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Abstract
This paper proposes and analyzes an accelerated inexact dampened augmented
Lagrangian (AIDAL) method for solving linearly-constrained nonconvex composite
optimization problems. Each iteration of the AIDAL method consists of: (i) inexactly
solving a dampened proximal augmented Lagrangian (AL) subproblem by calling an
accelerated composite gradient (ACG) subroutine; (ii) applying adampened andunder-
relaxed Lagrange multiplier update; and (iii) using a novel test to check whether the
penalty parameter of the AL function should be increased. Under several mild assump-
tions involving the dampening factor and the under-relaxation constant, it is shown
that the AIDAL method generates an approximate stationary point of the constrained
problem in O(ε−5/2 log ε−1) iterations of the ACG subroutine, for a given tolerance
ε > 0. Numerical experiments are also given to show the computational efficiency of
the proposed method.
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1 Introduction

This paper presents an accelerated inexact dampened augmented Lagrangian (AIDAL)
method for finding approximate stationary points of the linearly constrainednonconvex
composite optimization (NCO) problem

min
z
{φ(u) := f (z)+ h(z) : Az = b} , (1)

where A is a linear operator, h is a proper closed convex and Lipschitz continuous
functionwith compact domain, and f is a (possibly) nonconvex differentiable function
on the domain of h with a Lipschitz continuous gradient.More specifically, theAIDAL
method is based on the θ -dampened augmented Lagrangian (AL) function

Lθ
c (z; p) := φ(z)+ (1− θ) 〈p, Az − b〉 + c

2
‖Az − b‖2 ∀c > 0, ∀θ ∈ (0, 1),

(2)

and it performs the following updates to generate its kth iterate: given (zk−1, pk−1)
and (λ, ck), compute

zk ≈ argminu

{
λLθ

ck (u; pk−1)+
1

2
‖u − zk−1‖2

}
, (3)

pk = (1− θ)pk−1 + χck(Azk − b), (4)

where χ is an under-relaxation parameter in (0, 1) and zk is a suitably chosen approxi-
mate solution of the composite problemunderlying (3). In addition, theAIDALmethod
introduces a novel approach for updating the penalty parameter ck between iterations
and uses an accelerated composite gradient (ACG) method applied to (3) obtain the
aforementioned point zk .

Under a suitable choice of λ and the following Slater-like assumption:

∃z̄ ∈ int(domh) such that Az̄ = b, (5)

where int(domh) denotes the interior of the domain of h, it is shown that, for any
tolerance pair (ρ, η) ∈ R

2++, the AIDAL method obtains a triple (ẑ, p̂, v̂) satisfying

v̂ ∈ ∇ f (ẑ)+ ∂h(ẑ)+ A∗ p̂, ‖v̂‖ ≤ ρ, ‖Aẑ − b‖ ≤ η. (6)

inO((η−5/2+η−1/2ρ−2) log η−1)ACG iterations.Moreover, this iteration complexity
is obtained without requiring that the initial point z0 (in the domain of h) be feasible
with respect to the linear constraint, i.e., Az0 = b. Another contribution from this
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analysis is that the sequence of Lagrange multipliers is shown to be bounded by a
constant independent of ρ and η.

Related Works To condense our discussion, we let ε = ρ = η denote a common
tolerance parameter and restrict our attention to works that establish iteration com-
plexity bounds for obtaining approximate stationary points of (1). For an overview of
papers that focus on asymptotic convergence of a proposed method, see the excellent
discussion in [19, Section 2].

One popular class of methods for obtaining stationary points of (1) is the penalty
method, which consists of solving a sequence of unconstrained subproblems con-
taining an objective function that penalizes a violation of the constraints through a
positively weighted penalty term. Papers [10, 14] present an O(ε−3) iteration com-
plexity of a quadratic penalty method without any regularity assumptions on the linear
constraint. In a follow-up work, paper [11] presents anO(ε−3 log ε−1) iteration com-
plexity of a similar quadratic penalty method in which its parameters are chosen in an
adaptive and numerically efficient manner. Paper [19] is the first to present a penalty-
basedmethodwith an improved complexity ofO(ε−5/2 log ε−1) under the assumption
that the domain of h is compact and assumption (5) holds.

Another popular class of methods is the proximal AL (PAL) method, which primar-
ily consists of the updates in (3) and (4). The analysis of AL/PAL-based methods for
the case where φ is convex is already well-established (see, for example, [1, 2, 15, 16,
20, 21, 24, 25, 29]), so we make no more mention of it here. Instead, we review papers
that present an iteration complexity of an AL/PAL-based method for the case where
φ is nonconvex. Paper [6] presents an O(ε−4) iteration complexity1 of an unacceler-
ated PAL method under the strong assumption that the initial point z0 is feasible, i.e.,
Az0 = b, as well as θ ∈ (0, 1] and χ = 1. Paper [22] presents O(ε−3 log ε−1) and
O(ε−5/2 log ε−1) iteration complexities of an accelerated inexact PAL method for the
general case and the case where (5) holds, respectively, and removes the requirement
that the initial point be feasible. Papers [12, 13] present an O(ε−3 log ε−1) iteration
complexity for the special case of (χ, θ) = (1, 0), which corresponds to a full mul-
tiplier update under the classical AL function. Finally, papers [17, 27] respectively
establish O(ε−3 log ε−1) and O(ε−5/2 log ε−1) iteration complexities for nonproxi-
mal AL-based methods that perform under-relaxed Lagrange multiplier updates only
when the penalty parameter is updated.

Aside from penalty and AL/PAL-based methods, we mention few others that are of
interest. Paper [3] presents anO(ε−3) iteration complexity of a primal-dual proximal
point scheme for generating a point near an approximate stationary point under some
strong conditions on the initial point. Papers [30, 31] present an O(ε−2) iteration
complexity of a primal-dual first-order algorithm for solving (1)when h is the indicator
function of a box (in [31]), ormore generally, a polyhedron (in [30]). Paper [7] presents
anO(ε−6) iteration complexity of a penalty-ADMMmethod that solves an equivalent
reformulation of (1), under the assumption that the initial point z0 is feasible, the
tolerance ε is sufficiently small, and A has full row rank. Paper [18] presents an
inexact proximal point method applied to the function defined as φ(z) if z is feasible

1 This method generates prox subproblems of the form argminx∈X {λh(x)+c‖Ax−b‖2/2+‖x−x0‖2/2}
and the analysis of [6] makes the strong assumption that they can be solved exactly for any x0, c, and λ.
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and +∞ otherwise. It can be viewed as an extension to the nonconvex setting of
the proximal point method (PPM) applied to (1) and it obtains an O(ε−5/2 log ε−1)
complexity bound.

ContributionsWenowemphasize how the proposedAIDALmethod improves on other
state-of-the-art AL-based works. First, it improves upon the O(ε−3 log ε−1) classic
PAL method in [13] by an O(ε−1/2) factor through only a small perturbation of the
classical multiplier update and the classical AL function. Second, AIDAL chooses
its prox stepsize λ independent of the perturbation parameter θ . This is in contrast to
the PAL method in [22] which has the undesirable property that its prox stepsize λ

becomes arbitrarily small as θ approaches zero. Finally, it differs from the nonproximal
AL-based method in [17] in two significant ways: (i) it performs the multiplier update
(4) after every inexact prox update as opposed to only when the penalty parameter is
updated; and (ii) it chooses a constant under-relaxation parameter χ for the update (4)
as opposed to [17], which chooses an under-relaxation parameter that (linearly) tends
to zero as the number of penalty parameter updates increases.

Organization of the Paper Section 1.1 provides some basic definitions and notation.
Section2 contains two subsections. The first one describes themain problemof interest
and the assumptions made on it, while the second one presents the AIDALmethod and
states its iteration complexity. Section3 is divided into four subsections. The first one
presents some preliminary technical results, the second one presents a bound on an
important stationarity residual, the third one proves a bound on the generated Lagrange
multipliers, and fourth one one gives the proof of a key proposition in Sect. 2. Section4
presents numerical experiments that demonstrate the efficiency of the AIDALmethod.
Section5 gives some concluding remarks. Finally, the end of the paper contains several
important technical appendices.

1.1 Basic notations and definitions

This subsection presents notation and basic definitions used in this paper.
Let R+ and R++ denote the set of nonnegative and positive real numbers, respec-

tively, and let Rn denote the n-dimensional Hilbert space with inner product and
associated norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. The smallest positive singular
value of a nonzero linear operator Q : Rn → R

l is denoted by σ+Q . For a given closed
convex set X ⊂ R

n , its boundary is denoted by ∂X and the distance of a point x ∈ R
n

to X is denoted by distX (x). For any t > 0, we let log+1 (t) := max{log t, 1} and
denote O1 = O(· + 1).

The domain of a function h : Rn → (−∞,∞] is the set domh := {x ∈ R
n :

h(x) < +∞}. Moreover, h is said to be proper if domh �= ∅. The set of all lower
semi-continuous proper convex functions defined in R

n is denoted by Conv R
n . The

subdifferential of a proper convex function h : Rn → (−∞,∞] is defined by

∂h(z) := {u ∈ R
n : h(z′) ≥ h(z)+ 〈u, z′ − z〉, ∀z′ ∈ R

n} (7)
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for every z ∈ R
n . The normal cone of a closed convex set C at z ∈ C is defined as

NC (z) := {ξ ∈ R
n : 〈ξ, u − z〉 ≤ 0, ∀u ∈ C}.

If ψ : Rn �→ R is differentiable at z̄ ∈ R
n , then its affine approximation at z̄ is given

by


ψ(z; z̄) := ψ(z̄)+ 〈∇ψ(z̄), z − z̄〉 ∀z ∈ R
n . (8)

2 Augmented Lagrangianmethod

This section contains two subsections. The first one precisely describes the problem of
interest and the assumptions underlying it, while the second one presents the AIDAL
method and its corresponding iteration complexity.

2.1 Problem of interest

This subsection presents the main problem of interest and the assumptions underlying
it.

Our problem of interest is precisely (1) where f , h, A, and b are assumed to satisfy
the following assumptions:

(A1) h ∈ Conv R
n is Kh-Lipschitz continuous and H := domh is compact with

diameter Dh := supu,z∈H ‖u − z‖ <∞.
(A2) f is differentiable function on H, and there exists (m, M) ∈ R

2++ satisfying
m ≤ M , such that for every u, z ∈ H, we have

(u)− 
 f (u; z) ≥ −m

2
‖u − z‖2, (9)

‖∇ f (u)− ∇ f (z)‖ ≤ M‖u − z‖; (10)

(A3) there exists z̄ ∈ intH such that Az̄ = b;
(A4) A �= 0, F := {z ∈ H : Az = b} �= ∅, and inf z∈Rn φ(z) > −∞.

