k∕2⌉ . Using Lemma  3 with (z,w) = (ya
i
, x̃i−1) and the bounds 

C�(⋅, ⋅) ≤ C� and L1(⋅, ⋅) ≤ L1 we have that ‖v̂i‖ ≤ Ei‖yai − x̃i−1‖ , for every � ≤ i ≤ k , 
where

As a consequence, using the definition of Sk in (61), the definitions in (63), 
Lemma  9 with p = 3∕2 , ai = Ei∕

√
Ai , and bi =

√
Ai‖yai − x̃i−1‖ for i ∈ {�, ..., k} , 

Lemma 13(b), and the fact that (k − � + 1) ≥ k∕2 , yields

  ◻

We are now ready to prove Theorem 5.

Proof of Theorem 5 (a) This follows from Proposition 18, Proposition 17(a), the fact 
that C�(⋅, ⋅) ≤ C� and Lf1(⋅, ⋅) ≤ L1 , and the termination condition in step 4.

(b) The fact that (ŷ, v̂) = (ŷk, v̂k) satisfies the inclusion of (22) follows from 
Lemma 3 with (y, v, z0) = (ya

k
, vk, x̃k−1) . The fact that ‖v̂‖ ≤ �̂� follows from the stop-

ping condition in step 4.
(c) The fact that the method does not fail follows from Proposition  2(c). The 

bound in (39) follows from a similar argument as in part (a) except that Proposi-
tion 17(a) is replaced with Proposition 17(b).   ◻

A Technical bounds

The result below presents a basic property of the composite gradient step.

Proposition 19 Let h ∈ Conv (Z) , z ∈ dom h , and g be a differentiable function 
on dom h which satisfies g(u) − �g(u;z) ≤ L‖u − z‖2∕2 for some L ≥ 0 and every 
u ∈ dom g . Moreover, define

Then, it holds that

Ei =
2 + 𝜆L1(y

a
i
, x̃i−1) + 𝜃C𝜆(ŷi, y

a
i
)

𝜆
∀i ≥ 1.

min
�≤i≤k

‖v̂i‖ ≤ min
�≤i≤k

Ei‖yai − x̃i−1‖

≤
1

(k − � + 1)3∕2

�
k�

i=�

Ei√
Ai

��
k�

i=�

Ai‖yai − x̃i−1‖2
�1∕2

≤
23∕2

k3∕2

�
2

k

k�
i=1

Ei

��
4𝜆Sk

�1∕2
= O1

��√
𝜆L

avg

1,k
+

1 + 𝜃C
avg

𝜆,k√
𝜆

��
Sk

k3

�1∕2�
.

ẑ ∶= argmin
u

�
�g(u;z) + h(u) +

L

2
‖u − z‖2

�
.
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Proof Using the definition of ẑ , the fact that 𝓁g(⋅;z) + h(⋅) + L‖ ⋅ −z‖2∕2 is 
L-strongly convex, and the assumed bound g(u) − �g(u;z) ≤ L‖u − z‖2∕2 at u = ẑ , 
we have

  ◻

B R‑ACG algorithm

This section presents technical results related to the R-ACG algorithm.
The first set of results describes some basic properties of the generated iterates.

Proposition 20 If �s is �–strongly convex, then the following statements hold: 

(a) zc
j
= argminu∈Z

�
BjΓj(u) + ‖u − zc

0
‖2∕2�;

(b) Γj ≤ � and Bj�(zj) ≤ infu∈Z
�
BjΓj(u) + ‖u − zc

0
‖2∕2�;

(c) �j ≥ 0 and rj ∈ ��j

�
� − �‖ ⋅ −zj‖2∕2

�
(zj);

(d) it holds that 

Proof (a) See [14, Proposition 1].
(b) See [14, Proposition 1(b)].
(c) The optimality of zc

j
 in part (a), the �-strong convexity of Γj , and the definition 

of rj imply that

Using the above inclusion, the definition of �j , the fact that Γj − �‖ ⋅ ‖2∕2 is affine, 
and part (b), we now conclude that

L

2
‖z − ẑ‖2 ≤ (g + h)(z) − (g + h)(ẑ).

(g + h)(z) = �g(z;z) + h(z) ≥ �g(ẑ;z) + h(ẑ) + L‖ẑ − z‖2 ≥ (g + h)(ẑ) +
L

2
‖ẑ − z‖2.

