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Abstract. This paper proposes and analyzes a dampened proximal alternating direction method5
of multipliers (DP.ADMM) for solving linearly-constrained nonconvex optimization problems where6
the smooth part of the objective function is nonseparable. Each iteration of DP.ADMM consists7
of: (ii) a sequence of partial proximal augmented Lagrangian (AL) updates, (ii) an under-relaxed8
Lagrange multiplier update, and (iii) a novel test to check whether the penalty parameter of the9
AL function should be updated. Under a basic Slater point condition and some requirements on10
the dampening factor and under-relaxation parameter, it is shown that DP.ADMM obtains an ap-11
proximate first-order stationary point of the constrained problem in O(ε−3) iterations for a given12
numerical tolerance ε > 0. One of the main novelties of the paper is that convergence of the method13
is obtained without requiring any rank assumptions on the constraint matrices.14
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1. Introduction. Consider the following composite optimization problem:18

(1.1) min
x∈Rn

{ϕ(x) := f(x) + h(x) : Ax = d} ,19

where h is a closed convex function, f is a (possibly) nonconvex differentiable function20
on the domain of h, the gradient of f is Lipschitz continuous, A is a linear operator,21
d ∈ Rℓ is a vector in the image of A (denoted as Im(A)), and the following B-block22
structure is assumed:23

n = n1 + . . .+ nB , x = (x1, . . . , xB) ∈ Rn1 × · · · × RnB

h(x) =
B∑
t=1

ht(xt), Ax =
B∑
t=1

Atxt,
(1.2)24

25

where {At}Bt=1 is another set of linear operators and {ht}Bt=1 is another set of proper26
closed convex functions with compact domains.27

Due to the block structure in (1.2), a popular algorithm for obtaining stationary28
points of (1.1) is the proximal alternating direction method of multipliers (ADMM)29
wherein a sequence of smaller augmented Lagrangian type subproblems is solved over30
x1, ..., xB sequentially or in parallel. However, the main drawbacks of existing ADMM-31
type methods include: (i) strong assumptions about the structure of h; (ii) iteration32
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complexity bounds that scale poorly with the numerical tolerance; (iii) small stepsize33
parameters; or (iv) a strong rank assumption about the last block AB that implies34
Im(AB) ⊇ {d} ∪ Im(A1) ∪ . . . Im(AB−1) which we refer to as the last block condition.35

Of the above drawbacks, (iv) is especially limiting. To illustrate this, we give a36
few applications where the last block condition, and hence (iv), does not hold:37

▷ Rank-deficient Quadratic Programming (RDQP). It is shown in [4] that the38
(non-proximal) ADMM diverges on the following three-block convex RDQP:39

min
x1,x2,x3,x4

1
2x

2
140

s.t.

 1 1
1 1
1 1

( x1
x2

)
+

 1
1
2

x3 +

 1
2
2

x4 = 0.41

42

▷ Distributed Finite-Sum Optimization (DFSO). Given a positive integer B,43
consider:44

(1.3) min
xi∈Rn

{
B∑
t=1

(ft + ht)(xt) : xt − xB = 0, t = 1, . . . , B − 1
}

45

where fi is continuously differentiable, ht is closed convex, and ∇ft is Lip-46
schitz continuous for t = 1, ..., B. It is easy to see1 that (1.3) is a special47
case of (1.1) where we have As = es ⊗ I ∈ Rn(B−1)×n for s = 1, . . . , B − 1,48
we have AB = −1 ⊗ I ∈ Rn(B−1)×n, and d = 0. Moreover, it is straightfor-49
ward to show that for s = 1, . . . , B − 1 we have Im(As) ∩ Im(AB) = 0 but50
Im(As)\{0} ≠ ∅, which implies that Im(As) ̸⊆ Im(AB).51

▷ Decentralized AC Optimal Power Control (DAC-OPF). The convex version52
was first considered in [27] for the rectangular coordinate formulation, and53
the problem itself is considered one of the most important ones in power54
systems decision-making. The nonconvex version of DAC-OPF is a variant55
where ht is the indicator of a convex region given by a finite number of com-56
plicated quadratic constraints and ft is a nonconvex quadratic cost function.57
A discussion of the limitations induced by assuming any rank condition which58
implies the last block condition is given in [29].59

Our goal in this paper is to develop and analyze the complexity of a proximal60
ADMM that removes all the drawbacks above. For a given θ ∈ (0, 1), its kth iteration61
is based on the dampened augmented Lagrangian (AL) function given by62

Lθck
(x; p) := ϕ(x) + (1− θ) ⟨p,Ax− d⟩+ ck

2 ∥Ax− d∥
2
,(1.4)63

64

where ck > 0 is the penalty parameter. Specifically, it consists of the following updates:65
given xk−1 = (xk−1

1 , . . . , xk−1
B ), pk−1 ck, χ, and λ, sequentially (t = 1, . . . , B) compute66

the tth block of xk as67

xkt = argmin
ut∈Rnt

{
λLθck

(. . . , xkt−1, ut, x
k−1
t+1 , . . . ; pk−1) + 1

2∥ut − x
k−1
t ∥2

}
,(1.5)68

69

and then update70

(1.6) pk = (1− θ)pk−1 + χck
(
Axk − d

)
,71

1Here, e1, . . . , en is the standard basis for RB−1, In is the n-by-n identity matrix, 1 ∈ RB−1 is
a vector of ones, and ⊗ is the Kronecker product of two matrices.
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where χ ∈ (0, 1) is a suitably chosen under-relaxation parameter.72

Contributions. For proper choices of the stepsize λ and a non-decreasing sequence of73
penalty parameters {ck}k≥1, it is shown that if the Slater-like condition274

(1.7) ∃z† ∈ int (dom h) such that Az† = d,75

holds, then DP.ADMM has the following features:76
▷ for any tolerance pair (ρ, η) ∈ R2

++, it obtains a pair (z̄, q̄) satisfying77

(1.8) dist (0,∇f(z̄) +A∗q̄ + ∂h(z̄)) ≤ ρ, ∥Az̄ − d∥ ≤ η78

in O(max{ρ−3, η−3}) iterations;79
▷ it introduces a novel approach for updating the penalty parameter ck, instead80

of assuming that ck = c1 for every k ≥ 1 and that c1 is sufficiently large (such81
as in [3, 14,15,28,31,32]);82

▷ it does not have any of the drawbacks mentioned in the sentences preceding83
equation (1.3).84

Related Works. Since ADMM-type methods where f is convex have been well-studied85
in the literature (see, for example, [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 25]), we make no86
further mention of them here. Instead, we discuss below ADMM-type methods where87
f is nonconvex.88

Letting δS denote the indicator function of a convex set S (see Subsection 1.1),89
we first present a list of common assumptions in Table 1.1.90

Q f(z) =
∑B

t=1
ft(zt) for subfunctions ft : domht 7→ R.

R0 Im(AB) ⊇ {d} ∪ Im(A1) ∪ . . . ∪ Im(AB−1).
S The Slater-like assumption (1.7) holds.
P hi ≡ δP for i ∈ {1, . . . , B}, where P is a polyhedral set.
F A point x0 ∈ domh satisfying Ax0 = d is available as an input.

Table 1.1
Common nonconvex ADMM assumptions and regularity conditions.

Earlier developments on ADMM for solving nonconvex instances of (1.1) all as-91
sume thatR0 hold, and the ones dealing with complexity establish anO(ε−2) iteration92
complexity, where ε := min{ρ, η}. More specifically, [3, 13, 30, 31] present proximal93
ADMMs under the assumption B = 2, hB ≡ 0, and assumption Q holds for [3,13,30].94
Papers [14,15,20,21] present (possibly linearized) ADMMs under the assumption that95
B ≥ 2, hB ≡ 0, and assumption Q holds for [14,20,21].96

We next discuss papers that do not assume the restrictive condition R0 in Ta-97
ble 1.1, and are based on ADMM approaches directly applicable to (1.1) or some98
reformulation of it. An early paper in this direction is [15], which establishes an99
O(ε−6) iteration-complexity bound for an ADMM-type method applied to a penalty100
reformulation of (1.1) that artificially satisfies R0. On the other hand, development101
of ADMM-type methods directly applicable to (1.1) is considerably more challenging102
and only a few works have recently surfaced (see Table 1.2 below).103

We now discuss some advantages of DP.ADMM compared to the other two pa-104
pers in Table 1.2. First, the method in [28] considers a small stepsize (proportional105

2Here, intS denotes the interior of a set S, domψ denotes the domain of a function ψ, and A∗

is the adjoint of linear operator A.
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Algorithm θ χ Complexity Assumptions Adaptive c

LPADMM [32] 0 (0,∞) None P, S No
SDD-ADMM [28] (0, 1] [− θ

4 , 0) O(ε−4) F No
DP.ADMM (0, 1] (0, πθ] O(ε−3) S Yes

Table 1.2
Comparison of existing ADMM-type methods with DP.ADMM for finding ε-stationary points

with ε := min{ρ, η} and πθ = θ2/[2B(2 − θ)(1 − θ)] if θ ∈ (0, 1) and πθ = 1 if θ = 1.

