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GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM FOR
LINEARLY-CONSTRAINED NONSEPARABLE NONCONVEX
COMPOSITE PROGRAMMING*

WEIWEI KONG! AND RENATO D.C. MONTEIRO#*

Abstract. This paper proposes and analyzes a dampened proximal alternating direction method
of multipliers (DP.ADMM) for solving linearly-constrained nonconvex optimization problems where
the smooth part of the objective function is nonseparable. Each iteration of DP.ADMM consists
of: (ii) a sequence of partial proximal augmented Lagrangian (AL) updates, (ii) an under-relaxed
Lagrange multiplier update, and (iii) a novel test to check whether the penalty parameter of the
AL function should be updated. Under a basic Slater point condition and some requirements on
the dampening factor and under-relaxation parameter, it is shown that DP.ADMM obtains an ap-
proximate first-order stationary point of the constrained problem in O(¢~3) iterations for a given
numerical tolerance € > 0. One of the main novelties of the paper is that convergence of the method
is obtained without requiring any rank assumptions on the constraint matrices.

Key words. proximal ADMM, nonseparable, nonconvex composite optimization, iteration
complexity, under-relaxed update, augmented Lagrangian function
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1. Introduction. Consider the following composite optimization problem:

(1.1) IIEI%{II {p(x) := f(z)+ h(x) : Az =d},

TERN
where h is a closed convex function, f is a (possibly) nonconvex differentiable function
on the domain of h, the gradient of f is Lipschitz continuous, A is a linear operator,
d € R is a vector in the image of A (denoted as Im(A)), and the following B-block
structure is assumed:

n=n+...+ng, x=(x1,...,25) ER™ x-.- xR"?

1.2 & &
(12) h(z) = th(a@t), Ax = ZAtxt,

where {A;}2 | is another set of linear operators and {h;}Z ; is another set of proper
closed convex functions with compact domains.

Due to the block structure in (1.2), a popular algorithm for obtaining stationary
points of (1.1) is the proximal alternating direction method of multipliers (ADMM)
wherein a sequence of smaller augmented Lagrangian type subproblems is solved over
1, ..., xg sequentially or in parallel. However, the main drawbacks of existing ADMM-
type methods include: (i) strong assumptions about the structure of h; (ii) iteration

*Funding: The first author has been supported by (i) the US Department of Energy (DOE)

and UT-Battelle, LLC, under contract DE-AC05-000R22725, (ii) the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration, and (iii) the IDEaS-TRIAD Fellowship (NSF Grant CCF-
1740776). The second author was partially supported by ONR Grant N00014-18-1-2077 and AFOSR
Grant FA9550-22-1-0088.
Versions: v0.1 (Oct. 24, 2021), v0.2 (Dec. 9, 2021), v1.0 (Jun. 14, 2022), v2.0 (Jan. 3, 2023)
fComputer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN,
37830. wwkong92@gmail.com
£School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA,
30332-0205. monteiro@isye.gatech.edu

This manuscript is for review purposes only.


mailto:wwkong92@gmail.com
mailto:monteiro@isye.gatech.edu

33
34

35
36
37

39

40

41

42

43
44

w N o=

S O O O Ut Ut Ot gt Ot Ot Ov Ot Ut
N B O © 00 g O Ot ok

63
64
65
66
67

complexity bounds that scale poorly with the numerical tolerance; (iii) small stepsize
parameters; or (iv) a strong rank assumption about the last block Ap that implies
Im(Ag) D {d} UIm(A;)U...Im(Ap_1) which we refer to as the last block condition.
Of the above drawbacks, (iv) is especially limiting. To illustrate this, we give a

few applications where the last block condition, and hence (iv), does not hold:
> Rank-deficient Quadratic Programming (RDQP). It is shown in [4] that the
(non-proximal) ADMM diverges on the following three-block convex RDQP:

2

. 1
min -9
Z1,22,T3,%4

11 . 1 1
st. [ 11 (l_1>+ 1 |azs+| 2 |za=0.
11 2 2 2

> Distributed Finite-Sum Optimization (DFSO). Given a positive integer B,
consider:

B
(1.3) min {Z(ft—kht)(xt):xt—.r,;’:(), t:l,...,B—l}

2, ER"
t=1

where f; is continuously differentiable, h; is closed convex, and V f; is Lip-
schitz continuous for t = 1,..., B. It is easy to see! that (1.3) is a special
case of (1.1) where we have A, = e, @ [ € R*B=DX" for s = 1,..., B — 1,
we have Agp = —1® I € R*B=Dx" and d = 0. Moreover, it is straightfor-
ward to show that for s = 1,..., B — 1 we have Im(4;) NIm(Ap) = 0 but
Im(A;)\{0} # 0, which implies that Im(As) € Im(Ag).
> Decentralized AC Optimal Power Control (DAC-OPF). The convex version
was first considered in [27] for the rectangular coordinate formulation, and
the problem itself is considered one of the most important ones in power
systems decision-making. The nonconvex version of DAC-OPF is a variant
where h; is the indicator of a convex region given by a finite number of com-
plicated quadratic constraints and f; is a nonconvex quadratic cost function.
A discussion of the limitations induced by assuming any rank condition which
implies the last block condition is given in [29)].
Our goal in this paper is to develop and analyze the complexity of a proximal
ADMM that removes all the drawbacks above. For a given 6 € (0,1), its k' iteration
is based on the dampened augmented Lagrangian (AL) function given by

Ck 2
(1.4) £, (w:p) = 0(w) + (1 - 0) (p, Az — ) + % || Az — ],
where ¢ > 0 is the penalty parameter. Specifically, it consists of the following updates:
given zF~1 = (x'f_l, . ,xlfg_l), P~ ¢k, x, and A, sequentially (¢ = 1,..., B) compute
the t™ block of z* as
1
(1.5) xf = argmin {)\[,Zk(. .. ,xf_l, Uy, xf_:ll, apih §\|ut - xf_1||2} ,
us ER™t

and then update

k k—1 k
(1.6) PP =(1-0)p" "+ xer (Ad* - d),
1Here, ey,..., ey is the standard basis for RE—1, I,, is the n-by-n identity matrix, 1 € RE—1 is
a vector of ones, and ® is the Kronecker product of two matrices.
2
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where x € (0, 1) is a suitably chosen under-relaxation parameter.

Contributions. For proper choices of the stepsize A and a non-decreasing sequence of
penalty parameters {cg}x>1, it is shown that if the Slater-like condition?

(1.7) Jz; € int (dom h) such that Az; = d,

holds, then DP.ADMM has the following features:
> for any tolerance pair (p,n) € R, it obtains a pair (Z,q) satisfying

(1.8) dist (0, VF(2) + A*G+0h(2)) < p, |Az—d|| <n

in O(max{p~3,n73}) iterations;

> it introduces a novel approach for updating the penalty parameter ¢, instead
of assuming that ¢, = ¢; for every k > 1 and that ¢; is sufficiently large (such
as in [3,14,15,28,31,32));

> it does not have any of the drawbacks mentioned in the sentences preceding
equation (1.3).

Related Works. Since ADMM-type methods where f is convex have been well-studied
in the literature (see, for example, [1,2,5,6,7,8,9,10,11,12,23,24,25]), we make no
further mention of them here. Instead, we discuss below ADMM-type methods where
f is nonconvex.

Letting ds denote the indicator function of a convex set S (see Subsection 1.1),
we first present a list of common assumptions in Table 1.1.

9 f(z) = Ziil ft(z¢) for subfunctions f; : dom hy — R.

Ro Im(Ap) D {d}UIm(A1)U...UIm(Ap_1).

S The Slater-like assumption (1.7) holds.

P h; =ép fori € {1,...,B}, where P is a polyhedral set.

F A point 2° € dom h satisfying Az’ = d is available as an input.

TABLE 1.1
Common nonconver ADMM assumptions and regularity conditions.

Earlier developments on ADMM for solving nonconvex instances of (1.1) all as-
sume that R hold, and the ones dealing with complexity establish an O(e~?2) iteration
complexity, where ¢ := min{p,n}. More specifically, [3, 13,30, 31] present proximal
ADMMSs under the assumption B = 2, hg = 0, and assumption Q holds for [3,13,30].
Papers [14,15,20,21] present (possibly linearized) ADMMs under the assumption that
B > 2, hg =0, and assumption Q holds for [14,20,21].

We next discuss papers that do not assume the restrictive condition R( in Ta-
ble 1.1, and are based on ADMM approaches directly applicable to (1.1) or some
reformulation of it. An early paper in this direction is [15], which establishes an
O(e79) iteration-complexity bound for an ADMM-type method applied to a penalty
reformulation of (1.1) that artificially satisfies Rg. On the other hand, development
of ADMM-type methods directly applicable to (1.1) is considerably more challenging
and only a few works have recently surfaced (see Table 1.2 below).