We now make four remarks about the above assumptions. First, it is well-known that
(10) implies that | f (u)−
 f (u; z)| ≤ M‖u− z‖2/2 for every u, z ∈ H and hence that
(9) holds with m = M . However, we show that better iteration complexities can be
derived when a scalar m � M satisfying (9) is available [see Theorem 2.3 and (23)].
Second, (9) implies that the function f +m‖ · ‖2/2 is convex onH. Third, sinceH is
compact by (A1), the image of any continuous Rk-valued function, e.g., u �→ ∇ f (u),
is bounded. Finally, in “Appendix C”, we show that if ẑ is a local minimum of (1),
then there exists a multiplier p̂ such that

0 ∈ ∇ f (ẑ)+ ∂h(ẑ)+ A∗ p̂, Aẑ = b. (11)

In view of the last remark, we say that a triple (ẑ, p̂, v̂) is a (ρ, η)-stationary point of (1)
if it satisfies condition (6), which is clearly a relaxation of (11) for any (ρ, η) ∈ R

2++.
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2.2 AIDALmethod

This section presents the AIDAL method and its corresponding iteration complexity.
We first state the AIDAL method in Algorithm 2.1. Its main steps are: (i) invoking

an ACG algorithm (specifically, Algorithm B.1) to implement the update in (3); (ii)
computing a “refined” pair ( p̂, v̂) = ( p̂k, v̂k) and point z satisfying the inclusion and
(possibly) the inequality in (6); (iii) applying the update in (4); and (iv) performing a
novel test to determine the next penalty parameter ck+1.

Algorithm2.1:Accelerated InexactDampenedAugmented Lagrangian (AIDAL)
Method
Input : (m, M) ∈ R

2++ as in (A2), (ρ, η) ∈ R
2++, (z0, p0) ∈ H× A(Rn), c1 ∈ R++,

σ ∈ (0, 1/2], and (χ, θ) ∈ (0, 1)2 satisfying

(1− θ)(2− θ)χ ≤ θ2. (12)

Output : a triple (ẑ, p̂, v̂) ∈ H× A(Rn)× R
n satisfying (6).

1 Function AIDAL({m, M}, {σ, χ, θ}, {c1, z0, p0}, {ρ, η}):
2 STEP 0 (initialization)
3 λ ← 1/(2m)

4 for k ← 1, 2, . . . do
5 STEP 1 (inexact prox update): � Implement (3)

6 Lk ← λ(M + ck‖A‖2)+ 1

7 ψk
s (·) ← λ

[
Lθ
ck (·; pk−1)− h(·)

]
+ 1

2 ‖ · −zk−1‖2 � See (2) for the definition of Lθ
c (·; ·)

8 (zk , vk )←ACG({ψk
s , λh}, {Lk , 1

2 }, σ, zk−1) � Use Algorithm B.1
9 STEP 2 (termination check):

10 v̂k ← 1
λ

[
vk + zk−1 − zk

]
11 p̂k ← (1− θ)pk−1 + ck (Azk − b)
12 if ‖v̂k‖ ≤ ρ and ‖Azk − b‖ ≤ η then
13 return (zk , p̂k , v̂k ) � Stop and output

14 STEP 3 (multiplier update): � Implement (4)
15 pk ← (1− θ)pk−1 + χck (Azk − b)
16 STEP 4 (penalty parameter update):

17 ck+1 ←
{
2ck , if ‖v̂k‖ ≤ ρ,

ck , otherwise

Some remarks about Algorithm 2.1 are in order. First, its input z0 can be any
element in H and does not necessarily need to be a feasible point, i.e., one satisfying
Az0 = b. Second, its steps 1 and 3 are respectively the updates (3) and (4), while
its step 4 consists of a test to determine whether the penalty parameter ck should be
increased. In particular, the update for (3) is obtained by applying the ACG algorithm
in Algorithm B.1 to the (convex) proximal subproblem

min
u∈Rn

{
λLθ

ck (·; pk−1)+
1

2
‖ · −zk−1‖2

}
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with an inexactness criterion [see (45)] that is a variant of the one considered by the
authors in [9, 10, 12, 14]. Third, it performs two kinds of iterations: (i) the ones indexed
by k; and (ii) the ones performed by the ACG algorithm every time it is called in its
step 1. To be concise, the former will be referred to as “outer” iterations and the latter
as “inner” (or ACG) iterations. Finally, it is shown in Lemma 3.2(d) that the triple
(ẑ, p̂, v̂) = (zk, p̂k, v̂k) satisfies the inclusion in (6) for every k ≥ 1. Hence, if the
termination condition in step 3 is satisfied, then AIDAL outputs a (ρ, η)-stationary
point of (1) (whose definition is given at the end of Sect. 2.1).

We now present the key properties of the method. To be concise, we introduce the
constants

d̄ := dist∂H(z̄), G f := sup
u∈H

‖∇ f (u)‖, φ∗ := inf
u∈Rn

φ(u), φ∗ := inf
u∈F

φ(u),

βλ :=
(
d̄ + Dh

) [
Kh + G f + (1+ σ)Dh

λ

]
,

(13)

where (Dh, Kh,H), z̄, and F are as in (A1), (A3), and (A4), respectively. Moreover,
we let

C
 :=
{
k ∈ N : ck = c12


−1} (14)

denote the 
th cycle of AIDAL and, for simplicity, if the AIDAL terminates at iteration
k then the indices of the last cycle do not extend past k.

The first result presents a bound on the sequence of Lagrange multipliers {pk}k≥0
computed in step 3 of AIDAL. Its proof, which is given in Sect. 3.3, is a generalization
of [13, Proposition 3.12], which considers the case where (θ, χ) = (0, 1).

Proposition 2.1 Let {pi }i≥1 be generated by the AIDAL method. Then,

‖pk‖ ≤ ‖p0‖ + βλ

d̄σ+A
=: Bp ∀k ≥ 1, (15)

where d̄ and βλ are as in (13).

The next result, whose proof is the topic of Sect. 3.4, describes several properties
of AIDAL, including a bound on the number of inner (or ACG) iterations performed
in each outer iteration, a uniform bound on the size of all cycles, and its successful
termination with the required approximate stationary point of (1).

Proposition 2.2 Let (λ, c1, χ, θ, ρ, η) be as in AIDAL, and define the nonnegative
scalars

B� := φ∗ − φ∗ + D2
h

λ
+
(
2− θ + 2[2− θ ][1− θ ]

2χ2c1

)
B2
p,

c̄η := 2Bp

χη
, Tρ :=

⌈
1+ 9B�

λρ2

⌉
.

(16)
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where Bp, Dh, and (φ∗, φ∗) are as in Proposition 2.1, assumption (A1), and (13),
respectively. Then, the following statements hold about AIDAL:

(a) its kth outer iteration performs a number of inner (or ACG) iterations bounded
above by

⌈
1+ 6

√
Lk log

+
1
4Lk

σ

⌉
, (17)

where Lk is given by step 1 of AIDAL;
(b) for every 
 ≥ 1, it holds that |C
| ≤ Tρ , and the residual v̂k for the last index k of

C
 satisfies ‖v̂k‖ ≤ ρ;
(c) the last cycle 
̄ outputs a (ρ, η)-stationary point of (1) and satisfies ck ≤

max{c1, 2c̄η} for every k ∈ C
̄; as a consequence, 
̄ ≤ max{1, log2(2c̄η/c1)}.
We give some remarks about the above results. First, Proposition 2.1 states that the

sequence of Lagrangemultipliers {pk}k≥1 generated by theAIDALmethod is bounded
by a constant that is independent of the tolerances ρ and η. Second, Proposition 2.2(c)
states that the number of times that the penalty constant ck is doubled during an
invocation of the AIDAL method is finite. Finally, Proposition 2.2(a) shows that the
number of the inner (orACG) iterations at eachouter iterationofAIDAL is independent
of the tolerances ρ and η.

Using Proposition 2.2, the next result establishes an O(η−1/2ρ−2 log η−1) total
inner (or ACG) iteration complexity for the AIDAL method.

Theorem 2.3 AIDAL stops with a (ρ, η)-stationary point of (1) in a number of inner
(or ACG) iterations bounded above by

O1

(
Tρ

√
c̄ηL1 log

+
1
c̄ηL1

σ

)
, (18)

where (c̄η, Tρ) are as (16), L1 is as in step 1 of AIDALat k = 1, andσ is the inexactness
parameter given to the ACG algorithm (Algorithm B.1).

Proof For ease of notation, let (c̄, T ) = (c̄η, Tρ). In view of Proposition 2.2(a) and
(c), the total number of inner (or ACG) iterations performed by the method is on the
order of

O1

⎛
⎝�

log2 c̄�∑

=1

∑
j∈C


√
L j log

+
1
L j

σ

⎞
⎠ . (19)

To simplify this sum, we first note that if j ∈ C
, then the relations λ = 1/(2m) (from
AIDAL) and m ≤ M (from assumption (A2)) imply that

L j = λ
(
M + 2
−1c1‖A‖2 + λ−1

)
≤ λ

(
2M + 2
−1c1‖A‖2

)
≤ 2
L1. (20)
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Combining (20) with Proposition 2.2(b), it holds that

�log2 c̄�∑

=1

∑
j∈C


√
L j ≤ T

√
L1

�log2 c̄�∑

=1

2
/2 = T
√
L1 ·

√
2
(
1+√2

) (
2�log2 c̄�/2 − 1

)

≤ 4T
√
L1

(
2log2

√
c̄ · 21/2

)
= O1

(
T
√
c̄L1

)
. (21)

Moreover, denoting 
̄ = ⌈log2 c̄⌉, it follows from (20) that

max
1≤
≤�log2 c̄�

max
j∈C


{
log+1 L j

} = log+1
[
λ
(
M + c
̄‖A‖2

)
+ 1

]
= O1

(
log+1 [c̄L1]

)
.

(22)

The complexity bound in (18) now follows from (21), (22), and (19). The fact that
AIDAL stops with a (ρ, η)-stationary point of (1) follows from Proposition 2.2(c).

We now analyze how the complexity bound in (18) depends on the stepsize λ and the
tolerances ρ and η. Throughout our discussion, we make the reasonable assumption
that the parameter χ and the initial penalty parameter c1 are not too small in the
sense that max{c−11 , χ−1} = O(1). In this case, it is easy to see that the quantities
(Bp, B�, L1, c̄η, Tρ) in (15), (16), and step 1 of Algorithm 2.1 satisfy Bp = O(1 +
λ−1), B� = O([1 + λ−1]2), L1 = O(1 + λ), c̄η = O([1 + λ−1]/η), and Tρ =
O(1+ [1+ λ−1]2/[λρ2]). Consequently, the bound (18) is

O1

⎛
⎝[1+ (1+ λ−1)2

λρ2

]√
1+ λ+ λ−1

η
log+1

[
1+ λ+ λ−1

η

]⎞⎠ . (23)

Since λ−1 = O(1), the above complexity consists of the sum of two components:
S1 = O(λ1/2η−1/2) and S2 = O(λ−1/2η−1/2ρ−2) (ignoring logarithmic terms). In
general, if the tolerances ρ and η are small, then S2 � S1 and choosing larger values
of λ improves the complexity bound in (23). Under the assumption that there exists
a constant m � M satisfying (9), this observation justifies the claim made in the
paragraph following assumptions (A1)–(A4), namely, that AIDAL can benefit if such
m is known; otherwise, the only option available would be to be set λ to the much
smaller quantity 1/(2M).