to η2) linearized proximal gradient update while DP.ADMM considers a large step-106
size (proportional to the inverse of the weak-convexity constant of f) proximal point107
update as in (1.5). Second, the method in [28] requires a feasible initial point, i.e., a108
point z0 ∈ dom h satisfying Az0 = d, while DP.ADMM only requires that the initial109
point be in dom h. Third, the methods in [28, 32] both require certain hyperparam-110
eters (the penalty parameter in [28] and an interpolation parameter in [32]) to be111
chosen in a range that is hard to compute, while DP.ADMM only requires its main112
hyperparameter pair (χ, θ) to satisfy a simple inequality (see (2.6)). Moreover, [28]113
does not specify an easily implementable rule for updating its method’s penalty pa-114
rameter, while DP.ADMM does. Fourth, convergence of the method in [32] requires115
h being the indicator of a polyhedral set, whereas DP.ADMM applies to any closed116
convex function h. Fifth, in contrast to [28] and this work, [32] does not give a com-117
plexity bound for its proposed method. Finally, [28] considers an unusual negative118
stepsize for its Lagrange multiplier update — which justifies its moniker “scaled dual119
descent ADMM” — whereas DP.ADMM considers a positive stepsize.120

Organization. Subsection 1.1 presents some basic definitions and notation. Section 2121
presents the proposed DP.ADMM in two subsections. The first one precisely describes122
the problem of interest, while the second one states the static and dynamic DP.ADMM123
variants and their iteration complexities. Section 3 and 4 present the main properties124
of the static and dynamic DP.ADMM, respectively. Section 5 presents some prelim-125
inary numerical experiments. Section 6 gives some concluding remarks. Finally, the126
end of the paper contains several appendices.127

1.1. Notation and Basic Definitions. Let R+ denote the set of nonnegative128
real numbers, and let R++ denote the set of positive real numbers. Let Rn denote the129
n-dimensional Hilbert space with inner product and associated norm denoted by ⟨·, ·⟩130
and ∥ · ∥, respectively. The direct sum (or Cartesian product) of a set of sets {Si}ni=1131
is denoted by

∏n
i=1 Si.132

The smallest positive singular value of a nonzero linear operator Q : Rn → Rl is133
denoted by σ+

Q. For a given closed convex set X ⊂ Rn, its boundary is denoted by134
∂X and the distance of a point x ∈ Rn to X is denoted by distX(x). The indicator135
function of X at a point x ∈ Rn is denoted by δX(x) which has value 0 if x ∈ X136
and +∞ otherwise. For every z > 0 and positive integer b, we denote log+

b (z) :=137
max{1, ⌈logb(z)⌉}.138

The domain of a function h : Rn → (−∞,∞] is the set dom h := {x ∈ Rn :139
h(x) < +∞}. Moreover, h is said to be proper if dom h ̸= ∅. The set of all lower140
semi-continuous proper convex functions defined in Rn is denoted by Conv Rn. The141
set of functions in Conv Rn which have domain Z ⊆ Rn is denoted by Conv Z. The142
ε-subdifferential of a proper function h : Rn → (−∞,∞] is defined by143

(1.9) ∂εh(z) := {u ∈ Rn : h(z′) ≥ h(z) + ⟨u, z′ − z⟩ − ε, ∀z′ ∈ Rn}144
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for every z ∈ Rn. The classic subdifferential, denoted by ∂h(·), corresponds to ∂0h(·).145
The normal cone of a closed convex set C at z ∈ C, denoted by NC(z), is defined as146

NC(z) := {ξ ∈ Rn : ⟨ξ, u− z⟩ ≤ ε, ∀u ∈ C}.147

If ψ is a real-valued function which is differentiable at z̄ ∈ Rn, then its affine approx-148
imation ℓψ(·, z̄) at z̄ is given by149

(1.10) ℓψ(z; z̄) := ψ(z̄) + ⟨∇ψ(z̄), z − z̄⟩ ∀z ∈ Rn.150

If z = (x, y) then f(x, y) is equivalent to f(z) = f((x, y)).151
Iterates of a scalar quantity have their iteration number appear as a subscript, e.g.,152

cℓ, while non-scalar quantities have this number appear as a superscript, e.g., vk, and153
p̂ℓ. For variables with multiple blocks, the block number appears as a subscript, e.g.,154
xkt and vkt . Finally, we define the following norm for any quantity u = (u1, . . . , uB)155
following a block structure as in (1.2):156

(1.11) ∥u∥† = ∥(u1, . . . , uB)∥† :=
B∑
t=1
∥ut∥.157

2. Alternating Direction Method of Multipliers. This section contains two158
subsections. The first one precisely describes the problem of interest and its underlying159
assumptions, while the second one presents the DP.ADMM and its corresponding160
iteration complexity.161

2.1. Problem of Interest. This subsection presents the problem of interest and162
the assumptions underlying it.163

Denote the aggregated quantities164

x<t := (x1, . . . , xt−1), x>t := (xt+1, . . . , xB),
x≤t := (x<t, xt), x≥t := (xt, x>t),

(2.1)165
166

for every x = (x1, . . . , xB) ∈ H. Our problem of interest is finding approximate167
stationary points of (1.1) under the following assumptions:168

(A1) for every t = 1, . . . , B, we have ht ∈ Conv Rnt and Ht := dom ht is compact;169
(A2) A ̸≡ 0 and F := {x ∈ H : Ax = d} ≠ ∅ where H := H1 × · · · × HB ;170
(A3) h in (1.2) is Kh-Lipschitz continuous on H for some Kh ≥ 0;171
(A4) for every t = 1, . . . , B, there exists mt ≥ 0 such that172

f(x<t, ·, x>t) + δHt(·) + mt

2 ∥ · ∥
2 is convex for all x ∈ H;(2.2)173

174

(A5) f is differentiable on H and, for every t = 1, . . . , B − 1, there exists Mt ≥ 0175
such that176

∥∇xt
f(x≤t, x̃>t)−∇xt

f(x≤t, x>t)∥ ≤Mt∥x̃>t − x>t∥ ∀x, x̃ ∈ H;(2.3)177178

(A6) there exists z† ∈ F such that d† := dist∂H(z†) > 0.179
We now give a few remarks about the above assumptions. First, in view of the180

fact that H is compact, the following scalars are bounded:181

(2.4)
D† := sup

z∈H
∥z − z†∥, Gf := sup

x∈H
∥∇f(x)∥,

ϕ := inf
x∈H

ϕ(x), ϕ := sup
x∈H

ϕ(x).
182
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Second, if f is a separable function, i.e., it is of the form f(z) = f1(z1)+ · · ·+fB(zB),183
then each Mt can be chosen to be zero. Third, any function h given by (1.2) such that184
each ht for t = 1, . . . , B has the form ht = h̃t + δZt

, where h̃t is a finite everywhere185
Lipschitz continuous convex function and Zt is a compact convex set, clearly satisfies186
condition (A3) for some Kh.187

For a given tolerance pair (ρ, η), we define a (ρ, η)-stationary pair of (1.1) as being188
a pair (z̄, q̄) ∈ H × Rℓ satisfying (1.8). It is well known that the first-order necessary189
condition for a point z ∈ H to be a local minimum of (1.1) is that there exists q ∈ Rℓ190
such that the stationary conditions191

0 ∈ ∇f(z) +A∗q + ∂h(z), Az = d192193

hold. Hence, the requirements in (1.8) can be viewed as a direct relaxation of the194
above stationary conditions. For ease of future reference, we consider the following195
problem.196

Problem Sρ,η : Find a (ρ, η)-stationary pair (z̄, q̄) satisfying (1.8).197

We now make three remarks about Problem Sρ,η. First, (z̄, q̄) is a solution of198
Problem Sρ,η if and only if there exists a residual v̄ ∈ Rn such that199

(2.5) v̄ ∈ ∇f(z̄) +A∗q̄ + ∂h(z̄), ∥v̄∥ ≤ ρ, ∥Az̄ − d∥ ≤ η.200

Second, condition (2.5) has been considered in many previous works (e.g., see [16,201
17, 18, 19, 22]). Third, in the case where ∥ · ∥ = ∥ · ∥2 and ρ = η, the stationarity202
condition in (1.8) implies the stationarity condition of the papers [15,28] in Table 1.2.203
Specifically, [15, Definition 3.6] and [28, Definition 3.3] consider a pair (z, q) ∈ H×Rℓ204
to be an ε-stationary pair if it satisfies205

dist(0,∇zt
f(z1, . . . , zB) +A∗

t q + ∂ht(zt)) ≤ ε, ∥Az − d∥ ≤ ε,206

for every t = 1, . . . , B.207
In the following subsection, we present a method (Algorithm 2.1) that computes208

a triple (z̄, q̄, v̄) satisfying (2.5), and hence which guarantees that (z̄, q̄) is a solution209
of Problem Sρ,η.210

2.2. DP.ADMM. We present DP.ADMM in two parts. The first part presents211
a static version of DP.ADMM which either (i) stops with a solution of Problem Sρ,η212
or (ii) signals that its penalty parameter is too small. The second part presents the213
(dynamic) DP.ADMM that repeatedly invokes the static version on an increasing214
sequence of penalty parameters.215

Both versions of DP.ADMM make use of the following condition on (χ, θ):216

(2.6) 2χB(2− θ)(1− θ) ≤ θ2, (χ, θ) ∈ (0, 1]2.217

For ease of reference and discussion, the pseudocode for the static DP.ADMM is given218
in Algorithm 2.1 below. Notice that the classic proximal ADMM iteration219

xkt = argmin
ut∈Rnt

{
λL0

c(xk<t, ut, xk−1
>t ; pk−1) + 1

2∥ut − x
k−1
t ∥2

}
, t = 1, . . . , B,220

pk = pk−1 + c
(
Axk − d

)
,221
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Algorithm 2.1 Static DP.ADMM
Input: x0 ∈ H, p0 ∈ A(Rn), λ ∈ (0, 1/(2m)], c > 0;
Require: m as in (2.7), (ρ, η) ∈ R2