We now discuss some advantages of DP.ADMM compared to the other two pa-
pers in Table 1.2. First, the method in [28] considers a small stepsize (proportional

2Here, int S denotes the interior of a set S, dom 1 denotes the domain of a function 1, and A*

is the adjoint of linear operator A.
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Algorithm % X Complexity Assumptions Adaptive ¢

LPADMM ([32] 0 (0, 00) None P,S No

SDD-ADMM [28] (0,1] [-9,0) O(e™%) F No

DP.ADMM (0,1] (0,7] O(e™®) S Yes
TABLE 1.2

Comparison of existing ADMM-type methods with DP.ADMM for finding e-stationary points
with & :== min{p,n} and 7y = 02/[2B(2 — 0)(1 — 0)] if 6 € (0,1) and w9y =1 if 6 = 1.

to n?) linearized proximal gradient update while DP.ADMM considers a large step-
size (proportional to the inverse of the weak-convexity constant of f) proximal point
update as in (1.5). Second, the method in [28] requires a feasible initial point, i.e., a
point zg € dom h satisfying Azg = d, while DP.ADMM only requires that the initial
point be in dom h. Third, the methods in [28,32] both require certain hyperparam-
eters (the penalty parameter in [28] and an interpolation parameter in [32]) to be
chosen in a range that is hard to compute, while DP.ADMM only requires its main
hyperparameter pair (x, ) to satisfy a simple inequality (see (2.6)). Moreover, [28]
does not specify an easily implementable rule for updating its method’s penalty pa-
rameter, while DP.ADMM does. Fourth, convergence of the method in [32] requires
h being the indicator of a polyhedral set, whereas DP.ADMM applies to any closed
convex function h. Fifth, in contrast to [28] and this work, [32] does not give a com-
plexity bound for its proposed method. Finally, [28] considers an unusual negative
stepsize for its Lagrange multiplier update — which justifies its moniker “scaled dual
descent ADMM” — whereas DP.ADMM considers a positive stepsize.

Organization. Subsection 1.1 presents some basic definitions and notation. Section 2
presents the proposed DP.ADMM in two subsections. The first one precisely describes
the problem of interest, while the second one states the static and dynamic DP.ADMM
variants and their iteration complexities. Section 3 and 4 present the main properties
of the static and dynamic DP.ADMM, respectively. Section 5 presents some prelim-
inary numerical experiments. Section 6 gives some concluding remarks. Finally, the
end of the paper contains several appendices.

1.1. Notation and Basic Definitions. Let R, denote the set of nonnegative
real numbers, and let R4 denote the set of positive real numbers. Let R,, denote the
n-dimensional Hilbert space with inner product and associated norm denoted by (-, -)
and || - ||, respectively. The direct sum (or Cartesian product) of a set of sets {S;}7_;
is denoted by [\, S;.

The smallest positive singular value of a nonzero linear operator @ : R — R! is
denoted by 05. For a given closed convex set X C R”, its boundary is denoted by
0X and the distance of a point x € R™ to X is denoted by distx(z). The indicator
function of X at a point z € R"™ is denoted by dx(z) which has value 0 if € X
and +oco otherwise. For every z > 0 and positive integer b, we denote log,‘f(z) =
max{1, [log,(=)]}.

The domain of a function h : R" — (—o00,00] is the set domh = {z € R™ :
h(z) < +oo}. Moreover, h is said to be proper if domh # (). The set of all lower
semi-continuous proper convex functions defined in R™ is denoted by Conv R™. The
set of functions in Conv R™ which have domain Z C R™ is denoted by Conv Z. The
e-subdifferential of a proper function h : R" — (—o00, o0] is defined by

(1.9) Oh(z) ={ueR": h(z') > h(z) + (u,2' —2) —¢, V' eR"}
4
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for every z € R™. The classic subdifferential, denoted by 9h(-), corresponds to dph(+).
The normal cone of a closed convex set C at z € C, denoted by N¢(z), is defined as

Ne(z):={£eR": ({,u—2)<e, Vuel}.

If 1) is a real-valued function which is differentiable at z € R™, then its affine approx-
imation £y(-, Z) at Z is given by

(1.10) by (2 2) = Y(2) + (VY(2),2 —Z) VzeR™

If z = (x,y) then f(x,y) is equivalent to f(z) = f((x,y)).

ITterates of a scalar quantity have their iteration number appear as a subscript, e.g.,
c¢, while non-scalar quantities have this number appear as a superscript, e.g., v, and
p*. For variables with multiple blocks, the block number appears as a subscript, e.g.,
x¥ and vF. Finally, we define the following norm for any quantity u = (uy,...,up)
following a block structure as in (1.2):

B
(L.11) lulls = llCurs- s up)lly = Il
t=1

2. Alternating Direction Method of Multipliers. This section contains two
subsections. The first one precisely describes the problem of interest and its underlying
assumptions, while the second one presents the DP.ADMM and its corresponding
iteration complexity.

2.1. Problem of Interest. This subsection presents the problem of interest and
the assumptions underlying it.
Denote the aggregated quantities

(2.1) Tep = (T1, . Te—1), Zst:i= (Te41,---,2B),
' Tt = (Tap, ), Tnp = (T4, T>t),
for every © = (z1,...,25) € H. Our problem of interest is finding approximate

stationary points of (1.1) under the following assumptions:
(A1) for every t =1,..., B, we have h;y € Conv R™ and H; := dom h; is compact;
(A2) AZ£0and F:={x € H: Av =d} # () where H :=H1 x -+ X Hp;
(A3) hin (1.2) is Kp-Lipschitz continuous on H for some K} > 0;
(A4) for every t =1,..., B, there exists m; > 0 such that

(2.2) flret, -, x>e) + 0n, (1) + %H -||? is convex for all z € H;

(A5) f is differentiable on H and, for every ¢t = 1,..., B — 1, there exists M; > 0
such that

(2:3) IV, fw<t, T50) = Vo, [(@<ts @0l < MillZsp =254 Vo, 7 € H;

(A6) there exists z¢ € F such that dy := distap (z;) > 0.
We now give a few remarks about the above assumptions. First, in view of the
fact that ‘H is compact, the following scalars are bounded:

Dy :=sup ||z — 2|, Gy:=sup|Vf(z)].
z€ zeH

¢ = inf ¢(x), ¢ := sup ¢(x).

zEH TEH

(2.4)
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Second, if f is a separable function, i.e., it is of the form f(z) = f1(z1)+---+ fB(2B),
then each M; can be chosen to be zero. Third, any function h given by (1.2) such that
each h; for t = 1,..., B has the form h; = hy +6 z,, Where hy is a finite everywhere
Lipschitz continuous convex function and Z; is a compact convex set, clearly satisfies
condition (A3) for some Kj,.

For a given tolerance pair (p,n), we define a (p, n)-stationary pair of (1.1) as being
a pair (Z,q) € H x R satisfying (1.8). It is well known that the first-order necessary
condition for a point z € H to be a local minimum of (1.1) is that there exists ¢ € R
such that the stationary conditions

0€Vf(z)+ A"q+0h(z), Az=d

hold. Hence, the requirements in (1.8) can be viewed as a direct relaxation of the
above stationary conditions. For ease of future reference, we consider the following
problem.

Problem S, : Find a (p, n)-stationary pair (2, q) satisfying (1.8).

We now make three remarks about Problem S,,. First, (%,q) is a solution of
Problem &, ,, if and only if there exists a residual v € R" such that

(2.5) b€ VI(E) + AG+0h(z), 5] <p, [Az—d| <n.

Second, condition (2.5) has been considered in many previous works (e.g., see [16,
17,18,19,22]). Third, in the case where || - || = || - |2 and p = 7, the stationarity
condition in (1.8) implies the stationarity condition of the papers [15,28] in Table 1.2.
Specifically, [15, Definition 3.6] and [28, Definition 3.3] consider a pair (z,q) € H x R
to be an e-stationary pair if it satisfies

dist(0, V., f(z1,...,2B) + Afq+ Oh(2)) < e, |[Az—d| <ce,

foreveryt=1,...,B.

In the following subsection, we present a method (Algorithm 2.1) that computes
a triple (Z, q,v) satisfying (2.5), and hence which guarantees that (Zz,q) is a solution
of Problem S,, ,,.

2.2. DP.ADMM. We present DP.ADMM in two parts. The first part presents
a static version of DP.ADMM which either (i) stops with a solution of Problem S,
or (ii) signals that its penalty parameter is too small. The second part presents the
(dynamic) DP.ADMM that repeatedly invokes the static version on an increasing
sequence of penalty parameters.