It is also worth mentioning that, the number of resolvent (or proximal) evaluations
of h in AIDAL is on the same order of magnitude as in (18) due to the fact that the
ACG algorithm in “Appendix B” performs exactly one resolvent evaluation per ACG
iteration.

3 Convergence analysis of the AIDALmethod

This section establishes the key properties of the AIDAL method and contains four
subsections. The first one establishes some properties of the ACG call of AIDAL,

123



518 W. Kong, R. D. C. Monteiro

the second one gives a useful technical bound on the stationarity residuals {v̂i }, the
third one gives the proof of Proposition 2.1, and the fourth one gives the proof of
Proposition 2.2.

To avoid repetition, we let

{(zi , pi , vi , p̂i , v̂i , ψ i
s , ci , Li )}i≥1,

denote the sequence of iterates generated by the AIDAL method. Moreover, for every
i ≥ 1 and any (χ, θ) ∈ R

2++, we make use of the following useful constants

aθ = θ(1− θ), bθ := (2− θ)(1− θ), αχ,θ := (1− 2χbθ )− (1− θ)2

2χ
,

fi := Azi − b, �pi = pi − pi−1, �zi = zi − zi−1.
(24)

3.1 Preliminary results

This subsection establishes two preliminary technical results about the residuals vi ,
v̂i , and fi . It also establishes the iteration-complexity of each ACG call in step 1 of
AIDAL using the general results derived for this method in “Appendix B”.

Lemma 3.1 For every i ≥ 1:

(a) fi =
[
pi − (1− θ)pi−1

]
/(χci );

(b) if i ≥ 2, then χ(ci fi − ci−1 fi−1) = �pi − (1− θ)�pi−1;

(c) ‖ fi‖ ≤ (‖pi‖ + (1− θ)‖pi−1‖)/(χci ).
Proof (a) This follows from the definition of fi in (24), and step 3 of the AIDAL
method.

(b) This follows from part (a) and the definition of �pi in (24).
(c) Using part (a), the fact that 1− θ ∈ [0, 1], and the triangle inequality, we have

‖ fi‖ = ‖pi − (1− θ)pi−1‖
χci

≤ ‖pi‖ + (1− θ)‖pi−1‖
χci

.

��
Note that the inequality of Lemma 3.1(c) implies the feasibility residual ‖ fi‖ can

be made small by making the penalty parameter sufficiently large and ensuring that
the multipliers {pi }i≥1 are bounded.
Lemma 3.2 For every i ≥ 1:

(a) ψ i
s (·)−‖ · ‖2Qi

/2 is convex and ∇ψ i
s (·) is Li -Lipschitz continuous, where Li is as

in step 1 of Algorithm 2.1 and

Qi := I

2
+ ciλA

∗A, ‖ · ‖2Qi
:= 〈·, Qi (·)〉 ; (25)
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(b) the i th call to Algorithm B.1 in step 1 of Algorithm 2.1 stops in a number of ACG
iterations bounded above by (17);

(c) it holds that

vi ∈ ∂(ψ i
s + λh)(zi ) = ∂

(
λLθ

ci (·; pi−1)+
1

2
‖ · −zi−1‖2

)
(zi ), ‖vi‖ ≤ σ‖�zi‖;

(d) v̂i ∈ ∇ f (zi )+ ∂h(zi )+ A∗ p̂i and ‖v̂i‖ ≤ (1+ σ)‖�zi‖/λ.
Proof (a) First note that inequality (9) in Assumption (A2) and the choice of λ =
1/(2m) in Algorithm 2.1 implies that λ f (·) + ‖ · −zi−1‖2/2 is 1/2-strongly convex
on H. Hence, the convexity assertion follows from this observation, the definition of
ψ i
s , and the definitions of Qi and ‖ ·‖Qi in (25). On the other hand, the assertion about

Lipschitz continuity follows from the definition of ψ i
s and (10).

(b) Using the fact that Li ≥ 1 and σ ∈ (0, 1), we first observe that for μ = 1/2 we
have

4Li (Li + μ)

μσ 2 ≤ 8Li (Li + Li )
2

σ 2 ≤
[
4Li

σ

]3
.

Then, note that part (a) implies (ψs, ψn) = (ψ i
s , λh) satisfies assumptions (B1)–(B2)

in “Appendix B” with (L, μ) = (Li , 1/2). The conclusion now follows from step 1
of Algorithm 2.1, assumption (A2), Proposition B.1(b) with (L, μ) = (Li , 1/2), and
the above observations.

(c) Recall that step 1 of AIDAL calls ACG with (ψs, ψn) = (ψ i
s , λh) and x0 = zi .

It then follows from Proposition B.1(b) that (45) holds with (z, v, x0) = (zi , vi , zi−1)
and (ψs, ψn) = (ψ i

s , λh) and x0 = zi−1. The inclusion and first inequality now
follow from the previous observation, the definition of ψ i

s , and the fact that ψ
i
s +λh is

convex (see the choice of λ and assumption (A2)) and, hence, that∇ψ i
s (·)+λ∂h(·) =

∂(ψ i
s + λh)(·).
(d) Using part (c) and the definitions of v̂i , p̂i , and ψ i

s , it holds that

v̂i = vi + zi−1 − zi
λ

∈ ∇ψ i
s (zi )

λ
+ ∂h(zi )+ zi−1 − zi

λ

= ∇ f (zi )+ ∂h(zi )+ (1− θ)A∗ pi−1 + cA∗(Azi − b)

= ∇ f (zi )+ ∂h(zi )+ A∗ p̂i ,

which is the desired inclusion. For the desired inequality, we use part (c), the triangle
inequality, and the definition of v̂i to obtain

‖v̂i‖ = 1

λ
‖vi + zi−1 − zi‖ ≤ 1

λ
‖vi‖ + 1

λ
‖�zi‖ ≤ 1+ σ

λ
‖�zi‖.

��
We now make three comments about the above result. First, statements (a) and (b)

of Lemma 3.2 justify the choice of λ = 1/(2m). Second, λ could actually have been
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set to any value (0, 1/m) at the expense of more complicated bounds in the resulting
analysis. Third, in view of the inclusion of Lemma 3.2(d) and the definition fi in (24),
it follows that (zi , p̂i , v̂i ) is a (ρ, η)-stationary point of (1) if and only if ‖v̂i‖ ≤ ρ

and ‖ fi‖ ≤ η.
In the next subsection, we establish an important bound on the residuals {v̂i } that

will be used to show that they tend to zero.

3.2 Bounds on the stationarity residuals

This subsection focuses on establishing the following bound on the residuals {v̂i }i≥0
within cycle C
 for any 
 ≥ 1. Note that the value of ci is constant within C
, i.e., there
exists c̃
 > 0 such that

ci = c̃
 ∀i ∈ C
. (26)

Proposition 3.3 For every 
 ≥ 1 and j, k ∈ C
 such that k ≥ j + 1, we have

λ

k∑
i= j+1

‖v̂i‖2 ≤ 9[�θ
j −�θ

k ], (27)

where the potential �θ
i is given by

�θ
i := Lθ

c̃

(zi ; pi )− aθ

2χ c̃


‖pi‖2 + αχ,θ

4χ c̃


‖�pi‖2. (28)

We start with a technical bound on ‖v̂i‖.

Lemma 3.4 For every i ≥ 1, it holds that

λ

9
‖v̂i‖2 ≤

[
Lθ
ci (zi−1; pi−1)− Lθ

ci (zi ; pi )+
aθ

2χci

(
‖pi‖2 − ‖pi−1‖2

)]

+ bθ

2χci
‖�pi‖2 − ci

2
‖A�zi‖2,

(29)

where aθ and bθ are as in (24).

Proof Let i ≥ 1 be fixed. We first derive a relationship forLθ
ci (zi , pi )−Lθ

ci (zi , pi−1).
Using the definition of Lθ

c in (2), the definitions of �pi and fi in (24), and
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Lemma 3.1(a), we have that

Lθ
ci (zi , pi )− Lθ

ci (zi , pi−1)

= (1− θ) 〈�pi , fi 〉 =
(
1− θ

χci

)
‖�pi‖2 + (1− θ)θ

χci
〈�pi , pi−1〉

=
(
1− θ

χci

)
‖�pi‖2 + (1− θ)θ

χci

(
〈pi , pi−1〉 − ‖pi−1‖2

)

=
(
1− θ

χci

)
‖�pi‖2 + (1− θ)θ

χci

(
−1

2
‖�pi‖2 + 1

2
‖pi‖2 − 1

2
‖pi−1‖2

)

= bθ

2χci
‖�pi‖2 + aθ

2χci

(
‖pi‖2 − ‖pi−1‖2

)
. (30)

We next derive a bound for Lθ
ci (zi , pi−1)−Lθ

ci (zi−1, pi−1). In view of Lemma 3.2(a)
and (c), we first observe that (i) λLθ

ci (·, pi−1) + ‖ · −zi−1‖2/2 = ψ i
s (·) + λh(·)

is 1-strongly convex with respect to the ‖ · ‖Qi norm given in (25), and (ii) zi is
an optimal solution of the function ψ i

s (·) + λh(·) − 〈vi , ·〉. Combining facts (i)–(ii)
above, the definition of ‖ · ‖Qi in (25), the bound on ‖vi‖ in Lemma 3.2(c), the fact
that σ ∈ (0, 1/2], and the Cauchy-Schwarz inequality, we conclude that

Lθ
ci (zi , pi−1)− Lθ

ci (zi−1, pi−1) ≤ −
1

2λ
‖�zi‖2Qi

− 1

2λ
‖�zi‖2 + 1

λ
〈vi ,�zi 〉

≤ −ci
2
‖A�zi‖2 − 3

4λ
‖�zi‖2 + 1

λ
‖vi‖ ‖�zi‖

≤ −
(
3− 4σ

4λ

)
‖�zi‖2 − ci

2
‖A�zi‖2 ≤ − 1

4λ
‖�zi‖2 − ci

2
‖A�zi‖2 (31)

The conclusion now follows by summing (30) and (31), isolating the ‖�zi‖2 term
to one side, and using the inequality on ‖v̂i‖ in Lemma 3.2(d) with the fact that
(1+ σ)2 ≤ 9/4. ��

Note that within a cycle, where the penalty parameters remain constant, the term
within the square bracket of the right-hand side of (29) is telescopic. Interestingly, the
next result shows that the other term on the right-hand side of (29) can be telescopically
bounded within a fixed cycle. It is worth mentioning that the relationship between χ

and θ in (12) plays an important role in proving this fact.