++, (χ, θ) as in (2.6)
1: for k ← 1, 2, . . . do

STEP 1 (prox update):
2: for t← 1, 2, . . . , B do
3: xkt ← argminut∈Rnt

{
λLθc(xk<t, ut, xk−1

>t ; pk−1) + 1
2∥ut − x

k−1
t ∥2}

4: qk ← (1− θ)pk−1 + c(Axk − d)
STEP 2a (successful termination check):

5: for t← 1, 2, . . . , B do
6: δkt ← ∇xt

f(xk≤t, xk>t)−∇xt
f(xk≤t, x

k−1
>t )

7: vkt ← δkt + cA∗
t

∑B
s=t+1 As(xks − xk−1

s )− 1
λ (xkt − xk−1

t )
8: if ∥vk∥ ≤ ρ and ∥Axk − d∥ ≤ η then
9: return (xk, pk, qk, vk)

STEP 2b (unsuccessful termination check):
10: if k ≡ 0 mod 2 and k ≥ 3 then
11: S(v)

k ← 2
k+2

∑k
i=k/2 ∥vi∥

12: S(f)
k ← 2

k+2
∑k
i=k/2 ∥Axi − d∥

13: if 1
ρ · S

(v)
k + 1

η

√
c3

k · S
(f)
k ≤ 1 then

14: return (xk, pk, qk, vk)
STEP 3 (multiplier update):

15: pk ← (1− θ)pk−1 + χc(Axk − d)

222

corresponds to the case of (χ, θ) = (1, 0), where c ≥ 1 is a fixed penalty parameter.223
The next result describes the iteration complexity and some useful technical prop-224

erties of Algorithm 2.1. Its proof is given in Section 3.3, and it uses three sets of scalars.225
The first set is independent of (c, p0) and is given by226

M := max
1≤t≤B

Mt, m := max
1≤t≤B

mt, ∆ϕ := ϕ− ϕ, κ0 := 2B2 (λM + 1)√
λ

,

κ1 := χ∥A∥D†

θ
, κ2 := 1

θ

[
1 + 2χD†(Kh +Gf )

θd†σ
+
A

]
+ 1,

κ3 := 108κ2
2

χ2 , κ4 := θd†σ
+
A

χD†
, κ5 := 8(B − 1)∥A∥2

†, κ6 := 3 + 8κ2
0∆ϕ

κ2
4

.

(2.7)227

228

where (Gf , D†, ϕ, ϕ), Kh, and (mt,Mt) are as in (2.4), (A3), and (A4). The second229
set is dependent on a given lower bound c on c and is given by230

κ̃(0)
c := 2

(√
∆ϕ + 5κ2

χ
√
c

)
, κ̃(1)

c := 3κ5[κ̃(0)
c ]2, κ̃(2)

c := 3κ2
0[κ̃(0)

c ]2.(2.8)231
232
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The third set is dependent on a given upper bound R on ∥p0∥/c and is given by233

ξ
(0)
R := 8

κ2
4

[
9κ2

0(R+ κ1)2

χ2 + κ5∆ϕ

]
+ (1− θ)(R+ κ1),

ξ
(1)
R := 72κ5(R+ κ1)2

χ2κ2
4

.

(2.9)234

235
236

Proposition 2.1. Let R ≥ 0 and c > 0 be given, and assume that the pair (c, p0)237
given to Algorithm 2.1 satisfies238

(2.10) ∥p0∥ ≤ cR, c ≥ c.239

Then, the following statements hold about the call to Algorithm 2.1:240
(a) it terminates in a number of iterations bounded by241

Tc(ρ, η | c,R) := 48
({

κ6 +
κ̃

(1)
c

ρ2

}
+
{
ξ

(0)
R + κ3

η2 +
κ̃

(2)
c

ρ2

}
c+ ξ

(1)
R c2

)
,

(2.11)

242
243

where (κ3, κ6), (κ̃(1)
c , κ̃

(2)
c ), and (ξ(0)

R , ξ
(1)
R ) are as in (2.7), (2.8), and (2.9),244

respectively;245
(b) if it terminates successfully in Step 2a, then the first and third components of246

its output quadruple (z̄, p̄, q̄, v̄) solve Problem Sρ,η;247
(c) if c satisfies248

(2.12) c ≥ ĉ(ρ, η | c,R) := 1
c2

[
Tc(1, 1 | c,R) +

√
c3 · Tc(1, 1 | c,R)

min{ρ, η}

]
,249

where Tc(ρ, η | c,R) is as in (a), then it must terminate successfully.250

We now make some remarks about Proposition 2.1. First, statement (c) implies251
that Algorithm 2.1 terminates successfully if its penalty parameter c is sufficiently252
large, i.e., c = Ω(ε−1) where ε := min{ρ, η}. Moreover, if a penalty parameter c253
satisfying (2.12) and the condition that c = O(ε−1) is known, then it follows from254
Proposition 2.1(a) that the iteration complexity of Algorithm 2.1 for finding a solution255
of Problem Sρ,η is O(ε−3).256

Since a penalty parameter c as in the above paragraph is nearly impossible to257
compute, we next present an adaptive method, namely, Algorithm 2.2 below, which258
adaptively increases the penalty parameter c, and whose overall number of iterations259
is also O(ε−3).260

Some comments about Algorithm 2.2 are in order. First, it employs a “warm-261
start” type strategy for calling Algorithm 2.1 at each iteration ℓ. Specifically, the262
input of the ℓth to Algorithm 2.1 is the pair (z̄ℓ−1, p̄ℓ−1) output by the previous call263
to Algorithm 2.1. Second, the initial penalty parameter c1 can be chosen to be any264
positive scalar, in contrast to many of the methods listed in Section 1 where this265
parameter must be chosen sufficiently large. Third, the initial point z̄0 only needs to266
be in the domain of h and need not be feasible or near feasible. Finally, while the267
initial Lagrange multiplier p̄0 is chosen to be zero, the analysis in this paper can be268
carried out for any p̄0 ∈ A(Rn), at the cost of more complicated complexity bounds.269

The next result, whose proof is given in Section 4, gives the complexity of Algo-270
rithm 2.2 in terms of the total number of iterations of Algorithm 2.1 across all of its271
calls.272
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Algorithm 2.2 DP.ADMM
Input: z̄0 ∈ H, λ ∈ (0, 1/(2m)], c1 > 0
Require: m as in (2.7), (ρ, η) ∈ (0, 1)2, (χ, θ) as in (2.6)

1: p̄0 ← 0
2: for ℓ← 1, 2, . . . do
3: call Algorithm 2.1 with inputs (x0, p0, λ, c) = (z̄ℓ−1, p̄ℓ−1, λ, cℓ) and parame-

ters m, (ρ, η), and (χ, θ) to obtain an output quadruple (z̄ℓ, p̄ℓ, q̄ℓ, v̄ℓ)
4: if ∥v̄ℓ∥ ≤ ρ and ∥Az̄ℓ − d∥ ≤ η then
5: return (z̄ℓ, q̄ℓ)
6: cℓ+1 ← 2cℓ

Theorem 2.2. Define the scalars273

(2.13) T1 := Tc1(1, 1 | c1, 2κ1), ε := min{ρ, η},274

where κ1 and Tc(·, · | ·, ·) are as in (2.7) and (2.11), respectively. Then, Algorithm 2.2275
stops and outputs a pair that solves Problem Sρ,η in a number of iterations of Algo-276
rithm 2.1 bounded by277

T1

(
2E2

0 + E0 + 2E2
1

ε2 + E1

ε3

)
(2.14)278

279

where280

(2.15) E0 := 2
(

1 + T 2
1
c3

1

)
, E1 := 2

√
T1

c3
1
.281

Since T1 = O(c−1
1 ) in view of (2.11) and (2.13), it follows from (2.14) and (2.15)282

that if c−1
1 = O(1), then the overall complexity of Algorithm 2.2 is O(ε−3).283

3. Analysis of Algorithm 2.1. This section presents the main properties of284
Algorithm 2.1, and it contains three subsections. More specifically, the first (resp.,285
second) subsection establishes some key bounds on the ergodic means of the sequences286
{∥vk∥}k≥0 and {∥Axk−d∥}k≥0 (resp., the sequence {∥pk∥}k≥0). The third one proves287
Proposition 2.1.288

Throughout this section, we let {(vi, xi, pi, qi)}ki=1 denote the iterates generated289
by Algorithm 2.1 up to and including the kth iteration for some k ≥ 3. Moreover,290
for every i ≥ 1 and (χ, θ) ∈ R2

++ satisfying (2.6), we make use of the following useful291
constants and shorthand notation292

(3.1)
aθ = θ(1− θ), bθ := (2− θ)(1− θ),

γθ := (1− 2Bχbθ)− (1− θ)2

2χ , f i := Axi − d,
293

the aggregated quantities in (2.1), and the averaged quantities294

S
(p)
j,k :=

∑k
i=j ∥pi∥

k − j + 1 , S
(v)
j,k :=

∑k
i=j ∥vi∥

k − j + 1 , S
(f)
j,k :=

∑k
i=j ∥f i∥

k − j + 1 .(3.2)295
296

for every j = 1, . . . , k. Notice that γθ ≥ θ/χ in view of (2.6). We also denote ∆yi to297
be the difference of iterates for any variable y at iteration i, i.e.,298