Both versions of DP.ADMM make use of the following condition on (y,6):

(2.6) 2xB(2—0)(1—0) <6 (x,0) € (0,1]%

For ease of reference and discussion, the pseudocode for the static DP.ADMM is given
in Algorithm 2.1 below. Notice that the classic proximal ADMM iteration

: . 1 1 g 1 .
2% = argmin {)\ﬁg(:r];t.,ut,a:’;tlgpk DEs §||ut — ¥ 1|2} , t=1,...,B,
uteRnL

pF = pht Jrc(A:L'k —d) ,
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Algorithm 2.1 Static DP.ADMM
Input: 2° € H, p® € A(R™), X € (0,1/(2m)], ¢ > 0;
Require: m as in (2.7), (p,n) € R3, (x,0) as in (2.6)
1: for k< 1,2,...do
STEP 1 (prox update):
2: fort«+ 1,2,...,B do
3: xf < argmin, cpn, {)\Eg(a:’it,ut,x’;f;pk_l) + Lue — xf‘1||2}

4: q* — (1 - 0)p*L +c(Az* —q)
STEP 2a (successful termination check):
5: fort <+ 1,2,...,B do
6 0 = Vo f(@ly o) = Va, f(aky, 253
& vf <~ 55 + cAf Zf:t+1 As(xf - xlgil) - %(x,’f - qu)
8 if |v*|| < p and ||Az* —d|| <7 then
9: return (z*,p"*, ¢*,v")

STEP 2b (unsuccessful termination check):
10: if k =0mod 2 and k > 3 then

v k i
1 5"« i i IVl
k i
12 S 5 iy lAat —d]
13: if 1.5 +1,/2 .5 <1 then
14: return (2%, p* ¢*, o)

STEP 3 (multiplier update):
15 PP (1—0)p*F~ 1 + xe(Az* — d)

corresponds to the case of (x,0) = (1,0), where ¢ > 1 is a fixed penalty parameter.

The next result describes the iteration complexity and some useful technical prop-
erties of Algorithm 2.1. Its proof is given in Section 3.3, and it uses three sets of scalars.
The first set is independent of (¢, p°) and is given by

— 2B2 (AM +1)
M = 121%}(3 My, m:= lrgntanB mey, ADgi=¢—0¢, ko= 77
XAl Dy 1 2x Dy (K + Gy)
2. = AT = |14 2t - g,
(2.7) K1 7 2=y bdiot
108k3 Odio} S(B — 1) Al - 8K3A
K3 = RKq 1= K5 = — Kg 1= .
3 X2 ’ 4 XDT ) 5 IR 6 K/i

where (G, Dt, ¢, ¢), Ky, and (my, M;) are as in (2.4), (A3), and (A4). The second
set is dependent on a given lower bound ¢ on ¢ and is given by

(2.8) 7O =2 (w/A¢ 2 {

5
f;) ) ~21) = 3,‘@5>[,‘%é0)]27 ~22) — 3,@(2)[;{(0)]2.

-3
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The third set is dependent on a given upper bound R on ||p°||/c and is given by
0, 8 [955(R +r1)°
2

R T 2
Ky

72/435 (R + 51)2

2.2
XKy

+ kw5l | + (1 —0)(R+ K1),
(2.9)
£5) =

PROPOSITION 2.1. Let R > 0 and ¢ > 0 be given, and assume that the pair (c, p°)
given to Algorithm 2.1 satisfies

(2.10) Ipoll <R, e>c.

Then, the following statements hold about the call to Algorithm 2.1:
(a) it terminates in a number of iterations bounded by

(2.11)
m () . K3 72 1) o
Te(p,nlc,R) =48 | { ke + = +9ér + = + ) ctér'c |,

7
where (K3, Kg), (;%S),RS)), and (fg),fg)) are as in (2.7), (2.8), and (2.9),
respectively;

(b) if it terminates successfully in Step 2a, then the first and third components of
its output quadruple (Z,p, q,v) solve Problem S, ,;

(c) if c satisfies

A o 1 23'7;(1’1|Q7R)
(212)  ezélpnle®) =5 [Tc(l, e R)+ min{p, n}

where To(p,n|c,R) is as in (a), then it must terminate successfully.

We now make some remarks about Proposition 2.1. First, statement (c¢) implies
that Algorithm 2.1 terminates successfully if its penalty parameter c is sufficiently
large, i.e., ¢ = Q(e71) where ¢ := min{p,n}. Moreover, if a penalty parameter c
satisfying (2.12) and the condition that ¢ = O(¢7!) is known, then it follows from
Proposition 2.1(a) that the iteration complexity of Algorithm 2.1 for finding a solution
of Problem S, ,, is O(e73).

Since a penalty parameter ¢ as in the above paragraph is nearly impossible to
compute, we next present an adaptive method, namely, Algorithm 2.2 below, which
adaptively increases the penalty parameter ¢, and whose overall number of iterations
is also O(e73).

Some comments about Algorithm 2.2 are in order. First, it employs a “warm-
start” type strategy for calling Algorithm 2.1 at each iteration ¢. Specifically, the
input of the /" to Algorithm 2.1 is the pair (2/~%,p~!) output by the previous call
to Algorithm 2.1. Second, the initial penalty parameter ¢; can be chosen to be any
positive scalar, in contrast to many of the methods listed in Section 1 where this
parameter must be chosen sufficiently large. Third, the initial point z° only needs to
be in the domain of h and need not be feasible or near feasible. Finally, while the
initial Lagrange multiplier p° is chosen to be zero, the analysis in this paper can be
carried out for any p € A(R™), at the cost of more complicated complexity bounds.

The next result, whose proof is given in Section 4, gives the complexity of Algo-
rithm 2.2 in terms of the total number of iterations of Algorithm 2.1 across all of its
calls.
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Algorithm 2.2 DP.ADMM

Input: 2° € H, A € (0,1/(2m)], c1 > 0
Require: m as in (2.7), (p,n) € (0,1)2, (x,0) as in (2.6)
1: p° <0
2: for £+ 1,2,... do
3: call Algorithm 2.1 with inputs (2%, p% X\, ¢) = (271, "1, A, ¢¢) and parame-
ters m, (p,n), and (x, #) to obtain an output quadruple (z¢,p’, g%, v")

4: if ||[v%]| < p and ||Az‘ —d| <7 then
5: return (2, ¢)
6: Coy1 < 2¢y

THEOREM 2.2. Define the scalars
(2.13) T =T, (1,1|c1,261), €:=min{p,n},

where k1 and Te(-, - |-, -) are as in (2.7) and (2.11), respectively. Then, Algorithm 2.2
stops and outputs a pair that solves Problem S, , in a number of iterations of Algo-
rithm 2.1 bounded by

Ey+2E2 E
(2.14) T <2E§ + Tl +
where
T? Ty
(2.15) Ey ;2(1+C§>, Bri=2y /.
1 1

Since Ty = O(c;!) in view of (2.11) and (2.13), it follows from (2.14) and (2.15)
that if ¢, ' = O(1), then the overall complexity of Algorithm 2.2 is O(s~?).

3. Analysis of Algorithm 2.1. This section presents the main properties of
Algorithm 2.1, and it contains three subsections. More specifically, the first (resp.,
second) subsection establishes some key bounds on the ergodic means of the sequences
{llv*]|}x>0 and {||Az* —d||} x>0 (vesp., the sequence {||px||}r>0). The third one proves
Proposition 2.1.

Throughout this section, we let {(v,z%,p,¢*)}¥_, denote the iterates generated
by Algorithm 2.1 up to and including the k" iteration for some k > 3. Moreover,
for every i > 1 and (x,0) € R3 | satisfying (2.6), we make use of the following useful
constants and shorthand notation

ap=0(1—-0), bp:=(2-0)(1-90),
3.1 — —(1—0)? ) )
(3.1) - (1 —2Bxbg) — (1 —0)  f e Adi—d,
2x
the aggregated quantities in (2.1), and the averaged quantities
S 1P i oy X I

L A L e L
k—j+1’ "0k k41 Tik k—j+1

(3.2) s =

for every j = 1,..., k. Notice that vy > 6/x in view of (2.6). We also denote Ay’ to
be the difference of iterates for any variable y at iteration i, i.e.,
(3.3) Ayt =yt — il

9
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300 3.1. Properties of the Key Residuals. This subsection presents bounds on
301 the residuals {||v]|}%_, and {||f?||}*_, generated by Algorithm 2.1. These bounds will
302 be particularly helpful for proving Proposition 2.1 in Subsection 3.3.