Lemma 3.5 For every i ≥ 2 such that ci = ci−1, it holds that

bθ

2χci
‖�pi‖2 − ci

2
‖A�zi‖2 ≤ αχ,θ

2χci

(
‖�pi−1‖2 − ‖�pi‖2

)
, (32)

where bθ and αχ,θ are as in (24).
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Proof Let i ≥ 2 be an indexwhere ci = ci−1 and observe that (12) implies 2χbθ ≤ θ2.
Moreover, define

�̂pi := �pi − (1− θ)�pi−1

and observe that Lemma A.1 with (τ, a, b) = (χbθ ,�pi ,�pi−1) implies that

1

χ
‖�̂pi‖2 ≥ 2bθ‖�pi‖2 + αχ,θ

(
‖�pi‖2 − ‖�pi−1‖2

)
. (33)

Using Lemma 3.1(b), the fact that ci = ci−1, and (33), we then have

ci
2
‖A�zi‖2 = ‖χci A�zi‖2

2χ2ci
= ‖χ(ci fi − ci−1 fi−1)‖2

2χ2ci
= 1

2χci

[
1

χ
‖�̂pi‖2

]

≥ 1

2χci

[
bθ‖�pi‖2 + αχ,θ

(
‖�pi‖2 − ‖�pi−1‖2

)]
,

from which (32) immediately follows. ��
Combining (29) and (32), it is easy to see that the sum of the residuals {‖v̂i‖2}i≥1

residuals is bounded above by a telescopic sum when the indices are in a cycle. Let us
now use this fact to prove Proposition 3.3.

Proof of Proposition 3.3 Let 
 ≥ 1 and j, k ∈ C
 be given and assume that i ∈ { j +
1, . . . , k}. Then, it follows from (26) that ci−1 = ci = c̃
. This observation together
Lemmas 3.4 and 3.5 then imply that

λ

9
‖v̂i‖2 ≤ Lθ

ci−1(zi−1; pi−1)− Lθ
ci (zi ; pi )+

aθ

2χci

(
‖pi‖2 − ‖pi−1‖2

)

+ αχ,θ

4χci

(
‖�pi−1‖2 − ‖�pi‖2

)

= Lθ
c̃


(zi−1; pi−1)− Lθ
c̃


(zi ; pi )+ aθ

2χ c̃


(
‖pi‖2 − ‖pi−1‖2

)

+ αχ,θ

4χ c̃


(
‖�pi−1‖2 − ‖�pi‖2

)

= �θ
i−1 −�θ

i ,

where the second identity is due to the definition of �θ
i in (28). The conclusion now

follows by summing the above inequality from i = j + 1 to k. ��
One of the goals of the following two subsections is to show that the potential

�θ
i in (28) can be bounded by a constant that does not depend on ci . A key step in

this direction is given by Proposition 2.1 which states that the Lagrange multiplier pi
can also be bounded by a constant that does not depend on ci . The goal of the next
subsection is to prove this proposition.
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3.3 Proof of Proposition 2.1

We start by presenting two well-known technical results. The proof of the first one
can be found, for example, in [4, Lemma 1.2].

Lemma 3.6 For every S ∈ R
m×n and u ∈ Im S, we have σ+S ‖u‖ ≤ ‖Su‖.

The proof of the next result can be found in [13, Lemma 3.10].

Lemma 3.7 Suppose ψ ∈ Conv R
n is Kψ -Lipschitz continuous with finite diameter

Dψ . Then, for every y, ȳ ∈ domh and ξ ∈ ∂ψ(y), we have

‖ξ‖dist∂(domψ)(ȳ) ≤
[
dist∂(domψ)(ȳ)+ ‖y − ȳ‖] Kψ + 〈ξ, y − ȳ〉 .

The next two results closely follow the ones in [13, Section 3].

Lemma 3.8 Define the scalars

ξk := v̂k − ∇ f (zk)− A∗ p̂k ∀k ≥ 1. (34)

Then, the following statements hold for every k ≥ 1:

(a) ξk ∈ ∂h(zk);
(b) it holds that

‖ p̂k‖ ≤ 1

σ+A

[
‖ξk‖ + G f + (1+ σ)Dh

λ

]
,

where G f and Dh are as in (13) and assumption (A1), respectively.

Proof (a) This follows immediately from Lemma 3.2(d) and the definition of ξi .
(b) Using the definitions of ξi and G f , the triangle inequality, part (a), and

Lemma 3.6 with S = A∗ and u = p̂k yields

‖ p̂k‖ ≤ ‖A
∗ p̂k‖
σ+A

= ‖v̂k − ∇ f (zk)− ξk‖
σ+A

≤ ‖ξk‖ + ‖∇ f (zk)‖ + ‖v̂k‖
σ+A

≤ 1

σ+A

[
‖ξk‖ + ‖∇ f (zk)‖ + (1+ σ)‖�zk‖

λ

]

≤ 1

σ+A

[
‖ξk‖ + G f + (1+ σ)Dh

λ

]
.

��
Lemma 3.9 Let (βλ, d̄) be as in (13). Then, the following statements hold for every
(χ, θ) ∈ (0, 1)2 and k ≥ 1:

(a) ‖pk‖ ≤ χ‖ p̂k‖ + (1− χ)(1− θ)‖pk−1‖;
(b) c−1k ‖ p̂k‖2 + d̄σ+A ‖ p̂k‖ ≤ c−1k (1− θ)

〈
p̂k, pk−1

〉+ βλ.

123



524 W. Kong, R. D. C. Monteiro

Proof (a) Using the definitions of pk and p̂k with the triangle inequality yields

‖pk‖ = ‖χ p̂k + (1− χ)(1− θ)pk−1‖ ≤ χ‖ p̂k‖ + (1− χ)(1− θ)‖pk−1‖.

(b) Let ξk , (G f , d̄), and Dh be as in (34), (13), and assumption (A1), respec-
tively. Using Lemma 3.8(a), the definition of d̄, and Lemma 3.7 with (ψ, Kψ, Dψ) =
(h, Kh, Dh) and (y, ȳ, ε) = (zk, z̄, δk), we have that

d̄‖ξk‖ ≤ (d̄ + Dh)Kh + 〈ξk, zk − z̄〉 . (35)

Moreover, the definitions of p̂k and ξk , the fact that zk, z̄ ∈ H and Az̄ = b, and the
Cauchy-Schwarz inequality imply that

〈ξk, zk − z̄〉 = 〈v̂k −∇ f (zk)− A∗ p̂k, zk − z̄
〉

≤ (‖v̂k‖ + ‖∇ f (zk)‖
) ‖zk − z̄‖ − 〈 p̂k, Azk − b

〉

≤
[
(1+ σ)Dh

λ
+ G f

]
Dh +

(
1− θ

ck

) 〈
p̂k, pk−1

〉− 1

ck
‖ p̂k‖2. (36)

Using Lemma 3.8(b), (35), (36), and the definition of βλ in (13), we thus conclude
that

1

ck
‖ p̂k‖2 + d̄σ+A ‖ p̂k‖ ≤

1

ck
‖ p̂k‖2 + d̄‖ξk‖ +

[
G f + (1+ σ)Dh

λ

]
d̄

≤ 1

ck
‖ p̂k‖2 + (d̄ + Dh)Kh + 〈ξk , zk − z̄〉 +

[
G f + (1+ σ)Dh

λ

]
d̄

≤
(
1− θ

ck

) 〈
p̂k , pk−1

〉+
[
Kh + G f + (1+ σ)Dh

λ

]
(d̄ + Dh)

=
(
1− θ

ck

) 〈
p̂k , pk−1

〉+ βλ.

��

We are now ready to give the proof of Proposition 2.1.

Proof of Proposition 2.1 We proceed by induction on k. Since Bp ≥ ‖p0‖, the desired
bound trivially holds for k = 0. Assume now that ‖pk‖ ≤ Bp holds for some k ≥ 0.
If ‖ p̂k+1‖ = 0, then clearly

‖pk+1‖ ≤ χ‖ p̂k+1‖ + (1− χ)(1− θ)‖pk‖ = (1− χ)(1− θ)Bp ≤ Bp,
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so suppose that ‖ p̂k+1‖ > 0. Using Lemma 3.9(b), the Cauchy-Schwarz inequality,
and the induction hypothesis we have that

[
d̄ + 1

ck+1σ+A
‖ p̂k+1‖

]
‖ p̂k+1‖ ≤ 1

σ+A

[(
1− θ

ck+1

) 〈
p̂k+1, pk

〉+ βλ

]

≤ βλ

σ+A
+ (1− θ)‖pk‖ · ‖ p̂k+1‖

ck+1σ+A
≤ βλ

σ+A
+ ‖ p̂k+1‖Bp

ck+1σ+A
≤
[
d̄ + 1

ck+1σ+A
‖ p̂k+1‖

]
Bp,

and, hence, that ‖ p̂k+1‖ ≤ Bp. Combining this bound with the induction hypothesis,
we finally conclude that

‖pk+1‖ ≤ χ‖ p̂k+1‖ + (1− χ)(1− θ)‖pk‖ ≤ Bp.

��

3.4 Proof of Proposition 2.2

Recall that Proposition 3.3 in Sect. 3.2 gives a bound on
∑k

i= j+1 ‖v̂i‖2 in (27). The first
part of this subsection further refines (27) to show that its right-hand side is bounded
by a constant that does not depend on the constant c̃
 in (26). The following result
provides a key step in this direction.

Lemma 3.10 For every i ≥ 1, it holds that

φ∗ −
(
1− θ

2χc1

)
B2
p ≤ �θ

i ≤ φ∗ + D2
h

λ
+
(
1+ 2bθ

2χ2c1

)
B2
p, (37)

where (φ∗, φ∗), bθ , and Dh are as in (13), (24), and assumption (A1), respectively.

Proof Let i ≥ 1. Using Proposition 2.1, the definitions of Lθ
c (·, ·), �θ

j , φ∗, and Bp,
and the fact that χ ∈ (0, 1), we have

�θ
i ≥ Lθ

ci (zi ; pi )−
aθ

2χci
‖pi‖2 = φ(zi )+ (1− θ) 〈pi , Azi − b〉

+ ci
2
‖Azi − b‖2 − aθ

2χci
‖pi‖2

≥ φ∗ + 1

2

∥∥∥∥
(
1− θ√

ci

)
pi +√ci (Azi − b)

∥∥∥∥
2

− (1− θ)2

2ci
‖pi‖2 − aθ

2χci
‖pi‖2

≥ φ∗ −
[
(1− θ)2 + aθ

2χci

]
B2
p ≥ φ∗ −

(
1− θ

2χc1

)
B2
p,
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which is the desired lower bound in (37). For the upper bound, let an arbitrary u ∈ F
be given. Using the fact that Au = b and u ∈ H, the definitions of Lθ

c (·, ·) and Dh ,
Lemma 3.2(c), and the Cauchy–Schwarz inequality, we conclude that

λLθ
ci (zi ; pi−1)

Lemma 3.2(c)≤ λLθ
ci (u; pi−1)+

1

2
‖u − zi−1‖2 − 1

2
‖�zi‖2 − 〈vi , u − zi 〉

u∈F≤ λφ(u)+ 1

2
D2
h + ‖vi‖Dh

Lemma 3.2(c)≤ λφ(u)+
(
1

2
+ σ

)
D2
h .