(3.3) ∆yi ≡ yi − yi−1.299
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3.1. Properties of the Key Residuals. This subsection presents bounds on300
the residuals {∥vi∥}ki=2 and {∥f i∥}ki=2 generated by Algorithm 2.1. These bounds will301
be particularly helpful for proving Proposition 2.1 in Subsection 3.3.302

The first result presents some key properties about the generated iterates.303

Lemma 3.1. For i = 1, . . . , k,304
(a) f i =

[
pi − (1− θ)pi−1] /(χc);305

(b) vi ∈ ∇f(xi) +A∗qi + ∂h(xi) and306

(3.4) ∥vi∥ ≤ B
(
M + 1

λ

)
∥∆xi∥† + c∥A∥†

B∑
t=2
∥At∆xit∥,307

where ∥ · ∥† is as in (1.11).308

Proof. (a) This is immediate from step 3 of Algorithm 2.1 and the definition of309
f i in (3.1).310

(b) We first prove the required inclusion. The optimality of xkt in Step 1 of311
Algorithm 2.1, and assumption (A4), imply that312

0 ∈ ∂
[
Lθc(xi<t, · , xi−1

>t ; pi−1) + 1
2λ∥ · −x

i−1
k ∥

2
]

(xi)313

= ∇xt
f(xi≤t, xi−1

>t ) +A∗
t

[
(1− θ)pi−1 + c[A(xi≤t, xi−1

>t )− d]
]

+ ∂ht(xit) + 1
λ

∆xit314

= ∇xt
f(xi≤t, xi−1

>t ) +A∗
t

(
qi−c

B∑
s=t+1

As∆xis

)
+ ∂ht(xit) + 1

λ
∆xit315

= ∇xtf(xi) +A∗
t q
i + ∂ht(xit)− vit.316317

for every 1 ≤ t ≤ B. Hence, the inclusion holds. To show the inequality, let 1 ≤ t ≤ B318
be fixed and use the triangle inequality, the definition of vit, and assumption (A5) to319
obtain320

∥vit∥ ≤ ∥∇xt
f(xi≤t, xi>t)−∇xt

f(xi≤t, xi−1
>t )∥+ c

B∑
s=t+1

∥A∗
tAs∆xis∥+ 1

λ
∥∆xit∥321

≤Mt∥xi>t − xi−1
>t ∥+ c∥At∥

B∑
s=t+1

∥As∆xis∥+ 1
λ
∥∆xit∥322

≤
(
M + 1

λ

) B∑
s=t
∥∆xis∥+ c∥At∥

B∑
t=2
∥At∆xit∥.323

324

Summing the above bound from t = 1 to B, and using the definition of M in (2.7)325
and the triangle inequality, we conclude that326

∥vi∥ ≤
B∑
t=1
∥vit∥ ≤

(
M + 1

λ

) B∑
t=1

B∑
s=t
∥∆xis∥+ c∥A∥†

B∑
t=2
∥At∆xit∥327

≤ B
(
M + 1

λ

)
∥∆xi∥† + c∥A∥†

B∑
t=2
∥At∆xit∥.328

329

Notice that part (b) of the above result implies that (x̄, v̄, p̄) = (xi, vi, qi) satisfies330
the inclusion in (2.5). Hence, if ∥vi∥ and ∥f i∥ are sufficiently small at some iteration331
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i, then Algorithm 2.1 clearly returns a solution of Problem Sρ,η at iteration i, i.e.,332
Proposition 2.1(b) holds. However, to understand when Algorithm 2.1 terminates, we333
will need to develop more refined bounds on ∥vi∥ and ∥fi∥.334

To begin, we present some relations between the perturbed augmented Lagrangian335
Lθc(·; ·) and the iterates {(xi, pi)}ki=1. For conciseness, its proof is given in Appendix A.336

Lemma 3.2. For i = 1, . . . , k,337
(a) Lθc(xi; pi)− Lθc(xi; pi−1) = bθ∥∆pi∥2/(2χc) + aθ

(
∥pi∥2 − ∥pi−1∥2) /(2χc);338

(b) Lθc(xi; pi−1)− Lθc(xi−1; pi−1) ≤ −∥∆xi∥2/(2λ)− c
∑B
t=1 ∥At∆xit∥2/2;339

(c) if i ≥ 2, it holds that340

(3.5) bθ
2χc∥∆p

i∥2 − c

4

B∑
t=1
∥At∆xit∥2 ≤ γθ

4Bχc
(
∥∆pi−1∥2 − ∥∆pi∥2) .341

The next result uses the above relations to establish a bound on the quantities in342
the right-hand-side of (3.4).343

Lemma 3.3. For j = 1, . . . , k,344

k∑
i=j+1

∥vi∥2 ≤ (κ2
0 + κ5c) [Ψj(c)−Ψk(c)] ,(3.6)345

346

where (κ0, κ5) is as in (2.7), and denoting (aθ, γθ) and as in (3.1), we have347

Ψi(c) := Lθc(xi; pi)−
aθ

2χc∥p
i∥2 + γθ

4Bχc∥∆p
i∥2 ∀i ≥ 1.(3.7)348

349

Proof. Using the inequality ∥z∥2
1 ≤ n∥z∥2

2 for z ∈ Rn and (3.4), we first have that350

k∑
i=j+1

∥vi∥2
(3.4)
≤

k∑
i=j+1

[
B

(
M + 1

λ

)
∥∆xi∥† + c∥A∥†

B∑
t=2
∥At∆xit∥

]2

351

≤
k∑

i=j+1
2B2

(
M + 1

λ

)2
∥∆xi∥2

† + c2∥A∥2
†

(
B∑
t=2
∥At∆xit∥

)2

352

≤
k∑

i=j+1
2B4

(
M + 1

λ

)2
∥∆xi∥2 + 2(B − 1)c2∥A∥2

†

B∑
t=2
∥At∆xit∥2353

≤ (κ2
0 + κ5c)

k∑
i=j+1

[
1

2λ∥∆x
i∥+ c

4

B∑
t=2
∥At∆xit∥2

]
.(3.8)354

355

Combining Lemma 3.2(a)–(c), the definition of Ψi
θ, and the bound (a+b)2 ≤ 2a2 +2b2356

for a, b ∈ R+, we also have that357

1
2λ∥∆x

i∥2 + c

4

B∑
t=2
∥At∆xi∥2358

L.3.2(a)-(b)
≤ Lθc(xj−1; pj−1)− Lθc(xj ; pj) + aθ

2χc∆(2)
p,j + bθ

2χc∥∆p
i∥2 − c

4

B∑
t=1
∥At∆xit∥2359

L.3.2(c)
≤ Lθc(xj−1; pj−1)− Lθc(xj ; pj) + aθ

2χc∆(2)
p,j + γθ

4Bχc
(
∥∆pi−1∥2 − ∥∆pi∥2)360
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= Ψi−1(c)−Ψi(c),361362

where ∆(2)
p,j := ∥pj∥2 − ∥pj−1∥2. Consequently, summing the above inequality from363

i = j + 1 to k, and combining the resulting inequality with (3.8), yields the desired364
bound.365

We now bound the quantity on the right-hand-side of (3.6)366

Lemma 3.4. For any j ≥ 1 and k ≥ 1,367
(a) Lθc(xj ; pj) ≤ ϕ(xj) + 3(∥pj∥2 + ∥pj−1∥2)/(χ2c);368
(b) Lθc(xk; pk) ≥ ϕ(xk)− ∥pk∥2/(2c);369
(c) it holds that370

(3.9) Ψj(c)−Ψk(c) ≤ ∆ϕ + 4
(
∥pj∥2 + ∥pj−1∥2 + ∥pk∥2

χ2c

)
,371

where Ψi(·) and ∆ϕ are as in (3.6) and (2.7), respectively.372

Proof. (a)–(b) See Appendix A.373
(c) Using parts (a)–(b), the fact that aθ ∈ (0, 1) and (χ, θ) ∈ (0, 1)2, the relation374

(a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R+, and the bound γθ ≤ 1/(2χ), it holds that375

Ψj(c)−Ψk(c)376

=
[
Lθc(xj ; pj)− Lθc(xk; pk)

]
+ aθ(∥pk∥2 − ∥pj∥2)

2χc + γθ(∥∆pj∥2 − ∥∆pk∥2)
4Bχc377

≤
[
Lθc(xj ; pj)− Lθc(xk; pk)

]
+ aθ∥pk∥2

2χc + γθ∥∆pj∥2

4Bχc378

≤
[
Lθc(xj ; pj)− Lθc(xk; pk)

]
+ ∥p

k∥2

2χc + ∥p
j−1∥2 + ∥pj∥2

4Bχ2c
379

(a)-(b)
≤

[
ϕ(xj)− ϕ(xk) + 3(∥pj∥2 + ∥pj−1∥2)