303 The first result presents some key properties about the generated iterates.
304 LEMMA 3.1. Fori=1,...,k,
W0 (a) = [ - (- 0] J(ve):
306 (b) v* € Vf(z') + A*q' + Oh(x?) and
o B =B (Mg ) 1Aal 4 elaly S e,
t=2
308 where || - ||+ is as in (1.11).
309 Proof. (a) This is immediate from step 3 of Algorithm 2.1 and the definition of
310 fin (3.1).
311 (b) We first prove the required inclusion. The optimality of x¥ in Step 1 of

312 Algorithm 2.1, and assumption (A4), imply that

s 0€0|Lllety, it + gl ol @)

‘ i~ * i— i i 1 i
o - vmff(xlﬁt’fv;tl) + A7 [(1-0)p L C[A(x<tax>t1) —d|] + Ohy(z}) + XA(Et
315 = Vo, f(aky, o51) + Af <qz_c > Asm;) + Ohu(f) + 5 Ac]
s=t+1
316 = Vo (@) + Ajq' + Ohy(z}) — vy

318 for every 1 <t < B. Hence, the inclusion holds. To show the inequality, let 1 <t < B
319 be fixed and use the triangle inequality, the definition of v}, and assumption (A5) to
320 obtain

B

7 ) 7 7 71— * 7 1 1

321 o]l < IVa, faky,al,) = Vo, flak,, 25 + ¢ Z | A} AsAx|| + XHAxt”
s=t+1
B
322 < Myllzl, — 25| + el Al Z | A Az + *IIA%II
s=t+1
1 B B

ey 7 7
%i < (M + A) Z:; Az + c|| Al ; | A Az

25 Summing the above bound from ¢ = 1 to B, and using the definition of M in (2.7)
26 and the triangle inequality, we conclude that

- ] < Z il < (M+ ) SY ] +c||A||TZ A, A

t=1 s=t
o <5 (04 5) 1aef] + clal) S 4] 0
329 t=2
330 Notice that part (b) of the above result implies that (z,v,p) = (2%, v?, ¢°) satisfies
331 the inclusion in (2.5). Hence, if |[v’|| and || f?|| are sufficiently small at some iteration

10
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332
333
334
335
336
337
338
339
340

341

342
343

344

345
346

347

348
349

360

AT S L iz 4
(3.7) Wi(c) == Le(a*;p") 2XCIIP I” +

(3.8) < (K2 + ksc) Z

i, then Algorithm 2.1 clearly returns a solution of Problem S, , at iteration i, i.e.,
Proposition 2.1(b) holds. However, to understand when Algorithm 2.1 terminates, we
will need to develop more refined bounds on ||v;|| and || f;|-

To begin, we present some relations between the perturbed augmented Lagrangian

L£9(-;-) and the iterates {(z%,p")}¥_,. For conciseness, its proof is given in Appendix A.

LEMMA 3.2. Fori= 1, ok, » _
(a) Lo(a'sp") — L2U(x"5p"~") = bol| Ap'[|*/(2x€) + ag (Ilp’II2 D"~ 11%) /(2xc);

(b) L% p'=Y) — LO(a 15 pi=) < || A2/ (2)) — e 7, | AcAz]]2/2;
(¢) if i > 2, it holds that

(3.5) ||A Z [ AcAzi|® < — (1A P = Ap?) -

The next result uses the above relations to establish a bound on the quantities in

the right-hand-side of (3.4).

LeEMMmA 3.3. Forj=1,... )k,

(3.6) Z o' 1* < (5 + m50) [¥5(c) = Pa(e)],

i=j+1

where (Ko, k5) is as in (2.7), and denoting (ag,'yg) and as in (3.1), we have

2
>
A iz

Proof. Using the inequality ||z||? < n||z||3 for z € R™ and (3.4), we first have that

k ) k 2
(3.4)
LSS B(M+ )||Ax1||++cAuZnAtmtn]
i=j+1 i=j+1 t=2
<Y o (M+ ) 1A2? + AR <Z||Atmt|)
= j+1 t=2

B
<Y (M+ ) |AZ 2 +2(B — DR[AR S [l 4 Adi?
i=j+1 t=2
K 1 . c = .
A + 3 4 aa
t=2

i=j+1

Combining Lemma 3.2(a)—(c), the definition of ¥, and the bound (a+b)? < 2a*+2b?
for a,b € R, we also have that

B

1 i ¢ i

ﬁHAﬂU I + ZZ A Azt|?
t=2

L.3.2(a)-(b) . be ; el .
< L@ pi ) — ﬁe(xj,p])-i- e 2 APy 2—XC||Ap ||2—ZZ||AtAxt||2
t=1

EE2) 20 (41, i1y 0 (0 A
2@l = Lo )+ﬂ D,
11

7«9 i—1)2 i()2
A —||A
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(L1}

62
363
364
365
366
367
368
369
370

379

381
382

383

384

385

386
387
388

389
390

391
392

= \Ifi_l(c) - \I/i(C),

where Az(fj)- == ||Ip?||? — |lp?||2. Consequently, summing the above inequality from
i =j+ 1 to k, and combining the resulting inequality with (3.8), yields the desired
bound. 0

We now bound the quantity on the right-hand-side of (3.6)

LEMMA 3..4.‘Fo7’ any‘j >1 and k> 1{

(a) LO(a7;p7) < p(2?) + 3([Ip7 |I> + I~ H1?)/ (o)
(b) LE(F;pP) > ¢(aF) — [Ip¥]1?/(2¢);

(c) it holds that

(3.9) U,(c) — Uple) < Ay +4 (”pj“2 + 7Y% + ||pk||2>

x*e
where U, (-) and Ay are as in (3.6) and (2.7), respectively.

Proof. (a)-(b) See Appendix A.
(c) Using parts (a)—(b), the fact that ay € (0,1) and (x, ) € (0,1)?, the relation
(a+b)? < 2a? + 2b* for a,b € Ry, and the bound 5 < 1/(2x), it holds that

Vj(c) = Wi(c)

kN2 _ |[ndll2 Jl2 _ k|12
_p00diy ok o et IE =177 ve(lAPTIE = AP
[£2@sp?) = £ltaiph) + G ) 4 IR
" I, el a)?
iy ok L GellP*P ol
— [Lc(x 7p) EC(:L’ 7p )] + 2XC 4BXC
k|2 j—1)|2 j 112
< 170(d. 3y 0. ey) o 12715 P71 + (17
< [etwip!) — kg + 1
(2)-(b) . 3(|1n7 |2 J—1(2 k|12
9 g0y — gty + S+ D1 ) ]+
x2c 2c

[ | Vel
2xc 4Bx2%c

112 i—1)(2 k|2
<y ea (LY,

X2

The next result presents bounds on Sj('i)l,k and S’](.?Lk.

ProposiTION 3.5. Forj=1,...,k—1,

j (p)
an o IPlres,
Jj+Lk = xe

2+ nse (12, 1P+ 1P+ PPl
311 SW L <y [HOTEE (AL
( ) j+1,k = k _] ¢ + X\/E ’

where (Ko, K5, Dg) is as in (2.7).

(3.10)

Y

Proof. Using Lemma 3.1(a), the fact that 6 € (0,1), and the triangle inequality,
it holds that

k i i— k i i j
Sl = =0 S U D+ 255
Jt+1k xc(k —j) - xe(k —J) - xc
12

)
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393
394
395

396

397

418

419

420
421
422
423

424

425

which is (3.10). On the other hand, to show (3.11), we use the definition of S](fl’k,

the fact that va+b < \/a + v/b for a,b € R, Lemma 3.3, and Lemma 3.4(c), to
conclude that

- Zi:jJrl o]l < Zi:j+1 [[0*]?
e k=g T\ k)
L33 (k& + k5][P(c) — Ui(c)] 1/2
< —j
L34(e) k2 + wse 197112 + 1172112 + |Ip¥ |12 1/2
< T A¢ +4 5
J x“c

2 j i—1 K
k—j xve

Observe that both residuals S§1_Ql7k and Sj(i)Lk depend on the size of the Lagrange
multipliers p7, p? 1, and p¥. If all the multipliers generated by Algorithm 2.1 could be
shown to be bounded independent of ¢ then it would be easy to see that (3.10)—(3.11)
with j = 1 and some ¢ = ©(n~1) would imply the existence of some k = O(n~1p~2)
such that [Sév,z /o] + [Séfk) /n] < 1. Consequently, Algorithm 2.1 would find a solution
of Problem S, ,, in O(n~!p~?) iterations.