Taking the infimumof the above bound over u ∈ F and using the fact thatσ ∈ (0, 1/2],
we thus haveLθ

ci (zi ; pi−1) ≤ φ∗+D2
h/λ. This inequality, (30), the fact thatχ ∈ (0, 1),

Proposition 2.1, and the relation (a+ b)2 ≤ 2a2+ 2b2 for every a, b ∈ R, then imply
that

�θ
i = Lθ

ci (zi ; pi )−
aθ

2χci
‖pi‖2 + αχ,θ

4χci
‖�pi‖2 ≤ Lθ

ci (zi ; pi−1)+
(
2bθ + αχ,θ

4χci

)
‖�pi‖2

≤ φ∗ + D2
h

λ
+
(
2bθ + αχ,θ

2χci

)
(‖pi‖2 + ‖pi−1‖2) ≤ φ∗ + D2

h

λ
+
(
1+ 2bθ

2χ2c1

)
B2
p,

which is the desired upper bound in (37). ��
The result below follows as a consequence of Proposition 3.3 and Lemma 3.10.

Lemma 3.11 For every 
 ≥ 1 and j, k ∈ C
 such that j < k, there exists i ∈
{ j + 1, . . . , k} satisfying

λ‖v̂i‖2 ≤ 9B�

k − j
, (38)

where B� is as in (16).

Proof Using the first bound of (37) with i = k and the second bound of (37) with
i = j , we first have that

�θ
j −�θ

k ≤ φ∗ − φ∗ + D2
h

λ
+
(
2− θ + 2bθ

2χ2c1

)
B2
p = B�,

where B� is as in (16). Using the above bound and Proposition 3.3, it follows that

λ(k − j) min
j+1≤i≤k ‖v̂i‖

2 ≤ λ

k∑
i= j+1

‖v̂i‖2 ≤ 9
(
�θ

j −�θ
k

)
≤ 9B�,

which implies the existence of some i ∈ { j + 1, . . . , k} satisfying the bound on ‖v̂i‖
in (38). ��

We are now ready to give the proof of Proposition 2.2.
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Proof (a) This follows immediately from Lemma 3.2(b).
(b) The fact that the last index k of a cycle C
 satisfies ‖v̂k‖ ≤ ρ follows immediately

from steps 2–3 of AIDAL. Now, let 
 ≥ 1 be fixed and define j := inf{i : i ∈ C
}
and k := j + Tρ − 1. If k /∈ C
 then |C
| ≤ k − j + 1 = Tρ . On the other hand,
if k ∈ C
 then Lemma 3.11 and the definition of Tρ in (16) imply that there exists
i ∈ { j + 1, . . . , k} such that

‖v̂i‖2 ≤ 9B�

λ(Tρ − 1)
≤ ρ2.

Since every cycle stops when ‖v̂i‖ ≤ ρ, we conclude that i = k = sup{i : i ∈ C
}
and, hence, |C
| = k − j + 1 = Tρ .

(c) Let c̄ = c̄η. We first establish the bound on ck . If AIDAL stops in the first cycle,
then the bound on ck follows immediately. Assume now that there is more than one
cycle and suppose, for the sake of contradiction, that there exists a cycle 
 ≥ 2 such
that ck > 2c̄ for every k ∈ C
, and let k′ denote the last index in C
−1. In view steps 3
of AIDAL, we then have ck′ > c̄. Using the previous bound, the definition of c̄ = c̄η

in (16), Lemma 3.1(c), and Proposition 2.1, we also have

‖Axk′ − b‖ = ‖ fk′ ‖ ≤ ‖pk′ ‖ + (1− θ)‖pk′−1‖
χck′

≤ 2Bp

χck′
≤ 2Bp

χ c̄
≤ η.

However, since ‖v̂k′ ‖ ≤ ρ from part (b), this is impossible because termination would
have occurred at the end of cycle 
− 1. Hence, ck ≤ max{c1, 2c̄}. Since ck = 2
̄−1c1
for every k ∈ C
̄, the bound on 
̄ is immediate. Moreover, it follows from parts (a)–
(b) and the fact that 
̄ is finite that AIDAL always stops in step 2. Hence, using the
termination condition in step 2 and the inclusion in Lemma 3.2(d), we conclude that
the output of AIDAL is a (ρ, η)-stationary point of (1). ��

4 Numerical experiments

This section examines the performance of the AIDALmethod for solving problems of
the form given in (1). It contains four subsections. The first three contain the following
problem classes: (i) a class of linearly-constrained quadratic programming problems
considered in [10]; (ii) the sparse principal component analysis (PCA) problem in [5];
and (iii) a class of linearly-constrained quadratic matrix problems considered in [11,
12]. The last subsection gives a few comments about the results.

Before proceeding with the results, we describe the implementation details of our
algorithms and the setup of our experiments. These include specific parameter choices,
special modifications, and added heuristics.

We first discuss the three implementation of the AIDAL method, labeled rADL0,
rADL1, and tADL1 considered in this section. Broadly speaking, tADL1 is an imple-
mentation of the theoretical version of AIDAL in Algorithm 2.1, while rADL0
and rADL1 are implementations of an adaptive/relaxed version of AIDAL in Algo-
rithm D.1. In particular, the adaptive version of AIDAL introduces a novel line search
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scheme for adaptively choosing the prox parameter λ in AIDAL (for further details,
see the discussion in “Appendix D”). In terms of parameters, each AIDAL implemen-
tation uses p0 = 0, c1 = max{1, M/‖A‖2}, and σ = 0.3 for every outer iteration of
the method. However, rADL0 chooses (χ, θ, λ0) = (1, 0, 10) with a heuristic choice
of αχ,θ = 0 and aθ = 1 in the definition of �θ

i , while rADL1 and tADL1 choose
(χ, θ) = (1/6, 1/2) and λ0 = 10 for rADL. Note that rADL0 uses parameters that do
not satisfy (12), but work well in practice.

Besides the above AIDAL implementations, we also use four other methods as
benchmarks. The first one, named iALM, is an implementation of the inexact proximal
augmented Lagrangian method of [17] in which: (i) its key parameters are

σ = 5, β0 = max

{
1,

max{m, M}
‖A‖2

}
,

w0 = 1, y0 = 0, γk = (log 2) ‖Ax1‖
(k + 1)

[
log(k + 2)

]2 ,

for every k ≥ 1; and (ii) the starting point given to the kth APG call is set to be xk−1,
which is the prox center for the kth prox subproblem. The second one, named IPL,
is an implementation of the inexact proximal augmented Lagrangian method of [12,
Section 5] where: (i) ck is doubled in its step 4 rather than quintupled; and (ii) σ = 0.3.
The third one, named QP, is a practical modification of the quadratic penalty method
of [10] in which: (i) each ACG subproblem in step 1 of the AIPP method is stopped
when the condition

‖u j‖ + 2η j ≤ σ‖x0 − x j + u j‖2

holds; and (ii) it uses the parameters σ = 0.3 and c = max{1, M/‖A‖2}. The fourth
and last one, named RQP, is an instance of the relaxed quadratic penalty method of
[11] in which: (i) it uses the AIPPv1 variant described in [11, Section 6] with the
parameters (θ, τ ) = (4, 10[λ0M + 1]) and λ0 = 10; and (ii) it uses the initial penalty
parameter c1 = max{1, M/‖A‖2}. It is also worth mentioning that every method
except the iALM replaces its ACG prox subproblem solver by a more practical FISTA
variant whose key iterates are as described in [23] and whose main stepsize parameter
is adaptively estimated by a line search subroutine described in [8, Algorithm 5.2.1].

We now give some comments about the benchmark algorithms. First, iALM dif-
fers from the other tested methods in that it uses an ACG variant with a termination
criterion that is different from the one in (45) and/or its relaxation. Second, the main
difference between the AIDAL variants and IAIPAL methods is in how they decide
when to double ck , i.e., step 4 of Algorithm 2.1. In particular, the condition used in the
IAIPALmethod depends on both σ and k whereas the condition in the AIDAL variants
do not. Finally, QP-AIPP is the only method that can be run without requiring any
regularity conditions on the linear constraint and without assuming that Dh < ∞. In
Table 1, we summarize the adaptivity of the above methods in terms of the adaptivity
of the curvature constants M andm in assumption (A2). In particular, we consider the
adaptivity of m to be equivalent to the adaptivity of the prox stepsize λ.
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Table 1 The first (resp. second) row indicateswhether a line search is used to estimate the curvature constant
M (resp. m) in assumption (A2) for a prox subproblem

Properties rADL0 rADL1 tADL1 iALM IPL QP RQP

Estimates M � � � ✘ � � �
Estimates m � � ✘ ✘ ✘ ✘ �

Note that estimation of m is equivalent to estimation of the prox stepsize λ

For a linear operator A, a proper lower semicontinuous convex function h, a function
f satisfying assumptions (A2)–(A4), a tolerancepair (ρ, η) ∈ R

2++, and an initial point
z0 ∈ domh, each of the methods of this section seeks a pair ([ẑ, p̂], v̂) satisfying

v̂ ∈ ∇ f (ẑ)+ ∂h(ẑ)+ A∗ p̂, ‖v̂‖
‖∇ f (z0)‖ + 1

≤ ρ,
‖Aẑ − b‖

‖Az0 − b‖ + 1
≤ η. (39)

In particular, the quadratic programming and matrix problem experiments con-
sider (ρ, η) = (10−3, 10−3), while the sparse PCA experiments consider (ρ, η) =
(10−4, 10−4). Moreover, defining c0 to be the initial penalty parameter and ni to be
the number of outer iterations with c = c02i , we also report the following metrics:

cwavg :=
∑

i≥0 ni · c02i∑
i≥0 ni

, cmax := final penalty parameter c.

All experiments are implemented in MATLAB 2020b and are run on Linux 64-bit
machines, each containing Xeon E5520 processors and at least 8 GB of memory.
Furthermore, the bold numbers in each of the tables of this section indicate the method
that performed the most efficiently for a given benchmark, e.g., runtime or (innermost)
iteration count. Finally, it is worth mentioning that the code for replicating these
experiments is freely available online.2

4.1 Linearly-constrained quadratic programming

Given a pair of dimensions (l, n) ∈ N
2, scalar pair (α1, α2) ∈ R

2++, matrices
A, B,C ∈ R

l×n , positive diagonalmatrix D ∈ R
n×n , and vector pair (b, d) ∈ R

l×R
l ,

this subsection considers the following linearly-constrained quadratic programming
(LCQP) problem:

min
z

α1

2
‖Cz − d‖2 − α2

2
‖DBz‖2

s.t. Az = b, z ∈ �n,

where �n = {z ∈ R
n+ :
∑n

i=1 zi = 1} denotes the n-dimensional simplex.
We now describe the experiment parameters for the instances considered. First, the

dimensions are set to (l, n) = (10, 50) and all of the entries in A, B, andC are nonzero.