χ2c
+ ∥p

k∥2

2c

]
+380

∥pk∥2

2χc + ∥p
j−1∥2 + ∥pj∥2

4Bχ2c
≤ ∆ϕ + 4

(
∥pj∥2 + ∥pj−1∥2 + ∥pk∥2

χ2c

)
.381

382

The next result presents bounds on S
(f)
j+1,k and S

(v)
j+1,k.383

Proposition 3.5. For j = 1, . . . , k − 1,384

S
(f)
j+1,k ≤

∥pj∥+ 2S(p)
j+1,k

χc
,(3.10)385

S
(v)
j+1,k ≤ 2

√
κ2

0 + κ5c

k − j

(
∆1/2
ϕ + ∥p

j∥+ ∥pj−1∥+ ∥pk∥
χ
√
c

)
,(3.11)386

387

where (κ0, κ5,∆ϕ) is as in (2.7).388

Proof. Using Lemma 3.1(a), the fact that θ ∈ (0, 1), and the triangle inequality,389
it holds that390

S
(f)
j+1,k =

∑k
i=j+1 ∥pi − (1− θ)pi−1∥

χc(k − j) ≤
∑k
i=j+1(∥pi−1∥+ ∥pi∥)

χc(k − j) ≤
∥pj∥+ 2S(p)

j+1,k

χc
,391

392
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which is (3.10). On the other hand, to show (3.11), we use the definition of S(v)
j+1,k,393

the fact that
√
a+ b ≤

√
a +
√
b for a, b ∈ R+, Lemma 3.3, and Lemma 3.4(c), to394

conclude that395

S
(v)
j+1,k =

∑k
i=j+1 ∥vi∥
k − j

≤

(∑k
i=j+1 ∥vi∥2

k − j

)1/2

396

L.3.3
≤
(

[κ2
0 + κ5c][Ψj(c)−Ψk(c)]

k − j

)1/2

397

L.3.4(c)
≤

√
κ2

0 + κ5c

k − j

[
∆ϕ + 4

(
∥pj∥2 + ∥pj−1∥2 + ∥pk∥2

χ2c

)]1/2

398

≤ 2

√
κ2

0 + κ5c

k − j

(
∆1/2
ϕ + ∥p

j∥+ ∥pj−1∥+ ∥pk∥
χ
√
c

)
.(3.12)399

400

Observe that both residuals S(v)
j+1,k and S

(f)
j+1,k depend on the size of the Lagrange401

multipliers pj , pj−1, and pk. If all the multipliers generated by Algorithm 2.1 could be402
shown to be bounded independent of c then it would be easy to see that (3.10)–(3.11)403
with j = 1 and some c = Θ(η−1) would imply the existence of some k = O(η−1ρ−2)404

such that [S(v)
2,k/ρ] + [S(f)

2,k/η] ≤ 1. Consequently, Algorithm 2.1 would find a solution405
of Problem Sρ,η in O(η−1ρ−2) iterations.406

Unfortunately, we do not know how to bound {∥pi∥} independent of c, so we407
will instead show the existence of 1 ≤ j ≤ k such that (i) indices j and k − j are408
Θ(η−1ρ−2) and (ii) the three multipliers pj , pj−1, and pk are bounded. This fact and409
Proposition 3.5 suffice to show that the last (hypothetical) conclusion in the previous410
paragraph actually holds.411

3.2. Bounding the Lagrange Multipliers. This subsection generalizes the412
analysis in [19]. More specifically, Proposition 3.8 shows that if k is sufficiently large413

relative to an index j, the penalty parameter c, and ∥p0∥, then S
(p)
j+1,k = O(1).414

The proof of the first result can be found in [26, Lemma B.3] using the variable415
substitution (q, q−, χ) = (qi, [1− θ]pi−1, c) and step 4 of Algorithm 2.1.416

Lemma 3.6. For every i ≥ 1 and r ∈ ∂h(zi) +A∗qi, it holds that417

∥qi∥ ≤ max
{

(1− θ)∥pi−1∥, 2D†(Kh + ∥r∥)
d‡σ

+
A

}
.418

The next result presents some fundamental properties about pi−1, pi, and qi.419

Lemma 3.7. For every 1 ≤ j ≤ k,420
(a) pj = χqj + (1− χ)(1− θ)pj−1;421
(b) ∥pj∥ ≤ ∥p0∥+ κ1c;422
(c) it holds that423

(1− θ)∥pk∥
k − j

+ θS
(p)
j+1,k ≤

(1− θ)∥pj∥
k − j

+
2χD†

[
Kh +Gf + S

(v)
j+1,k

]
d†σ

+
A

,424

where Kh, d†, and (D†, Gf ) are as in (A3), (A6), and (2.4), respectively.425
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Proof. (a) This is an immediate consequence of the updates for pj and qj in426
Algorithm 2.1.427

(b) In view of Step 3 of Algorithm 2.1, the fact that θ ∈ (0, 1), and the triangle428
inequality, it holds that429

∥pj∥ ≤ (1− θ)∥pj−1∥+ χc∥f j∥ ≤ (1− θ)j∥p0∥+ χc

j−1∑
i=0

(1− θ)i∥f i∥430

≤ ∥p0∥+ χc∥A∥ sup
z∈H
∥z − z†∥

∞∑
i=0

(1− θ)i431

= ∥p0∥+ χc∥A∥D†

θ
= ∥p0∥+ κ1c.432

433

(c) Let i ≥ 1 be fixed, define434

dχ,θ := (1− θ)(1− χ),435

and recall that Lemma 3.1(b) implies vi−∇f(xi) ∈ ∂h(xi) +A∗qi. Using Lemma 3.6436
with r = vi −∇f(xi), the definition of Gf in (2.4), and part (a), we first have that437

∥pi∥ (a)= ∥χqi + dχ,θ · pi−1∥ ≤ χ∥qi∥+ dχ,θ∥pi−1∥438

L.3.6
≤ dχ,θ∥pi−1∥+ χmax

{
(1− θ)∥pi−1∥, 2D†(Kh + ∥vi −∇f(xi)∥)

d†σ
+
A

}
439

≤ (1− θ)(1− χ)∥pi−1∥+ χ

[
(1− θ)∥pi−1∥+ 2D†(Kh + ∥vi −∇f(xi)∥)

d†σ
+
A

]
440

≤ (1− θ)∥pi−1∥+ 2χD†(Kh + ∥∇f(xi)∥+ ∥vi∥)
d†σ

+
A

441

≤ (1− θ)∥pi−1∥+ 2χD†(Kh +Gf + ∥vi∥)
d†σ

+
A

.442
443

Summing the above inequality from i = j + 1 to k and dividing by k − j yields the444
desired conclusion.445

We are now ready to present the claimed bound on S
(p)
j+1,k.446

Proposition 3.8. Let R ≥ 0 and c > 0 be given and suppose c and p0 satisfy447
(2.10). Then, for any positive integers j and k such that k − j ≥ κ6 + ξ

(0)
R c+ ξ

(1)
R c2,448

we have449
S

(p)
j+1,k ≤ κ2,450

where (κ2, κ6) and (ξ(0)
R , ξ

(1)
R ) are as in (2.7) and (2.9), respectively.451

Proof. Using (2.10), (3.11), Lemma 3.7(b), and the relation
√
a+
√
b ≤

√
2(a+ b)452

for a, b ∈ R+, we first have that453

S
(v)
j+1,k ≤ 2

√
κ2

0 + κ5c

k − j

(
∆1/2
ϕ + ∥p

j∥+ ∥pj−1∥+ ∥pk∥
χ
√
c

)
454

≤

√
4(κ2

0 + κ5c)
k − j

(
∆1/2
ϕ + 3[∥p0∥+ κ1c]

χ
√
c

)
455
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≤

√
4(κ2

0 + κ5c)
k − j

(
∆1/2
ϕ + 3[R+ κ1]

√
c

χ

)
456

≤

√
8(κ2

0 + κ5c)
k − j

(
∆ϕ + 9[R+ κ1]2c

χ2

)
≤ κ4

√
ξ

(0)
R c+ ξ

(1)
R c2

k − j
.457

458

Using the above bound, Lemma 3.7(b)–(c), our assumed bound on k − j, and the459
definition of κ2, we conclude that460

S
(p)
j+1,k ≤

2χD†(Kh +Gf )
θd†σ

+
A

+ (1− θ)∥pj∥
θ(k − j) +

S
(v)
j+1,k

κ4
461

≤ 2χD†(Kh +Gf )
θd†σ

+
A

+ (1− θ)(∥p0∥+ κ1c)
θ(k − j) +

√
κ6 + ξ

(0)
R c+ ξ

(1)
R c2

k − j
462

≤ 2χD†(Kh +Gf )
θd†σ

+
A

+ (1− θ)(R+ κ1)c
θ(k − j) +

√
κ6 + ξ

(0)
R c+ ξ

(1)
R c2

k − j
463

≤ 2χD†(Kh +Gf )
θd†σ

+
A

+ ξ
(0)
R c

θ(k − j) +

√
κ6 + ξ

(0)
R c+ ξ

(1)
R c2

k − j
464

≤ 1
θ

[
1 + 2χD†(Kh +Gf )

θd†σ
+
A

]
+ 1 = κ2.465

466

We end this subsection by discussing some implications of the above results.467
Suppose ζ is an integer satisfying ζ ≥ κ6 +ξ