Unfortunately, we do not know how to bound {||p;||} independent of ¢, so we
will instead show the existence of 1 < j < k such that (i) indices j and k — j are
O(n~'p~2) and (ii) the three multipliers p/, p? !, and p* are bounded. This fact and
Proposition 3.5 suffice to show that the last (hypothetical) conclusion in the previous

paragraph actually holds.

3.2. Bounding the Lagrange Multipliers. This subsection generalizes the
analysis in [19]. More specifically, Proposition 3.8 shows that if & is sufficiently large
relative to an index j, the penalty parameter c, and ||p°||, then S('I-;-)l,k: =0(1).

The proof of the first result can be found in [26, Lemma B.3ﬁ using the variable
substitution (q,q=,x) = (¢%,[1 — 0]p*~, ¢) and step 4 of Algorithm 2.1.

LEMMA 3.6. For every i > 1 and r € Oh(z*) + A*q', it holds that

i i1y 2Di(Kp +[Ir
lg IISmax{(l_a)p 1|’T(dh+””)}'
104

The next result presents some fundamental properties about p*~!, p?, and ¢*.

LEMMA 3.7. For every 1 < j g‘k,
(a) PP =xq’ + (1= x)(1—0)p~;
() P71 < Ip°]l + ke

(¢) it holds that

. (v)
R T ) ol ettt 127
k—j Lk =k dio}

)

where Ky, dt, and (D;,Gy) are as in (A3), (A6), and (2.4), respectively.

13
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126 Proof. (a) This is an immediate consequence of the updates for p/ and ¢’ in
427 Algorithm 2.1.

428 (b) In view of Step 3 of Algorithm 2.1, the fact that 6 € (0,1), and the triangle
429 inequality, it holds that

j—1
430 P71 < (1= 0)[lp? | + xell 11 < (1= 0)1p°]] + xe > (1 —0)[|£*]|
i=0
431 < Ip°ll + xell All sup ||z — 2] > (1 - )’
zEH i—0
. 1.0 XC”AHDT 1.0
432 =Pl + = =l + #c.
434 (c) Let i > 1 be fixed, define
435 dyo = (1 =0)(1 - x),

136 and recall that Lemma 3.1(b) implies v* — V f(2*) € dh(z*) + A*¢'. Using Lemma 3.6
137 with r = v* — V f(z"), the definition of G¢ in (2.4), and part (a), we first have that

i (@) ; i— ; i
438 12°l = lIxq" + dyo - 2"l < xld'll + dyollp"
L.3.6 . i1y 2Dy (Kp + ||vf — V(2
129 < ol -+ e (1 - gy, 22 SR
dyo
i i 2D (Kp + ||v* — V f(2!
10 < (=00l 4 x| (1= o 4 22 T
104
, 2xD; (K, i @
441 < (1 79)”pzfl” + X T( h T+ ”v.]:-(m )” + Hv ”)
dTUA
, 2xD+ (K G i
449 <1 —9)||p171|| + XDy (Kn + +f + [Jv ”)
443 dioy

444 Summing the above inequality from ¢ = j 4+ 1 to k and dividing by k& — j yields the

145 desired conclusion. O
446 We are now ready to present the claimed bound on Sj<’_?17 .
447 PROPOSITION 3.8. Let R > 0 and ¢ > 0 be given and suppose ¢ and p° satisfy

448 (2.10). Then, for any positive integers j and k such that k — j > ke + 57(3)0 + 5%)02,

449 we have

450 S](-fr)m < Kz,
451 where (ka, Kg) and (57(3), 7(;)) are as in (2.7) and (2.9), respectively.
452 Proof. Using (2.10), (3.11), Lemma 3.7(b), and the relation \/a-+v/b < \/2(a + b)

453 for a,b € R4, we first have that

2 j j—1 k
(v) kg +kse (e P+ P77+ Pl
454 S <2 ——— (A
JHLk = k—j ( o T xve
. < 4(kg + ) (a2, 3[Ip°ll + kac]
k—j ¢ xve
14
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461

462

163

464

481
482

483

184

185

486

4(’18 + H5C) <A1/2

3[R+ ki1lye
k= \7e T )

X

2 2 (0) (1) o
< 8(/&0—#/?50) A¢+9[R+/~;1]c <y Rc—i—f?zc'
k—j X2 k—j

Using the above bound, Lemma 3.7(b)—(c), our assumed bound on k — j, and the
definition of k9, we conclude that

: (@)
2XD1(En+Gy) | (=Pl | Sjtin
S(p) < T J+1,
Jj+1,k — 9dTUX + 9(k‘ —]) + Ky
C DK+ Cp) =000l rae) | [retEe + e
- Odio 0(k — j) k—j
_2DH(En+Gy)  (A=OR+m)e e +& e+
- 0dio 0(k — j) k—j
< 2xD: (K + Gy) %))c N H6+§;§)C+§%)CQ
- edez 0k —7) k—7
1 2xD; (K, +Gf)]
<o 1 ATCSR T L = g, 0
S0 T ediod e

We end this subsection by discussing some implications of the above results.
Suppose ( is an integer satisfying ¢ > kg +§7(§)c+§7(31)02 = O(c?). It then follows from
Proposition 3.8 that S = O(1) and 55]2)34 = O(1). Since the minimum of a set of

2.6 =
scalars minorizes its average, there exist indices jo € {2,...,(} and ko € {2¢,...,3(}
such that |[p°| = O(1) and |[p¥°|| = O(1). Using the fact that ko — jo > ¢, the
above bounds, and (3.10)—(3.11) with (4, k) = (jo, ko), it is reasonable to expect that
Sjgjrl)ke = O(1/¢) and Sj(;’il’ko = O(4/¢/¢). In the next section, we give the exact
steps of this argument and use the resulting bounds to prove Proposition 2.1.

3.3. Proof of Proposition 2.1. Before presenting the proof of Proposition 2.1,
we first give two technical results. The first one refines the bounds in Proposition 3.5
using Proposition 3.8, while the second one gives an important implication of (2.12).

LEMMA 3.9. Let R > 0 and ¢ > 0 be given and suppose (c,p°) satisfies (2.10) for
some R > 1 and ¢ > 0. For any integer ( such that ( > k¢ + 57(3)0—1—57(%1)02, there exist
j€{3,....¢} and k e {2( +1,...,3(} satisfying

2
(v) ~(0) | Kot KsC () Gra
(313) Sj+1,k: S /Qé) fja 1,k S xe B

where (Ko, k2, k5) and Ko is are as in (2.7) and (2.8), respectively.
Proof. Suppose ¢ € N satisfies ( > kg +§7(g)c+§§€1)c2. Using Proposition 3.8 with
(4, k) = (1,¢) it holds that there exists 3 < j < ¢ such that

Si Ul + I _ 2325, Il
¢—2 (=2

15

"=+ P71 <
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2(¢ - 1))

187 (3.14) 26 <4SP) < 4k,

488 )
480 On the other hand, using Proposition 3.8 with (j,k) = (2¢,3¢) it holds that there
490 exists k € {2 +1,...,3(} such that

Y e 1P
191 (3.15) Ip¥|| < 24% = Soci13¢ < Ko

492 Combining (3.14), (3.15), and Proposition 3.5, it follows that

2 1 jo—1 k
o () [wg+rsc (a2 Pl 4 It + (™|
493 Sivip <2 — (A¢ + /e

(3.14)—(3.15) 2
< 9 HO+I€.56 (A;/Q-‘r 5,‘{2>
k—j xve

2 2
10 < 9, [foF A5 (A;/z N 5@) _ 50, [H0+Kse
496 k= Xv/c B k—J

497 which is the first bound in (3.13). To show the other bound in (3.13), we use (3.14)
498 and Proposition 3.8 to conclude that

494

j (p)
g < P71 + 2Sj+1,k < 6ra

499 JHLE = xe = xc' 0
500 We now state a technical result which will be used in the proof of Proposi-
501 tion 2.1(c).
502 LEMMA 3.10. For any R > 0 and ¢ > ¢ > 0, the following statements hold:
503 (a) the quantity T.(-,-|-,-) defined in (2.11) satisfies
c\? c
504 R)< || - _ 1,1|¢,R);
0 7-C(pa77|gv )— l<c> +c-min{p2,772}‘| 7-2( ) |Qv )7
505 (b) if ¢ satisfies (2.12), then To(p,n|c, R) < 3.
506 Proof. (a) This statement follows immediately from the definition of T.(-,-|-,-)

07 and the fact that for any ¢ > ¢ any nonnegative scalars «, 3, and -, we have

010

2
508 a+5c§(a+,6’c)( ), a+ﬁc+702§(a+ﬁc+702)<z> .