2 See https://github.com/wwkong/nc_opt/tree/master/tests/papers/aidal.
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Second, the entries of A, B,C, b, and d (resp., D) are generated by sampling from
the uniform distribution U[0, 1] (resp., U[1, 1000]). Third, the initial starting point z0
is generated by sampling a random vector z̃0 from U2[0, 1] and setting z0 = z̃0/‖z̃0‖.
Fourth, using the well-known fact that ‖z‖ ≤ 1 for every z ∈ �n , the auxiliary
parameters for the iALM are Bi = ‖ai‖, Li = 0, and ρi = 0, for every i , where ai is
the i th row of A. Finally, the composite form of the problem is

f (z) = α1

2
‖Cz − d‖2 − α2

2
‖DBz‖2, h(z) = δ�n (z),

and each problem instance uses a scalar pair (α1, α2) ∈ R
2++ so that M = λmax(∇2 f )

is a particular value given in the table below and m = −M/3.
We now present the numerical results for this set of problem instances in Tables 2

and 3.
It is worth mentioning that we also attempted to add the sProxALM method of

[30, 31] to our list of benchmark methods with its penalty parameter set to � = 10
and all other parameters set as in [30, Algorithm 2]. However, for every problem
instance, sProxALM failed to obtain a solution as in (39) under a generous time limit
of 3600s, sowe have excluded its addition to the results above. Note that we did not test
sProxALM on the other numerical experiments because their settings did not fall into
settings considered by [30, 31] (i.e., where the composite function h needs to be the
indicator function for a polyhedral set). Also, contrary to ourAIDAL implementations,
[30, 31] does not provide a concrete way of choosing the parameters (adaptively or
otherwise) of sProxALM to ensure its convergence.

4.2 Sparse PCA

Given integer k, positive scalar pair (ν, b) ∈ R
2++, and matrix� ∈ Sn+, this subsection

considers the following sparse principal component analysis (SPCA) problem:

min
�,�

〈�,�〉F +
n∑

i, j=1
qν(�i j )+ ν

n∑
i, j=1

|�i j |

s.t. �−� = 0, (�,�) ∈ Fk × R
n×n,

where Fk = {z ∈ Sn+ : 0 � z � I , trM = k} denotes the k–Fantope and qν(·)+ ν| · |
is the minimax concave penalty (MCP) function given by

qν(t) :=
{
−t2/(2b), if |t | ≤ bν,

bν2/2− ν|t |, if |t | > bν,
∀t ∈ R.

Note that the effective domain of this problem is unbounded, and hence, only the QP
method is guaranteed to converge to an approximate stationary point in general.

We now describe the experiment parameters for the instances considered. First,
the scalar parameters are chosen to be (ν, b) = (100, 0.005). Second, the matrix

123



An accelerated inexact dampened augmented Lagrangian 531

Ta
bl
e
2

In
ne
rm

os
ti
te
ra
tio

n
co
un

ts
an
d
ru
nt
im

es
fo
r
L
C
Q
P
pr
ob

le
m
s

M
It
er
at
io
n
co
un

t
R
un

tim
e
(s
)

rA
D
L
0

rA
D
L
1

tA
D
L
1

iA
L
M

IP
L

Q
P

R
Q
P

rA
D
L
0

rA
D
L
1

tA
D
L
1

iA
L
M

IP
L

Q
P

R
Q
P

10
2

95
8

11
96

69
10

11
,4
98

26
,2
56

20
,4
73

24
55

2.
0

2.
5

14
.0

13
.8

53
.4

37
.9

4.
6

10
3

25
38

28
07

73
07

12
,6
69

25
,8
46

20
,3
54

22
61

5.
2

5.
7

15
.8

17
.1

53
.9

38
.2

4.
2

10
4

85
6

26
24

73
07

12
,7
29

25
,8
46

20
,4
97

27
10

1.
7

5.
4

15
.2

15
.8

53
.0

38
.4

5.
0

10
5

90
8

26
49

73
22

12
,7
43

25
,8
46

20
,3
11

45
71

1.
8

5.
3

14
.7

15
.0

52
.6

38
.5

8.
8

10
6

10
45

25
14

73
22

12
,7
44

25
,8
46

20
,3
13

78
89

2.
1

5.
2

15
.2

15
.8

60
.0

39
.9

14
.8

123



532 W. Kong, R. D. C. Monteiro

Ta
bl
e
3

Pe
na
lty

pa
ra
m
et
er

st
at
is
tic
s
fo
r
L
C
Q
P
pr
ob
le
m
s

M
c m

ax
c w

av
g
/
c m

ax
rA

D
L
0

rA
D
L
1

tA
D
L
1

iA
L
M

IP
L

Q
P

R
Q
P

rA
D
L
0

rA
D
L
1

tA
D
L
1

iA
L
M

IP
L

Q
P

R
Q
P

10
2

6E
+1

2E
+
3

2E
+
3

3E
+
3

3E
+
5

4E
+
3

4E
+
3

0.
10

0.
15

0.
02

0.
02

0.
75

0.
20

0.
08

10
3

2E
+3

4E
+
4

4E
+
4

3E
+
4

3E
+
6

4E
+
4

4E
+
4

0.
12

0.
14

0.
01

0.
02

0.
75

0.
19

0.
10

10
4

2E
+4

4E
+
5

4E
+
5

3E
+
5

3E
+
7

4E
+
5

4E
+
5

0.
18

0.
13

0.
01

0.
02

0.
75

0.
20

0.
13

10
5

2E
+5

4E
+
6

4E
+
6

3E
+
6

3E
+
8

4E
+
6

4E
+
6

0.
18

0.
13

0.
01

0.
02

0.
75

0.
19

0.
14

10
6

2E
+6

4E
+
7

4E
+
7

3E
+
7

3E
+
9

4E
+
7

4E
+
7

0.
18

0.
13

0.
01

0.
02

0.
75

0.
19

0.
15

123



An accelerated inexact dampened augmented Lagrangian 533

Table 4 Innermost iteration counts and runtimes for SPCA problems

s Iteration count Runtime (s)
rADL0 iALM IPL QP RQP rADL0 iALM IPL QP RQP

5 394 44,952 2779 22,559 2990 3.0 139.2 17.0 118.1 16.6

10 403 47,373 2646 19,984 2983 2.7 143.1 14.8 103.8 15.8

15 398 45,552 2628 20,126 2996 2.4 138.2 15.1 103.8 16.6

Table 5 Penalty parameter statistics for SPCA problems

s cmax cwavg/cmax
rADL0 iALM IPL QP RQP rADL0 iALM IPL QP RQP

5 6E+3 4E+6 3E+5 4E+6 2E+6 0.57 0.03 0.33 0.04 0.09

10 6E+3 4E+6 3E+5 4E+6 2E+6 0.57 0.03 0.28 0.03 0.09

15 6E+3 4E+6 3E+5 4E+6 2E+6 0.57 0.03 0.35 0.03 0.09

� is generated according to an eigenvalue decomposition � = P�PT , based on
a parameter pair (s, k), where k is as in the problem description and s is a positive
integer. In particular, we choose � = (100, 1, . . . , 1), the first column of P to be a
sparse vector whose first s entries are 1/

√
s, and the other entries of P to be sampled

randomly from the standard Gaussian distribution. Third, the initial starting point is
(�0,�0) = (Dk, 0) where Dk is a diagonal matrix whose first k entries are 1 and
whose remaining entries are 0. Fourth, the curvature parameters for each problem
instance are m = M = 1/b and k is fixed at k = 1. Fifth, for the iALM, we make
the following parameter choices based on a relaxed (but unverified) assumption that
its generated iterates lie in Fk × Fk : Bi = 1, Li = 0, and ρi = 0 for all i . Sixth, the
composite form of the problem is

f (�,�) = 〈�,�〉F +
n∑

i, j=1
qν(�i j ), h(�,�) = δF k (�)+ ν

n∑
i, j=1

|�i j |,

A(�,�) = �−�, b = 0,

and each problem instance considers a different value of s.
We now present the numerical results for this set of problem instances in Tables 4

and 5.
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4.3 Linearly-constrained quadratic matrix problem

Given a pair of dimensions (l, n) ∈ N
2, scalar pair (α1, α2) ∈ R

2++, linear operators
A : Sn+ �→ R

l , B : Sn+ �→ R
n , and C : Sn+ �→ R

l defined by

[A(z)]i = 〈Ai , z〉 , [B(z)] j =
〈
Bj , z

〉
, [C(z)]i = 〈Ci , z〉 ,

for matrices {Ai }li=1, {Bj }nj=1, {Ci }li=1 ⊆ R
n×n , positive diagonal matrix D ∈ R

n×n ,
and vector pair (b, d) ∈ R

l × R
l , this subsection considers the following linearly-

constrained quadratic matrix (LCQM) problem:

min
z

α1

2
‖C(z)− d‖2 − α2

2
‖DB(z)‖2

s.t. A(z) = b, z ∈ Pn,

where Pn = {z ∈ Sn+ : trz = 1} denotes the n-dimensional spectraplex.
We now describe the experiment parameters for the instances considered. First, the

dimensions are set to (l, n) = (20, 100) and only 1.0%of the entries of the submatrices
Ai , Bj , and Ci are nonzero. Second, the entries of Ai , Bj ,Ci , b, and d (resp., D)
are generated by sampling from the uniform distribution U[0, 1] (resp., U[1, 1000]).
Third, the initial starting point z0 is a random point in Sn+. More specifically, three
unit vectors ν1, ν2, ν3 ∈ R

n and three scalars e1, e2, e2 ∈ R+ are first generated by
sampling vectors ν̃i ∼ Un[0, 1] and scalars d̃i ∼ U[0, 1] and setting νi = ν̃i/‖ν̃i‖ and
ei = ẽi/(

∑3
j=1 ẽi ) for i = 1, 2, 3. The initial iterate for the first subproblem is then

set to z0 =∑3
i=1 eiνiνTi . Fourth, using the well-known fact that ‖z‖F ≤ 1 for every

z ∈ Pn , the auxiliary parameters for the iALM are

Bi = ‖Ai‖F , Li = 0, ρi = 0 ∀i ≥ 1.

Finally, the composite form of the problem is

f (z) = α1

2
‖C(z)− d‖2 − α2

2
‖DB(z)‖2, h(z) = δPn (z), A(z) = A(z),

and each problem instance uses a scalar pair (α1, α2) ∈ R
2++ so that M = λmax(∇2 f )

is a particular value given in the table below and m = −M/4.
We now present the numerical results for this set of problem instances in Tables 6

and 7.