(0)
R c+ξ

(1)
R c2 = Θ(c2). It then follows from468

Proposition 3.8 that S(p)
2,ζ = O(1) and S

(p)
2ζ,3ζ = O(1). Since the minimum of a set of469

scalars minorizes its average, there exist indices j0 ∈ {2, . . . , ζ} and k0 ∈ {2ζ, . . . , 3ζ}470
such that ∥pj0∥ = O(1) and ∥pk0∥ = O(1). Using the fact that k0 − j0 ≥ ζ, the471
above bounds, and (3.10)–(3.11) with (j, k) = (j0, k0), it is reasonable to expect that472

S
(f)
j0+1,k0

= O(1/c) and S
(v)
j0+1,k0

= O(
√
c/ζ). In the next section, we give the exact473

steps of this argument and use the resulting bounds to prove Proposition 2.1.474

3.3. Proof of Proposition 2.1. Before presenting the proof of Proposition 2.1,475
we first give two technical results. The first one refines the bounds in Proposition 3.5476
using Proposition 3.8, while the second one gives an important implication of (2.12).477

Lemma 3.9. Let R ≥ 0 and c > 0 be given and suppose (c, p0) satisfies (2.10) for478

some R ≥ ′ and c > 0. For any integer ζ such that ζ ≥ κ6 + ξ
(0)
R c+ ξ

(1)
R c2, there exist479

j ∈ {3, . . . , ζ} and k ∈ {2ζ + 1, . . . , 3ζ} satisfying480

S
(v)
j+1,k ≤ κ̃

(0)
c

√
κ2

0 + κ5c

k − j
, S

(f)
j+1,k ≤

6κ2

χc
,(3.13)481

482

where (κ0, κ2, κ5) and κ̃0 is are as in (2.7) and (2.8), respectively.483

Proof. Suppose ζ ∈ N satisfies ζ ≥ κ6 + ξ
(0)
R c+ ξ

(1)
R c2. Using Proposition 3.8 with484

(j, k) = (1, ζ) it holds that there exists 3 ≤ j ≤ ζ such that485

∥pj−1∥+ ∥pj∥ ≤
∑ζ
i=3(∥pi−1∥+ ∥pi∥)

ζ − 2 ≤
2
∑ζ
i=2 ∥pi∥
ζ − 2486
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=
2(ζ − 1)S(p)

2,ζ

ζ − 2 ≤ 4S(p)
2,ζ ≤ 4κ2.(3.14)487

488

On the other hand, using Proposition 3.8 with (j, k) = (2ζ, 3ζ) it holds that there489
exists k ∈ {2ζ + 1, . . . , 3ζ} such that490

(3.15) ∥pk∥ ≤
∑3ζ
i=2ζ+1 ∥pi∥

ζ
= S2ζ+1,3ζ ≤ κ2.491

Combining (3.14), (3.15), and Proposition 3.5, it follows that492

S
(v)
j+1,k ≤ 2

√
κ2

0 + κ5c

k − j

(
∆1/2
ϕ + ∥p

j0∥+ ∥pj0−1∥+ ∥pk0∥
χ
√
c

)
493

(3.14)–(3.15)
≤ 2

√
κ2

0 + κ5c

k − j

(
∆1/2
ϕ + 5κ2

χ
√
c

)
494

≤ 2

√
κ2

0 + κ5c

k − j

(
∆1/2
ϕ + 5κ2

χ
√
c

)
= κ̃(0)

c

√
κ2

0 + κ5c

k − j
,495

496

which is the first bound in (3.13). To show the other bound in (3.13), we use (3.14)497
and Proposition 3.8 to conclude that498

S
(f)
j+1,k ≤

∥pj∥+ 2S(p)
j+1,k

χc
≤ 6κ2

χc
.

499

We now state a technical result which will be used in the proof of Proposi-500
tion 2.1(c).501

Lemma 3.10. For any R ≥ 0 and c ≥ c > 0, the following statements hold:502
(a) the quantity Tc(·, · | ·, ·) defined in (2.11) satisfies503

Tc(ρ, η | c,R) ≤
[(

c

c

)2
+ c

c ·min{ρ2, η2}

]
Tc(1, 1 | c,R);504

(b) if c satisfies (2.12), then Tc(ρ, η | c,R) ≤ c3.505

Proof. (a) This statement follows immediately from the definition of Tc(·, · | ·, ·)506
and the fact that for any c ≥ c̄ any nonnegative scalars α, β, and γ, we have507

α+ βc ≤ (α+ βc)
(
c

c

)
, α+ βc+ γc2 ≤ (α+ βc+ γc2)

(
c

c

)2
.508

(b) Define ĉ := ĉ(ρ, η | c,R), ε := min{ρ, η}, and T := Tc(1, 1 | c,R), and assume509
that c satisfies (2.12), or equivalently, c ≥ ĉ. To show the conclusion of (b), it suffices510
to show that511

(3.16)
[(

c

c

)2
+ c

c · ε2

]
T ≤ c3.512

in view of part (a). It is easy to see that the above inequality is satisfied by any c513
such that514

c ≥ πε :=
T/c2 +

√
T 2/c4 + 4T/(ε2c)

2 .515
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Since the definition of ĉ in (2.12) and the relation
√
a+ b ≤

√
a +
√
b for a, b ∈ R+516

imply that ĉ ≥ πε, the conclusion of (b) follows from the assumption that c ≥ ĉ and517
the previous observation.518

We now remark on Lemma 3.9. For any integer ζ ≥ κ6 + ξ
(0)
R c+ ξ

(1)
R c2, it follows519

that there exist i1, i2 ≤ 3ζ such that ∥vi1∥ = O(
√
c/ζ)) and ∥fi2∥ = O(1/c). Hence,520

for some c = Θ(η−1) and some ζ ≥ Ω(ρ−2η−1), we can guarantee that ∥vi1∥ ≤ ρ521
and ∥fi2∥ ≤ η. Clearly, if i1 = i2 then this argument shows that a solution of522
Problem Sρ,η can be found in O(ρ−2η−1) iterations of Algorithm 2.1. In the proof (of523
Proposition 2.1) below, we give a more involved argument that guarantees that the524
above i1 and i2 can be chosen so that i1 = i2.525

Proof of Proposition 2.1. (a) Let (ρ, η) ∈ R2
++, p0 ∈ A(Rn), and c > 0 be given,526

and define527

T := Tc(ρ, η | c,R), rj :=
S(v)
j

ρ
+
S(f)
j

η

√
c3

j
∀j ≥ 1,528

where S(v)
j and S(f)

j are as in Step 2b of Algorithm 2.1 and Tc(·, · | ·, ·) is as in (2.11).529
For the sake of contradiction, suppose that Algorithm 2.1 has not terminated by the530
end of iteration k = T . Since Algorithm 2.1 (see its Step 2b) terminates unsuccessfully531
at iteration k exactly when rk ≤ 1, we will obtain the desired contradiction by showing532
that there exists k ≤ T such that rk ≤ 1.533

First, consider an arbitrary pair of integers j and k such that 1 ≤ j ≤ k ≤ T534
and assume without loss of generality that k is even. Then, combining (3.18), the535

relations S(v)
k/2,k = S(v)

k and S
(f)
k/2,k = S(f)

k , we easily see that536

rk =
S

(v)
k/2,k

ρ
+
c3/2S

(f)
k/2,k

η
√
k

= k − j + 1
k − k/2 + 1

[
S

(v)
j,k

ρ
+
c3/2S

(f)
j,k

η
√
k

]
537

≤ k + 2
k/2 + 1

[
S

(v)
j,k

ρ
+
c3/2S

(f)
j,k

η
√
k

]
= 2

[
S

(v)
j,k

ρ
+
c3/2S

(f)
j,k

η
√
k

]
,(3.17)538

539

We now show that there exists suitable j and k so that the last expression is bounded540
by 1 and hence that our desired contradiction follows. Note first that the definition541
of T = Tc(ρ, η) in (2.11) implies that ζ := T/3 satisfies the assumption of Lemma 3.9.542
Hence, the conclusion of this lemma implies the existence of j ∈ {3, . . . , T/3} and543
k ∈ {2T/3 + 1, . . . , T} such that544

S
(v)
j,k

ρ
+
c3/2S

(f)
j,k

η
√
k
≤
κ̃

(0)
c

√
κ2

0 + κ5c

ρ
√
k − j

+ 6κ2
√
c

χη
√
k
≤
κ̃

(0)
c

√
κ2

0 + κ5c

ρ
√
T/3

+ 6κ2
√
c

χη
√
T/3

545

=
√
κ̃1 + κ̃2c

ρ2T
+
√
κ3c

η2T
≤ 1

4 + 1
4 = 1

2 ,(3.18)546
547

where the last inequality follows from the definition of T . Combining (3.17) and (3.18)548
we conclude that rk ≤ 1, which yields our desired contradiction.549

(b) This follows immediately from the stopping condition in Step 2a of Algo-550
rithm 2.1 and Lemma 3.1(b).551

(c) Let (T, rk) be as in part (a) and assume that c satisfies (2.12). Assume, for552
contradiction, that Algorithm 2.1 does not terminate successfully. Then, by part (a),553
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the algorithm terminates in an iteration k ≤ T such that rk ≤ 1. Using the fact that554
rk itself is an average of scalars, there exists k/2 ≤ i ≤ k such that555