�
1

1 + �Bj

�
‖Bjrj + zj − z0‖2 + 2Bj�j ≤ ‖zj − z0‖2

rj =
zc
0
− zc

j

Bj

+ �(zj − zc
j
) ∈ �

�
Γj −

�

2
‖ ⋅ −zc

j
‖2 + �

�
⋅, zc

j
− zj

��
(zc

j
)

= �
�
Γj −

�

2
‖ ⋅ −zj‖2

�
(zc

j
).



711

1 3

Accelerated inexact composite gradient methods for nonconvex…

for every z ∈ dom�n , which is exactly the desired inclusion. The fact that �j ≥ 0 fol-
lows from the above inequality with z = zj.

(d) It follows from parts (a)–(b) and the definition of �j that

Multiplying both sides of the above inequality by 2Bj yields the desired conclusion.  
 ◻

The next result presents the general iteration complexity of the algorithm, i.e. 
Proposition 2(a).

Proof of Proposition 2(a) Let � be the first iteration where

and suppose that the R-ACG has not stopped with failure before iteration � . We 
show that it must stop with success at the end of the �th iteration. Combining the tri-
angle inequality, the successful check in step 3 of the method, (64), and the relation 
(a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ ℝ, we first have that

and hence the method must terminate at the �th iteration. We now bound � based on 
the requirement in (64). Solving for the quadratic in B

�
 in the first bound of (64), it 

is easy to see that B
�
≥ 4�K2

�
+ 2K� implies (64). On the other hand, for the second 

�(z) −
�

2
‖z − zj‖2 ≥ Γj(z) −

�

2
‖z − zj‖2 = Γj(z

c
j
) −

�

2
‖zc

j
− zj‖2 +

�
rj, z − zc

j

�

= �(zj) +
�
rj, z − zj

�
− �j,

�j ≤ Γj(u) +
1

2Bj

‖u − z0‖2 − �(zj)

=
�

2
‖zj − zc

j
‖2 − 1

Bj

�
z0 − zc

j
, zj − zc

j

�
+

1

2Bj

‖zc
j
− z0‖2

=
1

2Bj

‖zj − z0‖2 − 1

2Bj

(1 + �Bj)‖zj − zc
j
‖2

=
1

2Bj

‖zj − z0‖2 − 1

2Bj(1 + �Bj)
‖Bjrj + zj − z0‖2.

(64)min

{
B2
�

4(1 + �B
�
)
,
B
�

2

}
≥ K2

�

‖r
�
‖2 + 2�

�

≤ max

�
1 + �B

�

A2
�

,
1

2B
�

��
1

1 + �B
�

‖B
�
r
�
‖2 + 4B

�
�
�

�

≤ max

�
1 + �B

�

B2
�

,
1

2B
�

��
2

1 + �B
�

‖B
�
r
�
+ z

�
− z0‖2 + 2‖z

�
− z0‖2 + 4B

�
�
�

�

≤ max

�
4(1 + �B

�
)

B2
�

,
2

B
�

�
‖z

�
− z0‖2 ≤ 1

K2
�

‖z
�
− z0‖2 ≤ �2‖z

�
− z0‖2,
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condition in (64), it is immediate that B
�
≥ 2K2

�
 implies (64). In view of (18) and the 

previous two bounds, it follows that

implies (64). Using the bound log(1 + t) ≥ t∕(1 + t) for t ≥ 0 and the above bound 
on � , it is straightforward to see that � is on the same order of magnitude as in (19).  
 ◻

C Refined ICG points

This appendix presents technical results related to the refined points of the ICG 
methods.

The result below proves Lemma 3 from the main body of the paper.