09 (b) Define ¢ := é(p,n|¢c,R), € := min{p,n}, and T := T.(1,1|¢,R), and assume
10 that ¢ satisfies (2.12), or equivalently, ¢ > ¢é. To show the conclusion of (b), it suffices
11 to show that

2
512 (3.16) [(2) +c.c52

513 in view of part (a). It is easy to see that the above inequality is satisfied by any ¢
514 such that

T <.

T/c? T2/ + AT/ (2¢
515 ¢> = /4y /2C+ /(%)

16
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Since the definition of ¢ in (2.12) and the relation va +b < v/a + Vb for a,b € R,
imply that ¢ > 7., the conclusion of (b) follows from the assumption that ¢ > ¢ and
the previous observation. ]

We now remark on Lemma 3.9. For any integer ¢ > x¢ + 57(5)0 + fg)c2, it follows
that there exist i1,492 < 3¢ such that ||v;, || = O(y/¢/()) and || fi,|| = O(1/c). Hence,
for some ¢ = O(n~!) and some ¢ > Q(p~2n~1), we can guarantee that [v;,| < p
and ||fi,|| < n. Clearly, if i1 = 45 then this argument shows that a solution of
Problem S, ,, can be found in O(p~2n~") iterations of Algorithm 2.1. In the proof (of
Proposition 2.1) below, we give a more involved argument that guarantees that the
above 77 and 75 can be chosen so that i; = 5.

Proof of Proposition 2.1. (a) Let (p,n) € R%,, p° € A(R™), and ¢ > 0 be given,
and define

(v) g
g j C .
T3:72(P777|27R)7 Tj =+ —— — VJZL
P n J
where SJ(-U) and S;f) are as in Step 2b of Algorithm 2.1 and 7.(-,-|-,) is as in (2.11).

For the sake of contradiction, suppose that Algorithm 2.1 has not terminated by the
end of iteration k = T'. Since Algorithm 2.1 (see its Step 2b) terminates unsuccessfully
at iteration k exactly when r; < 1, we will obtain the desired contradiction by showing
that there exists kK < T such that rp < 1.

First, consider an arbitrary pair of integers j and k such that 1 < 7 < k < T
and assume without loss of generality that k is even. Then, combining (3.18), the

relations S,(:;)Q = S,gv and S](QJ/C)2 & S,gf ), we easily see that
(v) . v
Sk/2.k 3/2Sk/2 ko k—j+1 Sg(k) 63/253(‘,)2
p Wk k—k/2+1] p Wk
v f v f
i sl [Si . 32880
p Wk p Wk

We now show that there exists suitable j and k so that the last expression is bounded
by 1 and hence that our desired contradiction follows. Note first that the definition
of T'=T.(p,n) in (2.11) implies that ¢ := T'/3 satisfies the assumption of Lemma 3.9.
Hence, the conclusion of this lemma implies the existence of j € {3,...,7/3} and
ke{2T/3+1,...,T} such that

S, sl ~<0>m+6@f R no+nsc+ 6riz/C

k1 + ngc I{3C
.1 = —
(3.18) \/ 2T \/ 2T - 4 2’

where the last inequality follows from the definition of 7. Combining (3.17) and (3.18)
we conclude that r; < 1, which yields our desired contradiction.

(b) This follows immediately from the stopping condition in Step 2a of Algo-
rithm 2.1 and Lemma 3.1(b).

(c¢) Let (T, rk) be as in part (a) and assume that ¢ satisfies (2.12). Assume, for
contradiction, that Algorithm 2.1 does not terminate successfully. Then, by part (a),

17

T =

k42

(3.17) ~k/2+1

This manuscript is for review purposes only.



585
586
587
588
589

590

the algorithm terminates in an iteration & < T such that r; < 1. Using the fact that
ry, itself is an average of scalars, there exists k/2 < ¢ < k such that

i (f)
ot 210 Simi 2SN

P wWk T p wk T

Hence, it holds that |[v]| < p and ||f!|| < nvke /2 < ny/Tc=3/? where the last
inequality is due to the fact that k& < T. Moreover, the assumption that ¢ satisfies
(2.12) together with Lemma 3.10(b) then imply that 7' < ¢* and, hence, that ||| <
7. Consequently, this means that the algorithm actually terminates successfully at

iteration ¢ < k. We have thus established the desired contradiction and, hence, that
part (c) holds. O

4. Analysis of Algorithm 2.2. This section presents the main properties of
Algorithm 2.2, including the proof of Theorem 2.2.
We first start with two crucial technical results.

PROPOSITION 4.1. The following statements hold about the (** iteration of Algo-
rithm 2.2:
(a) |p*|/ce < 2k1, where Ky is as in (2.7);
(b) its call to Algorithm 2.1 terminates in Tc,(p, | c1,2K1) iterations and, if the
01 penalty parameter ¢ > 0 satisfies

(4.1) ce > é(p,m|ec1,2k1),

then this call terminates successfully, where k1, To(+,+ |+, ), and é(-,-|-,-) are
as in (2.7), (2.11), and (2.12), respectively.

Proof. (a) We proceed by induction. Since p° = 0, the case of £ = 1 is immediate.
Suppose the statement holds for some iteration ¢ and, hence, that ||p*~ || < 2k1cy.
Then, it follows from Lemma 3.7(b) with (p°,c) = (p*~', ¢/) and the relation cpy; =
2¢, that

3&1
—Cpy1 < 2I€1€e+1.

1P < NI Il + e < 2mace + maee = 3rnee = =

(b) This follows from part (a), the fact that {c¢}e>1 is an increasing sequence,
and Proposition 2.1 with (¢,¢,R) = (c¢, ¢1,2K1). 0

We are now ready to give the proof of Theorem 2.2.

Proof of Theorem 2.2. Define the scalars

C :é(Pa77|(3172"~'1)7 é:: Dog;(é/cl)‘la 724 = 72@([’777‘01’2'%1),

where é(-,- |-, ) is as in (2.12). Proposition 4.1(b) and the update rule for ¢, imply
that Algorithm 2.2 performs at most £ iterations, and terminates with a pair that
solves Problem S, ,,. Moreover, the total number of iterations of Algorithm 2.1 (per-

formed by all of Algorithm 2.2’s calls to it) is bounded by 2521 Te,- Now, using
Lemma 3.10(a) with ¢ = ¢1, it follows that

2 2 2 2 i 1
(4.2) Ze=1 72[ < Ze:; Cy + Zj 812 Ce 222“ 1) + Ze 1 < 4 + 27
1 1 1

18
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621
622
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where (T1,¢) are as in (2.13). We now derive suitable bounds for 4% and 2°. Using
the definitions of ¢ and ¢, and the definition of (Ey, E7) in (2.15), we first have that

) 5 /3
2 < max {2, 2(1 o8 é/cl)} < 2max {1, i} = 2 max { <T1 ClTl) }
C1 1 3

T) T E
(4.3) §2<1+ 3+ 03) Eo+—1
1
Combining the above inequality above with the bound (a+b)? < 2a?+2b? for a,b € R,
it is also easy to see that

) ) 2F}
(4.4) 4t < (2H? <2E2 + —1

The conclusion now follows by applying (4.4) and (4.3) to (4.2). |

5. Numerical Experiments. This section examines the performance of the
proposed DP.ADMM (Algorithm 2.2) for finding stationary points of a nonconvex
three-block distributed quadratic programming problem. Specifically, given a radius
v > 0 and a dimension n € N; it considers the three-block problem

min - Z (Sl + (i 8:)

(z1,x2,23)ER™ XR™ XR™

s.t. ||95Hoo <7,
T, — I3 = 0,
To — T3 — 0,
where {a;}?_; C [0,1], {8}, C [0,1]", and the entries of these quantities are
sampled from the uniform distribution on [0, 1]. It is clear that the above problem is
an instance of (1.1) if we take h; to be the indicator of the set {z € R" : ||z]| < 7}
fori=1,...,3. At the end of this section, we give some elucidating remarks.

Before presenting the results, we first describe the algorithms tested. The first
set of algorithms, labeled DP1-DP2, are modifications of Algorithm 2.2. Specifically,
both DP1 and DP2 replace the original definition of S,gf) (resp. S,if)) in Step 2b
of Algorithm 2.1 with 2% [[vi||/[k + 2] (resp. 23, |Az® — d||/[k + 2]) and
choose (A, ¢1) = (1/2,1). Moreover, DP1 chooses (0, x) = (0,1) while DP2 chooses
(0,x) = (1/2,1/18) which satisfies (2.6) at equality. The second set of algorithms,
labeled SDD1-SDD3, are instances of the SDD-ADMM of [28] for different values
of the penalty parameter p. Specifically, all of these instances uses the parameters
(w,0,7) = (4,2,1), following the same choice as in [28, Section 5.1], and select the fol-
lowing curvature constants: (Mp,, Ky, Jy, L) = (47v,1,1,0). Moreover, SDD1-SDD3
respectively choose the penalty parameter p to be 0.1, 1.0, and 10.0, and termination
of the method occurs when the norm of the stationary residual £¥ and feasibility are
both less than a given numerical tolerance.