∥vi∥
ρ

+ c3/2∥f i∥
η
√
k
≤
S

(v)
k/2,k

ρ
+
c3/2S

(f)
k/2,k

η
√
k

≤ 1.556

Hence, it holds that ∥vi∥ ≤ ρ and ∥f i∥ ≤ η
√
kc−3/2 ≤ η

√
Tc−3/2 where the last557

inequality is due to the fact that k ≤ T . Moreover, the assumption that c satisfies558
(2.12) together with Lemma 3.10(b) then imply that T ≤ c3 and, hence, that ∥f i∥ ≤559
η. Consequently, this means that the algorithm actually terminates successfully at560
iteration i ≤ k. We have thus established the desired contradiction and, hence, that561
part (c) holds.562

4. Analysis of Algorithm 2.2. This section presents the main properties of563
Algorithm 2.2, including the proof of Theorem 2.2.564

We first start with two crucial technical results.565

Proposition 4.1. The following statements hold about the ℓth iteration of Algo-566
rithm 2.2:567

(a) ∥p̄ℓ−1∥/cℓ ≤ 2κ1, where κ1 is as in (2.7);568
(b) its call to Algorithm 2.1 terminates in Tcℓ

(ρ, η | c1, 2κ1) iterations and, if the569
ℓth penalty parameter cℓ > 0 satisfies570

(4.1) cℓ ≥ ĉ(ρ, η | c1, 2κ1),571

then this call terminates successfully, where κ1, Tc(·, · | ·, ·), and ĉ(·, · | ·, ·) are572
as in (2.7), (2.11), and (2.12), respectively.573

Proof. (a) We proceed by induction. Since p̄0 = 0, the case of ℓ = 1 is immediate.574
Suppose the statement holds for some iteration ℓ and, hence, that ∥p̄ℓ−1∥ ≤ 2κ1cℓ.575
Then, it follows from Lemma 3.7(b) with (p0, c) = (p̄ℓ−1, cℓ) and the relation cℓ+1 =576
2cℓ that577

∥p̄ℓ∥ ≤ ∥p̄ℓ−1∥+ κ1cℓ ≤ 2κ1cℓ + κ1cℓ = 3κ1cℓ = 3κ1

2 cℓ+1 < 2κ1cℓ+1.578

(b) This follows from part (a), the fact that {cℓ}ℓ≥1 is an increasing sequence,579
and Proposition 2.1 with (c, c,R) = (cℓ, c1, 2κ1).580

We are now ready to give the proof of Theorem 2.2.581

Proof of Theorem 2.2. Define the scalars582

ĉ := ĉ(ρ, η | c1, 2κ1), ℓ̂ := ⌈log+
2 (ĉ/c1)⌉, Tcℓ

:= Tcℓ
(ρ, η | c1, 2κ1),583584

where ĉ(·, · | ·, ·) is as in (2.12). Proposition 4.1(b) and the update rule for cℓ imply585
that Algorithm 2.2 performs at most ℓ̂ iterations, and terminates with a pair that586
solves Problem Sρ,η. Moreover, the total number of iterations of Algorithm 2.1 (per-587

formed by all of Algorithm 2.2’s calls to it) is bounded by
∑ℓ̂
ℓ=1 Tcℓ

. Now, using588
Lemma 3.10(a) with c = c1, it follows that589

(4.2)
∑ℓ̂
ℓ=1 Tcℓ

T1
≤
∑ℓ̂
ℓ=1 c

2
ℓ

c2
1

+
∑ℓ̂
ℓ=1 cℓ
c1ε2 =

ℓ̂∑
ℓ=1

22(ℓ−1) +
∑ℓ̂
ℓ=1 2(ℓ−1)

ε2 ≤ 4ℓ̂ + 2ℓ̂

ε2 ,590
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where (T1, ε) are as in (2.13). We now derive suitable bounds for 4ℓ̂ and 2ℓ̂. Using591
the definitions of ĉ and ℓ̂, and the definition of (E0, E1) in (2.15), we first have that592

2ℓ̂ ≤ max
{

2, 2(1+log2 ĉ/c1)
}
≤ 2 max

{
1, ĉ
c1

}
= 2 max

{
1, 1
c3

1

(
T1 +

√
c3

1T1

ε

)}
593

≤ 2
(

1 + T1

c3
1

+ 1
ε

√
T1

c3
1

)
= E0 + E1

ε
.(4.3)594

595

Combining the above inequality above with the bound (a+b)2 ≤ 2a2+2b2 for a, b ∈ R,596
it is also easy to see that597

4ℓ̂ ≤ (2ℓ̂)2 ≤ 2E2
0 + 2E2

1
ε2 .(4.4)598

599

The conclusion now follows by applying (4.4) and (4.3) to (4.2).600

5. Numerical Experiments. This section examines the performance of the601
proposed DP.ADMM (Algorithm 2.2) for finding stationary points of a nonconvex602
three-block distributed quadratic programming problem. Specifically, given a radius603
γ > 0 and a dimension n ∈ N, it considers the three-block problem604

min
(x1,x2,x3)∈Rn×Rn×Rn

−
2∑
i=1

[αi
2 ∥xi∥

2 + ⟨xi, βi⟩
]

605

s.t. ∥x∥∞ ≤ γ,606

x1 − x3 = 0,607

x2 − x3 = 0,608609

where {αi}2
i=1 ⊆ [0, 1], {βi}2

i=1 ⊆ [0, 1]n, and the entries of these quantities are610
sampled from the uniform distribution on [0, 1]. It is clear that the above problem is611
an instance of (1.1) if we take hi to be the indicator of the set {x ∈ Rn : ∥x∥∞ ≤ γ}612
for i = 1, . . . , 3. At the end of this section, we give some elucidating remarks.613

Before presenting the results, we first describe the algorithms tested. The first614
set of algorithms, labeled DP1–DP2, are modifications of Algorithm 2.2. Specifically,615
both DP1 and DP2 replace the original definition of S(f)

k (resp. S(f)
k ) in Step 2b616

of Algorithm 2.1 with 2
∑k
i=1 ∥vi∥/[k + 2] (resp. 2

∑k
i=1 ∥Axi − d∥/[k + 2]) and617

choose (λ, c1) = (1/2, 1). Moreover, DP1 chooses (θ, χ) = (0, 1) while DP2 chooses618
(θ, χ) = (1/2, 1/18) which satisfies (2.6) at equality. The second set of algorithms,619
labeled SDD1–SDD3, are instances of the SDD-ADMM of [28] for different values620
of the penalty parameter ρ. Specifically, all of these instances uses the parameters621
(ω, θ, τ) = (4, 2, 1), following the same choice as in [28, Section 5.1], and select the fol-622
lowing curvature constants: (Mh,Kh, Jh, Lh) = (4γ, 1, 1, 0). Moreover, SDD1–SDD3623
respectively choose the penalty parameter ρ to be 0.1, 1.0, and 10.0, and termination624
of the method occurs when the norm of the stationary residual ξk and feasibility are625
both less than a given numerical tolerance.626

The results of our experiment are now given in Tables 5.1–5.2, which present627
both iteration counts and runtimes for either varying choices of γ (Table 5.1) or n628
(Table 5.2). We now describe a few more details about these experiments and tables.629
First, the starting point for all methods is the zero vector and the numerical tolerances630
(e.g., ρ and η in DP1–DP2) for each method were set to be 10−9. Second, the bolded631
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text in the tables highlight the method that performed the best in terms of iteration632
count. Third, we imposed an iteration limit of 100,000 and marked the runs which633
did not terminate by this limit with a ‘-’ symbol. Fourth, the experiments were634
implemented and executed in Matlab R2021b on a Windows 64-bit desktop machine635
with 12GB of RAM and two Intel(R) Xeon(R) Gold 6240 processors, and the code is636
readily available online3.637

Iteration Count Runtime (ms)
γ DP1 DP2 SDD1 SDD2 SDD3 DP1 DP2 SDD1 SDD2 SDD3

100 21 29 363 135 528 1.8 1.9 38.2 13.4 50.4
101 76 83 427 223 976 4.0 4.9 41.3 22.4 88.1
102 151 156 497 309 1394 7.9 7.7 45.2 28.3 121.7
103 228 232 569 399 1855 10.8 10.8 51.2 34.3 159.3
104 306 308 647 489 2316 15.5 17.6 58.9 42.9 223.1
105 385 385 - 581 2778 17.9 18.5 - 48.0 241.5

Table 5.1
Results with n = 10 and different values of γ

Iteration Count Runtime (ms)
n DP1 DP2 SDD1 SDD2 SDD3 DP1 DP2 SDD1 SDD2 SDD3
10 151 156 497 309 1394 7.8 7.5 65.8 29.0 121.8
40 55 60 - - 3117 3.7 3.5 - - 319.0
160 139 144 - 388 1836 8.5 8.2 - 42.0 202.7
640 53 54 - 349 16243 4.0 3.9 - 40.4 1901.5
2560 58 59 - 458 8464 7.1 6.7 - 77.4 1553.7
10240 108 110 - 1058 4334 44.4 40.3 - 623.5 2790.6

Table 5.2
Results with γ = 100 and different values of n

From the results in Tables 5.1–5.2, we see that DP1 performed the best in terms638
of iteration count and DP2 had iteration counts that were close to DP1. On the other639
hand, SDD2 outperformed its other SDD-ADMM variant on all problems except one.640
Finally, notice that the DP.ADMM variants scaled better against the dimension n641
compared to the SDD-ADMM variants.642