4.4 Comments about numerical experiments

Algorithm rADL0 is generally the most efficient in terms of total inner (or ACG)
iterations, runtime, and final penalty parameter used. Moreover, the experiments in
Sect. 4.1 demonstrate that the adaptivity ofm (or equivalentlyλ) substantially improves
AIDAL in terms of both inner (or ACG) iteration count and runtime. Finally, while
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Table 6 Innermost iteration counts and runtimes for LCQM problems

M Iteration count Runtime (s)
rADL0 iALM IPL QP RQP rADL0 iALM IPL QP RQP

100 388 66,000 6863 37,470 8293 4.4 323.3 68.7 344.6 85.6

200 486 70,551 6902 37,696 1475 5.6 334.9 66.9 335.4 13.4

400 674 72,760 6902 37,972 1562 7.6 347.5 67.9 339.0 14.2

1600 1090 74,200 6921 38,203 1309 12.6 361.4 68.9 346.3 12.1

3200 1400 74,568 6921 38,243 1327 16.0 369.8 74.1 352.3 12.1

Table 7 Penalty parameter statistics for LCQM problems

M cmax cwavg/cmax
rADL0 iALM IPL QP RQP rADL0 iALM IPL QP RQP

100 4E+1 2E+3 6E+2 1E+3 1E+3 0.27 0.08 0.96 0.30 0.01

200 8E+1 3E+3 1E+3 3E+3 3E+3 0.29 0.08 0.97 0.30 0.08

400 2E+2 6E+3 3E+3 5E+3 5E+3 0.33 0.08 0.97 0.31 0.11

1600 6E+2 2E+4 1E+4 2E+4 2E+4 0.39 0.08 0.97 0.31 0.12

3200 1E+3 5E+4 2E+4 4E+4 4E+4 0.39 0.08 0.97 0.31 0.13

the penalty ratio cwavg/cmax is generally the lowest for iALM, the performance for
iALM in terms of the number of innermost iterations and runtime is generally the
worst among the tested methods.

5 Concluding remarks

Similar to the analyses in [17, 19], the analysis of the AIDAL method strongly makes
use of assumption (A3) and the assumption that Dh < ∞ to obtain its competitive
O(ε−5/2 log ε−1) iteration complexity when ε = ρ = η. However, we conjecture that
these two assumptions may be removed using the more complicated analysis in [22]
to obtain a slightly worse O(ε−3 log ε−1) iteration complexity (like in [22]).

Like the adaptive prox-stepsize AIDAL in “Appendix D”, another possible exten-
sion of AIDAL is one in which λ, χ , and θ are simultaneously chosen in an adaptive
manner. Moreover, it would be interesting to develop such an adaptive AIDAL and
show that it has the same iteration complexity bound as the nonadaptive AIDAL in
Algorithm 2.1.

Data Availability The data and code generated, used, and/or analyzed during the current study are publicly
available in the NC-OPT GitHub repository (See https://github.com/wwkong/nc_opt.) under the directory
./tests/papers/aidal/.
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A Key technical bounds

The appendix presents a key technical bound that is used in the analysis of AIDAL.

Lemma A.1 For every (τ, θ) ∈ [0, 1]2 satisfying τ ≤ θ2 and every a, b ∈ R
n, we have

that

‖a − (1− θ)b‖2 − τ‖a‖2 ≥
[
(1− τ)− (1− θ)2

2

] (
‖a‖2 − ‖b‖2

)
. (40)

Proof Let a, b ∈ R
n be fixed and define

z =
[ ‖a‖
‖b‖

]
, M =

[
(1− τ)+ (1− θ)2 −2(1− θ)

−2(1− θ) (1− τ)+ (1− θ)2

]
. (41)

Moreover, using our assumption of τ ≤ θ2 ≤ 1, observe that

det M =
[
(1− τ)+ (1− θ)2 − 2(1− θ)

] [
(1− τ)+ (1− θ)2 + 2(1− θ)

]

=
[
θ2 − τ

] [
(1− τ)+ (1− θ)2 + 2(1− θ)

]
≥ 0,

and hence, by Sylvester’s criterion, it follows that M ! 0. Combining this fact with
the Cauchy–Schwarz inequality and (41), we thus have that

‖a − (1− θ)b‖2 − τ‖a‖2 ≥ (1− τ)‖a‖2 − 2(1− θ)‖a‖ · ‖b‖ + (1− θ)2‖b‖2

= 1

2
zT Mz +

[
(1− τ)− (1− θ)2

2

] (
‖a‖2 − ‖b‖2

)

≥
[
(1− τ)− (1− θ)2

2

] (
‖a‖2 − ‖b‖2

)
. ��

B Statement and analysis of the ACG algorithm

Recall from Sect. 1 that our interest is in solving (1) by inexactly solving NCO sub-
problems of the form in (3). This subsection presents an ACG algorithm for inexactly
solving latter type of problem and it considers themore general class ofNCOproblems

min
u∈Rn

{ψ(u) := ψs(u)+ ψn(u)} , (42)

where the functions ψs and ψn are assumed to satisfy the following assumptions:

(B1) ψn : Rn �→ (−∞,∞] is a proper closed convex function.
(B2) ψs is μ-strongly convex and continuously differentiable on Rn and satisfies

‖∇ψs(z)−∇ψs(z
′)‖ ≤ L‖z − z′‖ (43)
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for every z′, z ∈ R
n and some L > 0 and μ ∈ (0, L].

Clearly, problem (3) is a special case of (42), and hence, any result that is stated in the
context of (42) also applies to (3). It is also well-known that assumption (B2) implies

μ

2
‖z′ − z‖2 ≤ ψs(z

′)− 
ψs (z
′; z) ≤ L

2
‖z′ − z‖2, (44)

for every z, z′ ∈ R
n .

The pseudocode for the ACG algorithm is stated in Algorithm B.1 which, for a
given a pair (σ, x0) ∈ R++ × domψn , inexactly solves (42) by obtaining a pair (z, v)

satisfying

v ∈ ∇ψs(z)+ ∂ψn(z), ‖v‖ ≤ σ‖z − x0‖. (45)

Note that if ACG algorithm obtains the aforementioned triple with σ = 0 then the
first component of the triple is, in fact, a global solution of (42). Indeed, if σ = 0
then the above inequality implies that v = 0, and the above inclusion reduces to
0 ∈ ∂(ψs + ψn)(z), which in view of (7) clearly implies that z is a global solution of
(42).

Algorithm B.1: Accelerated Composite Gradient (ACG) Algorithm
Input : (σ, x0) ∈ R++ × domψn .
Output : a pair (z, v) ∈ domψn × R

n satisfying (45).

1 Function ACG({ψs , ψn}, {L, μ}, σ, x0):
2 STEP 0 (initialization):
3 Set y0 ← x0, A0 ← 0.
4 for j ← 0, 1, ... do
5 STEP 1 (main iterates):

6 find the positive scalar a j satisfying a
2
j =

(1+μA j )(a j+A j )

L
7 A j+1 ← A j + a j

8 x̃ j ← A j
A j+1 x j +

A j+1−A j
A j+1 y j

9 x j+1 ← argminy∈Rn

{

ψs (y; x̃ j )+ ψn(y)+ L+μ

2 ‖y − x̃ j‖2
}

10 y j+1 ← y j + a j
1+μA j+1 [L(x j+1 − x̃ j )+ μ(x j+1 − y j )]

11 STEP 2 (termination check):
12 u j+1 ← ∇ψs (x j+1)−∇ψs (x̃ j )+ (L + μ)(x̃ j − x j+1)
13 if ‖u j+1‖ ≤ σ‖x j+1 − x0‖ then
14 (z, v) ← (x j+1, u j+1)
15 return (z, v)

We now devote the remainder of the section to proving the following properties
about the ACG algorithm. Variations of the arguments that follow can also be found
in [9, 28].

Proposition B.1 The following properties hold about the ACG algorithm:
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(a) for every j ≥ 0, it holds that

u j+1 ∈ ∇ψs(x j+1)+ ∂ψn(x j+1) = ∂(ψs + ψn)(x j+1);

(b) it stops in a number of iterations bounded above by

⌈
1+ 2

√
L

μ
log+1

{
4L(L + μ)2

μσ 2

}⌉
, (46)

and its output (z, v) satisfies (45).

We first present some technical properties about the generated iterates of Algo-
rithm B.1.

Lemma B.2 Define the quantities

τ j := 1+ μA j , (47)

q̃ j+1(·) := 
ψs (·; x̃ j )+ ψn(·)+ μ

2
‖ · −x̃ j‖2 (48)

q j+1(·) := q̃ j (x j+1)+ L〈x̃ j − x j+1, · − x j+1〉 + μ

2
‖ · −x j+1‖2, (49)

for every j ≥ 0. Then, for every j ≥ 1, the following statements hold:

(a) A j+1 ≥
[
1+√μ/(2

√
L)
]2 j

/L;

(b) x j+1 = argminx {q j+1(x)+ L‖x − x̃ j‖2/2};
(c) y j+1 = argminy{a jq j+1(y)+ τ j‖y − y j‖2/2};
(d) q j+1(·) ≤ ψ(·).
Proof (a) See, for example, [23, Lemma 4].

(b) Since∇q j+1(x j+1) = L(x̃ j−x j+1), it follows that x j+1 satisfies the optimality
condition of the given minimization problem. Hence, the desired identity follows.

(c) It follows from the definition of q j+1(·) and the update rule of y j+1 that
a j∇q j+1(y j+1) = τ j+1(y j+1− y j ). The conclusion now follows from the optimality
condition for the desired identity.

(d) In view of (44) and the definition of q̃ j+1, we first have that q̃ j+1(·) ≤ ψ(·).
On the other hand, it follows from the optimality condition of x̃ j+1 in Algorithm B.1,
the convexity of ψn , and the definition of q j (·) that L(x̃ j − x j+1) ∈ ∂ q̃ j+1(x j+1).
Furthermore, since q̃ j+1 isμ-strongly convex, we also have L(x̃ j−x j+1) ∈ ∂(q̃ j+1−
μ‖ · −x j+1‖2/2)(x j+1). Combining all these facts with the definition of the subdif-
ferential, we thus conclude that

ψ(·) ≥ q̃ j+1(·) ≥ q̃ j+1(x j+1)+ L〈x̃ j − x j+1, · − x j+1〉 + μ

2
‖ · −x j+1‖2 = q j+1(·).

��
The next result establishes an important technical bound.
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Lemma B.3 For every j ≥ 0 and y ∈ R
n, it holds that

A jq j+1(x j )+ a jq j+1(y)+ τ j

2
‖y j − y‖2 − τ j+1

2
‖y j+1 − y‖2

≥ A j+1
[
ψ(x j+1)+ μ

2
‖x j+1 − x̃ j‖2

]
,

(50)

where τ j and q j (·) are as in (47) and (49), respectively.