The results of our experiment are now given in Tables 5.1-5.2, which present
both iteration counts and runtimes for either varying choices of v (Table 5.1) or n
(Table 5.2). We now describe a few more details about these experiments and tables.
First, the starting point for all methods is the zero vector and the numerical tolerances
(e.g., p and 1 in DP1-DP2) for each method were set to be 1072, Second, the bolded
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632
633
634
635
636
637

text in the tables highlight the method that performed the best in terms of iteration
count. Third, we imposed an iteration limit of 100,000 and marked the runs which
did not terminate by this limit with a ‘-> symbol. Fourth, the experiments were
implemented and executed in Matlab R2021b on a Windows 64-bit desktop machine
with 12GB of RAM and two Intel(R) Xeon(R) Gold 6240 processors, and the code is
readily available online?.

Iteration Count Runtime (ms)

v |DP1 DP2 SDD1 SDD2 SDD3|DP1 DP2 SDD1 SDD2 SDD3
10°0 21 29 363 135 528 [ 1.8 1.9 382 134 504
101 76 83 427 223 976 | 4.0 4.9 41.3 224 88.1
102|151 156 497 309 1394 | 7.9 7.7 452 283 121.7
103|228 232 569 399 1855 |10.8 10.8 51.2 34.3 159.3
10*| 306 308 647 489 2316 |15.5 17.6 58.9 429 223.1

10°| 385 385 - 581 2778 | 17.9 18.5 - 48.0 2415
TABLE 5.1
Results with n = 10 and different values of

Iteration Count Runtime (ms)
n |DP1 DP2 SDD1 SDD2 SDD3|DP1 DP2 SDD1 SDD2 SDD3
10 | 151 156 497 309 1394 | 7.8 7.5 658 29.0 1218

40 55 60 - - 3117 | 3.7 3.5 - - 319.0

160 | 139 144 - 388 1836 | 8.5 8.2 - 42.0 202.7

640 | 53 54 - 349 16243| 4.0 3.9 - 40.4 1901.5

2560 | 58 59 - 458 8464 | 7.1 6.7 - 77.4 1553.7

10240| 108 110 - 1058 4334 | 44.4 40.3 - 623.5 2790.6
TABLE 5.2

Results with v = 100 and different values of n

From the results in Tables 5.1-5.2, we see that DP1 performed the best in terms
of iteration count and DP2 had iteration counts that were close to DP1. On the other
hand, SDD2 outperformed its other SDD-ADMM variant on all problems except one.
Finally, notice that the DP.ADMM variants scaled better against the dimension n
compared to the SDD-ADMM variants.

To close this section, we give some elucidating remarks. First, we excluded the
algorithm in [15] due to its poor iteration complexity bound and the fact that it is an
algorithm applied to a reformulation of (1.1) rather than to (1.1) directly. Second,
we had to choose different values of the penalty parameter p for the SDD-ADMM
variants because the analysis in [28] did not present a practical way of adaptively
updating p (note that the “adaptive” method in [28, Algorithm 3.2] is not practical
because it requires an estimate of sup, ¢y ¢(2) — infyepy ¢ for (1.1)).

6. Concluding Remarks. The analysis of this paper also applies to instances
of (1.1) where f is not necessarily differentiable on # as in our condition (A5), but
instead satisfies a more relaxed version of (A5), namely: for every x € H, the function
f(x<t, -, x>¢) has a Fréchet subgradient at x;, denoted by Vg, f(r<¢, ), and (2.3)
is satisfied for every ¢t = 1,..., B — 1. Hence, our analysis immediately applies to

3See https://github.com/wwkong/nc_ opt/tree/master/tests/papers/dp_admm.
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the case where f(2) is of the form Zle ft(z¢) in which, for every t = 1,..., B, the
function fi(-) +my| - ||2/2 + 0%, () is convex and has a subgradient everywhere in H,.

We now discuss some possible extensions of our analysis in this paper. First,
our analysis was done under the assumption that H is bounded (see (A3)), but
it is straightforward to see that it is still valid under the weaker assumption that
supysq ||[2* — 2¢|| < Ds for some D; > 0 where 2; is as in (A6). It would be interest-
ing to extend the analysis in this paper to the case where H is unbounded, possibly
by assuming conditions on the sublevel sets of ¢ which guarantee that the aforemen-
tioned bound holds. Second, the convergence of Algorithm 2.2 is established under
the assumption that exact solutions to the subproblems in Step 1 of Algorithm 2.1
are easy to obtain. We believe that convergence can also be established when only
inexact solutions, e.g.,

. _ _ 1 _
6 o mangmin (A ati ) + G- ot R
uy ER™t

are available. For example, one could consider applying an accelerated composite
gradient (ACG) method to the problem associated with (6.1) so that xF satisfies

k— — k—
Ik st T ea(AEZ(xlitmx»l;pk 1)—|—%|| C—xy 1||2) (zh),
b [rE |2 < o[kt — 2k||2,

for some o € (0,1).

Appendix A. Proof of Lemma 3.2 and Lemma 3.4(a)—(b).

Before giving the proofs, we present some auxiliary results. To avoid repetition,
we assume the reader is already familiar with (3.1)—(3.3).

The proof of the first result can be found in [19, Lemma B.2].

LEMMA A.1. For any ((,0) € [0,1)2 satisfying ¢ < 62 and (a,b) € R™ x R", we
have that
—(1-0)
2

(lal* = 11o]%) -

The next result establishes some general bounds given by the updates in (1.5).
LEMMA A.2. For everyi > 1, indext=1,...,B, and u; € Hy, it holds that

(A1) fa— (-0~ (llal® > {(14)

ML e, asp ) — £t )] e — P
1-— )\mt
2

Proof. Let i > 1, t =1,...,B, and u; € H; be fixed, and define y := 1 — Amy
and || - || := (-, (uI + AcA; A;)(+)). Since the prox stepsize A is chosen in (0,1/(2m)]
and m > my in view of (2.7), it follows that g > 1/2. Using the optimality of i,
assumption (A4), and the fact that AL (z%,, -, 25" p =) +||- —2i 1|2 /2 is 1-strongly
convex with respect to || - ||, it follows that

1 ; i Ac i
> et + (£ oo - all? + i - 2P,

S 1 ,
AL (g 2 p ) A2

_ L 1 - 1 .
< AL, 0 + S e — P = Sl — 2

i i1, i— 1 i— H i Ac i
= ALYy, 250 + Sl — i = S — ) = S v — 2. O
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693 We are now ready to give the proof of Lemma 3.2.

694 Proof of Lemma 3.2. (a) Using the definition of £2(-;-) in (1.4) and the relation
695 in Lemma 3.1(a), we conclude that

o o o 1—9 , o
696 L% p') — Lo p ) = (1 - 0) (Ap', f1) = () Ap'|1* + = (Ap' )
Xc¢ Xc
1 .
o _ Ap|? + 1\ qpi—12
: (=0) nawiie + X(<pp )~ 19" 1?)

1— ; Lo
s —( )nA 12+ ( 1912~ S 1apf? - Lo 1|2)
Xc Xc

bG 1 9 . .
699  (A.2 = 2 1Ap1 12 + 22 (119117 = Ip)1?)
700 (8.2) QXCH I e (" 1" = M=)

701 (b) Using the definition of m in (2.7) and summing the inequality of Lemma A.2
702 with u; = xff_l from t = 1 to B, we have that

e ! Am
03 (1—) 1Az + Z\\Atmm Z(l—t) |Aa t||2+f2||AtAxtH2

t=1 i=1

s <AL p ) = Lt ptT )] :

706 The conclusion now follows from dividing the above inequality by A and using the
707 fact that A < 1/m.
708 (c) Note that the definition of bg in (3.1) and (2.6) imply

709 ¢ :=2Byby < 6°.

710 Hence, using the definition of 74 in (3.1), and Lemma A.1 with (a,b) = (Ap®, Ap'~1)
711 it follows that

T2 (A3) (AP = (1= 0)Ap"HI* = 2Bxbell AP |* + xve (1492 — AP T) .