To close this section, we give some elucidating remarks. First, we excluded the643
algorithm in [15] due to its poor iteration complexity bound and the fact that it is an644
algorithm applied to a reformulation of (1.1) rather than to (1.1) directly. Second,645
we had to choose different values of the penalty parameter ρ for the SDD-ADMM646
variants because the analysis in [28] did not present a practical way of adaptively647
updating ρ (note that the “adaptive” method in [28, Algorithm 3.2] is not practical648
because it requires an estimate of supx∈H ϕ(x)− infx∈H ϕ for (1.1)).649

6. Concluding Remarks. The analysis of this paper also applies to instances650
of (1.1) where f is not necessarily differentiable on H as in our condition (A5), but651
instead satisfies a more relaxed version of (A5), namely: for every x ∈ H, the function652
f(x<t, ·, x>t) has a Fréchet subgradient at xt, denoted by ∇xt

f(x≤t, x>t), and (2.3)653
is satisfied for every t = 1, . . . , B − 1. Hence, our analysis immediately applies to654

3See https://github.com/wwkong/nc_opt/tree/master/tests/papers/dp_admm.
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the case where f(z) is of the form
∑B
t=1 ft(zt) in which, for every t = 1, . . . , B, the655

function ft(·) +mt∥ · ∥2/2 + δHt
(·) is convex and has a subgradient everywhere in Ht.656

We now discuss some possible extensions of our analysis in this paper. First,657
our analysis was done under the assumption that H is bounded (see (A3)), but658
it is straightforward to see that it is still valid under the weaker assumption that659
supk≥1 ∥xk − z†∥ ≤ D† for some D† > 0 where z† is as in (A6). It would be interest-660
ing to extend the analysis in this paper to the case where H is unbounded, possibly661
by assuming conditions on the sublevel sets of ϕ which guarantee that the aforemen-662
tioned bound holds. Second, the convergence of Algorithm 2.2 is established under663
the assumption that exact solutions to the subproblems in Step 1 of Algorithm 2.1664
are easy to obtain. We believe that convergence can also be established when only665
inexact solutions, e.g.,666

(6.1) xkt ≈ argmin
ut∈Rnt

{
λLθc(xk<t, ut, xk−1

>t ; pk−1) + 1
2∥ut − x

k−1
t ∥2

}
667

are available. For example, one could consider applying an accelerated composite668
gradient (ACG) method to the problem associated with (6.1) so that xkt satisfies669

∃rkt s.t.
{
rtk ∈ ∂

(
λLθc(xk<t, ·, xk−1

>t ; pk−1) + 1
2∥ · −x

k−1
t ∥2) (xkt ),

∥rkt ∥2 ≤ σ2∥xk−1
t − xk∥2,

670

for some σ ∈ (0, 1).671

Appendix A. Proof of Lemma 3.2 and Lemma 3.4(a)–(b).672
Before giving the proofs, we present some auxiliary results. To avoid repetition,673

we assume the reader is already familiar with (3.1)–(3.3).674
The proof of the first result can be found in [19, Lemma B.2].675

Lemma A.1. For any (ζ, θ) ∈ [0, 1]2 satisfying ζ ≤ θ2 and (a, b) ∈ Rn × Rn, we676
have that677

(A.1) ∥a− (1− θ)b∥2 − ζ∥a∥2 ≥
[

(1− ζ)− (1− θ)2

2

] (
∥a∥2 − ∥b∥2) .678

The next result establishes some general bounds given by the updates in (1.5).679

Lemma A.2. For every i ≥ 1, index t = 1, . . . , B, and ut ∈ Ht, it holds that680

λ
[
Lθc(xi<t, ut, xi−1

>t ; pi−1)− Lθc(xi<t, xit, xi−1
>t ; pi−1)

]
+ 1

2∥ut − x
i−1
t ∥2681

≥ 1
2∥∆x

i
t∥2 +

(
1− λmt

2

)
∥ut − xit∥2 + λc

2 ∥At(ut − x
i
t)∥2.682

683

Proof. Let i ≥ 1, t = 1, . . . , B, and ut ∈ Ht be fixed, and define µ := 1 − λmt684
and ∥ · ∥2

α := ⟨·, (µI + λcA∗
tAt)(·)⟩. Since the prox stepsize λ is chosen in (0, 1/(2m)]685

and m ≥ mt in view of (2.7), it follows that µ ≥ 1/2. Using the optimality of xit,686
assumption (A4), and the fact that λLθc(xi<t, ·, xi−1

>t ; pi−1)+∥·−xi−1
t ∥2/2 is 1-strongly687

convex with respect to ∥ · ∥2
α, it follows that688

λLθc(xi<t, xit, xi−1
>t ; pi−1) + 1

2∥∆x
i
t∥2689

≤ λLθc(xi<t, ut, xi−1
>t ; pi−1) + 1

2∥ut − x
i−1
t ∥2 − 1

2∥ut − x
i
t∥2
α690

= λLθc(xi<t, ut, xi−1
>t ; pi−1) + 1

2∥ut − x
i−1
t ∥2 − µ

2 ∥ut − x
i
t∥2 − λc

2 ∥At(ut − x
i
t)∥2.691

692
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We are now ready to give the proof of Lemma 3.2.693

Proof of Lemma 3.2. (a) Using the definition of Lθc(·; ·) in (1.4) and the relation694
in Lemma 3.1(a), we conclude that695

Lθc(xi; pi)− Lθc(xi; pi−1) = (1− θ)
〈
∆pi, f i

〉
=
(

1− θ
χc

)
∥∆pi∥2 + aθ

χc

〈
∆pi, pi−1〉696

=
(

1− θ
χc

)
∥∆pi∥2 + aθ

χc

(〈
pi, pi−1〉− ∥pi−1∥2)697

=
(

1− θ
χc

)
∥∆pi∥2 + aθ

χc

(
1
2∥p

i∥2 − 1
2∥∆p

i∥2 − 1
2∥p

i−1∥2
)

698

= bθ
2χc∥∆p

i∥2 + aθ
2χc

(
∥pi∥2 − ∥pi−1∥2) .(A.2)699

700

(b) Using the definition of m in (2.7) and summing the inequality of Lemma A.2701
with ut = xi−1

t from t = 1 to B, we have that702 (
1− λm

2

)
∥∆xi∥2 + λc

2

B∑
t=1
∥At∆xit∥2 ≤

t∑
i=1

(
1− λmt

2

)
∥∆xit∥2 + λc

2

B∑
t=1
∥At∆xit∥2703

≤ λ
[
Lθc(xi−1; pi−1)− Lθc(xi; pi−1)

]
.704705

The conclusion now follows from dividing the above inequality by λ and using the706
fact that λ ≤ 1/m.707

(c) Note that the definition of bθ in (3.1) and (2.6) imply708

ζ := 2Bχbθ ≤ θ2.709

Hence, using the definition of γθ in (3.1), and Lemma A.1 with (a, b) = (∆pi,∆pi−1)710
it follows that711

(A.3) ∥∆pi − (1− θ)∆pi−1∥2 ≥ 2Bχbθ∥∆pi∥2 + χγθ
(
∥∆pi∥2 − ∥∆pi−1∥2) .712

Using (A.3) at i and i− 1, Lemma 3.1(a), and the relation ∥a∥2
1 ≤ n∥a∥2

2 for a ∈ Rn,713
we have that714

c

4

B∑
t=1
∥At∆xit∥2 ≥ c

4B ∥A∆xi∥2 = ∥∆p
i − (1− θ)∆pi−1∥2

4Bχ2c
715

≥ 1
4Bχc

[
2Bbθ∥∆pi∥2 + γθ

(
∥∆pi∥2 − ∥∆pi−1∥2)]716

= bθ
2χc∥∆p

i∥2 + γθ
4Bχc

(
∥∆pi∥2 − ∥∆pi−1∥2) .717

718

Next, we give the proof of Lemma 3.4(a)–(b).719

Proof of Lemma 3.4(a)–(b). (a) Using Lemma 3.2(a), the definition of Lθc(·; ·) in720
(1.4), the fact that θ ∈ (0, 1), and the relations 2 ⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 and ∥a+ b∥2 ≤721
2∥a∥2 + 2∥b∥2 for a, b ∈ Rn, it follows that722

Lθc(xj ; pj) = ϕ(xj) + (1− θ)
〈
pi, f i

〉
+ c

2∥f
i∥2723

L.3.2(a)= (1− θ)
χc

〈
pi, pi − (1− θ)pi−1〉+ 1

2cχ2 ∥p
i − (1− θ)pi−1∥2724
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≤ (1− θ)
2χc ∥p

i∥2 + (1− θ)
2χc ∥p

i − (1− θ)pi−1∥2 + 1
2χ2c

∥pi − (1− θ)pi−1∥2725

≤ 1
2χc∥p

i∥2 + 1
χ2c
∥pi − (1− θ)pi−1∥2726

≤ 1
2χc∥p

i∥2 + 2
χ2c
∥pi∥2 + 2

χ2c
∥pi−1∥2 ≤ 3(∥pi∥2 + ∥pi−1∥2)

χ2c
.727

728

(b) It holds that729

Lθc(xk; pk) = ϕ(xk) + (1− θ)
〈
pk, fk

〉
+ c

2∥f
k∥2730

= ϕ(xk) + 1
2

∥∥∥∥ (1− θ)pk√
c

+
√
cfk
∥∥∥∥2

− (1− θ)2∥pk∥2

2c731

≥ ϕ(xk)− (1− θ)2∥pk∥2

2c ≥ ϕ(xk)− ∥p
k∥2

2c .732
733
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