Proof of Lemma 3 (a) Using Proposition 1(a), the definition of v̂ , and the definitions 
of �s and �n in (28), we have that

(b) Using assumption (A3), Proposition 1(b), the choice of M in (28), and the fact 
that Δ�(yr;y, v) ≤ � , we first observe that

Using now (65), the choice of M in (28), Proposition 1(c) with L(⋅, ⋅) = �L2(⋅, ⋅) , the 
fact that � ≤ 1 , and the definition of C�(⋅, ⋅) , we conclude that

B
�
≥

1

L

(
1 +

√
�

4L

)2(�−1)

≥ 2K�(1 + 2�K2
�
)

v̂ ∈
1

𝜆

[
∇𝜓s(ŷ) + 𝜕𝜓n(ŷ) + w − y

]
+ ∇f

1
(ŷ) − ∇f

1
(w)

=
1

𝜆

[
𝜆∇f

1
(w) + 𝜆f

2
(ŷ) + (w − y) + 𝜆𝜕h(y)

]
+ ∇f

1
(ŷ) − ∇f

1
(w)

= ∇f
1
(ŷ) + ∇f

2
(ŷ) + 𝜕h(ŷ),

(65)

‖∇f1(ŷ) − ∇f1(z0)‖ − L1(y, z0)‖y − z0‖ ≤ L1(y, ŷ)‖ŷ − y‖

≤
L1(y, ŷ)

√
2Δ𝜇(yr;y, v)�

𝜆M+
2
+ 1

≤
𝜃L1(y, ŷ)�
𝜆M+

2
+ 1

‖y − z0‖.
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D Spectral functions

This section presents some results about spectral functions as well as the proof 
of Propositions 6. It is assumed that the reader is familiar with the key quantities 
given in Sect. 4.1 (e.g., see (40) and (41)).

We first state two well-known results [2, 11] about spectral functions.

Lemma 21 Let Ψ = ΨV
◦� for some absolutely symmetric function ΨV ∶ ℝr

↦ ℝ . 
Then, the following properties hold: 

(a) Ψ∗ = (ΨV
◦�)∗ = (ΨV)∗◦�;

(b) ∇Ψ = (∇ΨV)◦�;

Lemma 22 Let (Ψ,ΨV) be as in Lemma 21, the pair (S, Z) ∈ Z × domΨ be fixed, 
and the decomposition S = P[dg �(S)]Q∗ be an SVD of S, for some (P,Q) ∈ U

m × U
n . 

If Ψ ∈ Conv ℝm×n and ΨV ∈ Conv ℝr , then for every M > 0 , we have

We now present a new result about spectral functions.

Theorem  23 Let (Ψ,ΨV) be as in Lemma  21 and the point Z ∈ ℝm×n be such 
that �(Z) ∈ domΨV . Then for every � ≥ 0 , we have S ∈ ��Ψ(Z) if and only if 
�(S) ∈ ��(S)Ψ

V(�(Z)) , where

Moreover, if S and Z have a simultaneous SVD, then �(S) = �.

‖v̂‖ ≤
1

𝜆
‖vr‖ + 1

𝜆
‖y − z0‖ + ‖∇f1(ŷ) − ∇f1(z0)‖

≤

⎡
⎢⎢⎢⎣
L1(y, z0) +

1 + 𝜃

𝜆
+

𝜃
�
𝜆M+

2
+ 1 + 𝜆L1(y, ŷ) + 𝜆L2(y, ŷ)

�

𝜆
�

𝜆M+
2
+ 1

⎤
⎥⎥⎥⎦
‖y − z0‖

≤

�
L1(y, z0) +

2 + 𝜃C𝜆(y, ŷ)

𝜆

�
‖y − z0‖.

S ∈ �
�
Ψ +

M

2
‖ ⋅ ‖2

F

�
(Z) ⟺

�
�(S) ∈ �

�
ΨV +

M

2
‖ ⋅ ‖2

�
(�(Z)),

Z = P[dg �(Z)]Q∗
.

(66)�(S) ∶= � −
�⟨�(Z), �(S)⟩ − ⟨Z, S⟩� ≥ 0.

◻
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Proof Using Lemma  21(a), (66), and the well-known fact that S ∈ ��Ψ(Z) if and 
only if � ≥ Ψ(Z) + Ψ∗(S) − ⟨Z, S⟩ , we have that S ∈ ��Ψ(Z) if and only if

or, equivalently, �(S) ∈ ��(S)Ψ
V(�(Z)) and �(S) ≥ 0 . To show that the exist-

ence of a simultaneous SVD of S and Z implies �(S) = � it suffices to show that 
⟨�(S), �(Z)⟩ = ⟨S, Z⟩ . Indeed, if S = P[dg �(S)]Q∗ and Z = P[dg �(Z)]Q∗ , for some 
(P,Q) ∈ U

m × U
n , then we have

  ◻
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