713 Using (A.3) at i and i — 1, Lemma 3.1(a), and the relation ||a||} < n||a||} for a € R™,
714 we have that

B i i—1|2
e c 2 c iQ_HAp—(l—G)Ap I
s T2l > laa? = B
1 i
716 > 1Bxe - [2BbllAP'[17 + 0 (14017 = 140" 7)]
be , ;
e — Apt 2 A 2 A 7—112 . 0
i Sl AP + 3 (189~ 1891 )

719 Next, we give the proof of Lemma 3.4(a)—(b).

720 Proof of Lemma 3.4(a)-(b). (a) Using Lemma 3.2(a), the definition of £%(-;-) in
721 (1.4), the fact that 6 € (0,1), and the relations 2 (a,b) < ||a||? + ||b]|* and [la + b||? <
722 2||al|® 4 2||b||* for a,b € R", it follows that

s L) = olad) + (1 - 0) (o, 1) + S| 77

7 L.3.2(a) (1 —0) 1 1 ; i—102
794 i (11— i— i (1—0)p
24 e (p'p'—(1=0)p ")+ e " = (1= 0)p |
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wno

=0, j2, A=0) ; i1z, L 12
<7 7 A Z_ 1_0 7 - Z_ 1_0 7
S e "1~ + e Ip* — ( /2| +2X26||p ( 'l
1, 1. ,
< 7012 i 1_0 1—1)12
_Txcllp I +*X26||p ( )/
I 2 2 317 + I 1%
< ||Ip* 2 2 12 2 12 < .
< 2Xcllp | +X20||p | +X20||p = < ¢
(b) It holds that
C
L% p%) = o(a*) + (1= 0) (", £7) + S 17117
2
1] (1—0)p* (1—60)?|Ip"|I
_oky L k|| _
—ole) + 5 | U2+ e s
1—0)?|p"|? "]
> ik S (k) _ 0
> ¢(x") 0 > ¢(z") 5
REFERENCES

D. P. BERTSEKAS, Nonlinear programming, Taylor & Francis, 3ed ed., 2016.

S. BoyDp, N. PARrikH, AND E. CHu, Distributed optimization and statistical learning via the
alternating direction method of multipliers, Now Publishers Inc, 2011.

M. T. CHAO, Y. ZHANG, AND J. B. JIAN, An inertial proximal alternating direction method of
multipliers for nonconvex optimization, International Journal of Computer Mathematics,
(2020), pp. 1-19.

C. CHEN, B. HE, Y. YE, AND X. YUAN, The direct extension of admm for multi-block convex
manimization problems is not mecessarily convergent, Mathematical Programming, 155
(2016), pp. 57-79.

J. ECKSTEIN AND D. P. BERTSEKAS, On the douglas—rachford splitting method and the proximal
point algorithm for mazimal monotone operators, Mathematical Programming, 55 (1992),
pp. 293-318.

J. ECKSTEIN AND M. C. FERRIS, Operator-splitting methods for monotone affine variational in-
equalities, with a parallel application to optimal control, INFORMS Journal on Computing,
10 (1998), pp. 218-235.

J. ECKSTEIN AND M. FUKUSHIMA, Some reformulations and applications of the alternating
direction method of multipliers, in Large scale optimization, Springer, 1994, pp. 115-134.

J. ECKSTEIN AND B. F. SVAITER, A family of projective splitting methods for the sum of two
mazimal monotone operators, Mathematical Programming, 111 (2008), pp. 173-199.

J. ECKSTEIN AND B. F. SVAITER, General projective splitting methods for sums of mazximal
monotone operators, STAM Journal on Control and Optimization, 48 (2009), pp. 787-811.

D. GaBAyY, Applications of the method of multipliers to variational inequalities, in Studies in
mathematics and its applications, vol. 15, Elsevier, 1983, pp. 299-331.

D. GABAY AND B. MERCIER, A dual algorithm for the solution of nonlinear variational problems
via finite element approzimation, Computers & mathematics with applications, 2 (1976),
pp. 17-40.

R. GLOWINSKI AND A. MARROCO, Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problémes de dirichlet non linéaires,
ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et
Analyse Numérique, 9 (1975), pp. 41-76.

M. L. N. GoNcCALVES, J. G. MELO, AND R. D. C. MONTEIRO, Convergence rate bounds for
a prozimal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly
constrained problems, Pacific Journal of Optimization, 15 (2019), pp. 379-398.

Z. Jia, J. HUANG, AND Z. WU, An incremental aggregated proximal ADMM for linearly con-
strained nonconvexr optimization with application to sparse logistic regression problems,
Journal of Computational and Applied Mathematics, 390 (2021), p. 113384.

B. Jiang, T. LIN, S. MA, AND S. ZHANG, Structured nonconver and nonsmooth optimization:
algorithms and iteration complexity analysis, Computational Optimization and Applica-
tions, 72 (2019), pp. 115-157.

23

This manuscript is for review purposes only.



[20]

21]

22]

(31]

32]

W. KonNa, Accelerated inezact first-order methods for solving nonconvex composite optimiza-
tion problems, arXiv preprint arXiv:2104.09685, (2021).

W. Kong, J. G. MELO, AND R. D. C. MONTEIRO, Complezity of a quadratic penalty acceler-
ated inexact proximal point method for solving linearly constrained nonconvexr composite
programs, SIAM Journal on Optimization, 29 (2019), pp. 2566-2593.

W. Kong, J. G. MELO, AND R. D. C. MONTEIRO, An efficient adaptive accelerated inez-
act proximal point method for solving linearly constrained nonconvexr composite problems,
Computational Optimization and Applications, 76 (2020), pp. 305-346.

W. KoNG AND R. D. C. MONTEIRO, An accelerated inexact dampened augmented Lagrangian
method for linearly-constrained nonconvexr composite optimization problems, arXiv pre-
print arXiv:2110.11151, (2021).

J. G. MeLo axpD R. D. C. MONTEIRO, I[teration-complexity of a Jacobi-type non-
euclidean ADMM for multi-block linearly constrained nonconvex programs, arXiv preprint
arXiv:1705.07229, (2017).

J. G. MELO AND R. D. C. MONTEIRO, Iteration-complezity of a linearized proximal multiblock
ADMM class for linearly constrained nonconvex optimization problems, Optimization On-
line preprint, (2017).

J. G. MELO, R. D. C. MONTEIRO, AND W. KONG, Iteration-complexity of an inner accelerated
inezact proximal augmented Lagrangian method based on the classical Lagrangian function
and a full lagrange multiplier update, arXiv preprint arXiv:2008.00562, (2020).

R. D. C. MONTEIRO AND B. F. SVAITER, Iteration-complezity of block-decomposition algorithms
and the alternating direction method of multipliers, STAM Journal on Optimization, 23
(2013), pp. 475-507.

R. T. ROCKAFELLAR, Augmented Lagrangians and applications of the prozimal point algorithm
in convex programming, Mathematics of operations research, 1 (1976), pp. 97-116.

A. RuszczyKski, An augmented Lagrangian decomposition method for block diagonal linear
programmang problems, Operations Research Letters, 8 (1989), pp. 287-294.

A. SujaNANI AND R. D. C. MONTEIRO, An adaptive superfast inexact proximal augmented
Lagrangian method for smooth nonconver composite optimization problems, arXiv preprint
arXiv:2207.11905, (2022).

A. X. SuN, D. T. PHAN, AND S. GHOSH, Fully decentralized ac optimal power flow algorithms,
in 2013 TEEE Power & Energy Society General Meeting, IEEE, 2013, pp. 1-5.

K. SUN AND A. SUN, Dual descent ALM and ADMM, arXiv preprint arXiv:2109.13214, (2021).

K. Sun AND X. A. SUN, A two-level distributed algorithm for general constrained non-convex
optimization with global convergence, arXiv preprint arXiv:1902.07654, (2019).

A. THEMELIS AND P. PATRINOS, Douglas—rachford splitting and ADMM for nonconvex opti-
mization: Tight convergence results, STAM Journal on Optimization, 30 (2020), pp. 149—
181.

Y. WANG, W. YIN, AND J. ZENG, Global convergence of ADMM in monconvex mnonsmooth
optimization, Journal of Scientific Computing, 78 (2019), pp. 29-63.

J. ZHANG AND Z.-Q. Luo, A proximal alternating direction method of multiplier for linearly
constrained nonconvex minimization, SIAM Journal on Optimization, 30 (2020), pp. 2272~
2302.

24

This manuscript is for review purposes only.



	Introduction
	Notation and Basic Definitions

	Alternating Direction Method of Multipliers
	Problem of Interest
	DP.ADMM

	Analysis of Algorithm 2.1
	Properties of the Key Residuals
	Bounding the Lagrange Multipliers
	Proof of Proposition 2.1

	Analysis of Algorithm 2.2
	Numerical Experiments
	Concluding Remarks
	Appendix A. Proof of Lemma 3.2 and Lemma 3.4(a)–(b)
	References