Proof Using the update rule for A j+1 we first note that τ j+1 = τ j +μa j . Combining
this fact, the optimality condition in Lemma B.2(c) and the fact that a jq j+1(·)+ τ j‖ ·
−y j‖2/2 is τ j+1-strongly convex, we then have that

a jq j+1(y)+ τ j

2
‖y − y j‖2 − τ j+1

2
‖y − y j+1‖2 ≥ a jq j+1(y j+1)+ τ j

2
‖y j+1 − y j‖2 (51)

for every y ∈ R
n . On the other hand, using the convexity of q j+1(·), the second bound

in (44), Lemma B.2(b), and the quadratic subproblem associated with a j , we have

A jq j+1(x j )+ a jq j+1(y j+1)+ τ j

2
‖y j+1 − y j‖2

≥ A j+1q j+1
(
A j x j + a j y j+1

A j+1

)
+ τ j A2

j+1
2a2j

∥∥∥∥ A j x j + a j y j+1
A j+1

− A j x j + a j y j
A j+1

∥∥∥∥
2

≥ A j+1 min
x∈Rn

{
q j+1(x)+

τ j A2
j+1

2a2j
‖x − x̃ j‖2

}
= A j+1 min

x∈Rn

{
q j+1(x)+ L

2
‖x − x̃ j‖2

}

= A j+1
[
q j+1(x j+1)+ L

2
‖x j+1 − x̃ j‖2

]
≥ A j+1

[
ψ(x j+1)+ μ

2
‖x j+1 − x̃ j‖2

]
.

(52)

The conclusion follows from combining (51) and (52). ��

We now derive a general telescopic bound on the quantity ‖x j+1 − x̃ j‖2.

Lemma B.4 For every j ≥ 0 and x ∈ R
n, it holds that

μA j+1
2

‖x j+1 − x̃ j‖2 ≤ η j (x)− η j+1(x), (53)

where the potential ηi (·) is given by

ηi (·) := Ai [ψ(xi )− ψ(·)] + τi

2
‖ · −yi‖2 ∀i ≥ 0. (54)
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Proof Subtracting A j+1ψ(y) from (50) and using Lemma B.2(d), we have that

A j+1
2
‖x j+1 − x̃ j‖2 + A j+1

[
ψ(x j+1)− ψ(y)

]

≤ A jq j+1(x j )+ a jq j+1(y)− A j+1ψ(y)+ τ j

2
‖y j − y‖2 − τ j+1

2
‖y j+1 − y‖2

≤ A jψ(x j )+ a jψ(y)− A j+1ψ(y)+ τ j

2
‖y j − y‖2 − τ j+1

2
‖y j+1 − y‖2.

The conclusion follows by re-arranging the above bound and using the update rule for
A j+1 and the definition of ηi (·). ��

Specializing the above result, we establish a bound for the residuals {u j+1} j≥0 in
terms of the prox residual ‖x j+1 − x0‖2.

Lemma B.5 For every j ≥ 0, it holds that

‖u j+1‖2 ≤ 4(L + μ)2

μA j+1
‖x j+1 − x0‖2. (55)

Proof Using assumption (B2), the definition of u j+1, the bound (a+b)2 ≤ 2a2+2b2

for a, b ∈ R, (53) at x = x j , and the fact that (A0, τ0) = (0, 1), we have that

μA j+1‖u j+1‖2
2

≤ μ
∑ j

i=0 Ai+1‖ui+1‖2
2

= μ
∑ j

i=0 Ai+1‖∇ψs(xi+1)− ∇ψs(x̃i )+ (L + μ)(x̃i − xi+1)‖2
2

(B2)≤ μ

j∑
i=0

Ai+1
[
‖∇ψs(xi+1)− ∇ψs(x̃i )‖2 + (L + μ)2‖x̃i − xi+1‖2

]

(53)≤ 2μ(L + μ)2
j∑

i=0
Ai+1‖x̃i − xi+1‖2 ≤ 4(L + μ)2

[
η0(x j+1)− ηk+1(x j+1)

]

(A0,τ0)=(0,1)= 4(L + μ)2
[
1

2
‖x0 − x j+1‖2 − τ j+1

2
‖x0 − x j+1‖2

]

≤ 2(L + μ)2‖x0 − x j+1‖2.

��

We are now ready to prove Proposition B.1.
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Proof of Proposition B.1 (a) Using the optimality of x j+1 the definition of u j+1 in
Algorithm B.1, we have that

0 ∈ ∇ψs(x̃ j )+ ∂ψn(x j+1)+ (L + μ)(x j+1 − x̃ j )

= −u j+1 +∇ψs(x j+1)+ ∂ψn(x j+1)
= −u j+1 + ∂(ψs + ψn)(x j+1)

where the last identity follows from the fact thatψs andψn are convex (see (B1)–(B2)).
(b) Let J denote the quantity in (46). Using Lemma B.2(a) and the bound log(1+

t) ≥ t/2 for t ∈ [0, 1], it is straightforward to verify that 4(L + μ)2/(μAJ+1) ≤ σ 2.
It then follows from the previous bound and (55) that

‖uJ+1‖2 ≤ 4(L + μ)2

μAJ+1
‖xJ+1 − x0‖2 ≤ σ 2‖xJ+1 − x0‖2.

Consequently, it follows from the above bound, part (a), and the termination condition
of Algorithm B.1 that the ACG algorithm stops in a number of iterations bounded
above by J . ��

C Necessary optimality conditions

This appendix shows that if ẑ localminimumof (1) then condition (11) holds. Through-
out this appendix, we denote

ψ ′(x; d) = lim
t↓0

ψ(x + td)− ψ(x)

t

as the directional derivative of a function ψ at x in the direction d.
The first useful result presents a relationship between directional derivatives of

composite functions and the usual first-order necessary conditions.

Lemma C.1 Let g : Rn �→ (−∞,∞] be a proper convex function, and let f be a
differentiable function on domg. Then, for every x ∈ domg, the following statements
hold:

(a) inf‖d‖≤1( f + g)′(x; d) = − infu∈Rn {‖u‖ : u ∈ ∇ f (x)+ ∂g(x)};
(b) if x is a local minimum of f + h then 0 ∈ ∇ f (x)+ ∂h(x).

Proof (a) See [14, Lemma 15] with (X , h) = (Rn, g).
(b) This follows immediately from (a) and the fact that ( f +h)′(x; d) ≥ 0 for every

d ∈ R
n .

We now establish the aforementioned necessary condition.

Proposition C.2 Let ( f , h, A, b) be as in (A1)-(A4). If ẑ is a local minimum of (1),
then there exists a multiplier p̂ such that (11) holds.
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Proof We first establish an important technical identity. Let S = {z ∈ R
n : Az = b},

let δS denote the indicator function of S, i.e., the function that takes value 0 if its input
is in S and +∞ otherwise, and let ri X denote the relative interior of a set X . Since
assumptions (A3)–(A4) imply that riH ∩ ri S = intH ∩ S �= ∅, it follows from [26,
Theorem 23.8] that for every x ∈ H ∩ S we have

∂(δS + h)(x) = ∂δS(x)+ ∂h(x) = NS(x)+ ∂h(x) = {ξ + A∗ p : ξ ∈ ∂h(x)}. (56)

The conclusion follows from the above identity and Lemma C.1(b) with g = h + δS .

DAdaptive AIDAL

This appendix presents an adaptive version of AIDAL where we choose the prox
stepsize adaptively.

Before presenting the algorithm,wefirstmotivate its construction under the assump-
tion that the reader is familiar with the notation and results of Sect. 3. To begin, the
careful reader may notice that the special choice of λ = 1/(2m) in AIDAL (Algo-
rithm 2.1) is only needed to ensure that the function λLθ

c (·; p) + ‖ · ‖2 is strongly
convex with respect to the norm ‖x‖Q = 〈x, [(1−λm)I + cλA∗A]x〉 for every c > 0
and p ∈ A(Rn). Moreover, this global property is only needed to show that:

(i) the kth ACG call of AIDAL stops with a pair (zk, vk) satisfying ‖vk‖ ≤ σ‖zk −
zk−1‖;

(ii) λ‖v̂i‖ � �θ
k−1 −�θ

k .

The other technical details of Sect. 3, such as the boundedness of �θ
i , are straightfor-

ward to show as long as the prox stepsize is bounded. As a consequence, a natural
relaxation of AIDAL is to employ a line search at its kth outer iteration for the largest
λ within a bounded range satisfying conditions (i) and (ii) above.

In Algorithm D.1, we present one possible relaxation. Specifically, the kth prox
stepsize λk is chosen from a set of candidates in the range (0, λk−1].

We nowmake a few remarks about AlgorithmD.1. First, the candidate search space
for the kth prox stepsize forms a geometrically decreasing sequence and λk ≤ λk−1.
Second, the first condition of (57) corresponds to condition (i), while the second
condition corresponds to condition (ii). Moreover, the second condition of (57) always
holds when λ = 1/(2m) due to Lemma 3.4, Lemma 3.5, and the definition of v̂i which
imply (cf. the proof of Proposition 3.3) that

‖vk + zk−1 − zk‖2 = λ2‖v̂k‖2 ≤ 9λ(�θ
k−1 −�θ

k ).

Third, in view of the previous remark, since conditions (i) and (ii) are always satisfied
wheneverλ ≤ 1/(2m), we also have thatλk ∈ [1/(2γm), λ0] and, hence, the sequence
{λk}k≥1 is bounded.

Notice that it is not immediately clear how one obtains βk at the kth outer iteration.
One possible approach is to apply an adaptive ACG variant to the stepsize sequence
{λk−1β− j } j≥0 in which the variant has a mechanism to determine if at least one of
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Algorithm D.1: Adaptive AIDAL Method
Input : Same as in Algorithm 2.1 but with additional parameters γ > 1 and λ0 > 0.
Output : Same as in Algorithm 2.1.

1 Function AdapAIDAL(M,{σ, χ, θ, λ0}, {c1, z0, p0}, {ρ, η}, γ):
2 λ0 ← λ

3 for k ← 1, 2, ... do
4 find the smallest nonnegative integer βk such that the ACG call in step 1 of Algorithm 2.1

with λ = γ−βk λk−1 stops with a pair (zk , vk ) satisfying

{
‖vk‖ ≤ σ‖zk − zk−1‖ if k ≥ 1, and
‖vk + zk−1 − zk‖2 ≤ 9λ(�θ

k−1 −�θ
k ) if k ≥ 2,

(57)

where �θ
k is given in (28)

5 set λk ← γ−βk λk−1
6 execute steps 1–4 of Algorithm 2.1 with λ = λk

the conditions in (57) is reachable. This is so that if none of the conditions in (57) are
reachable for some candidate λ, then the variant can be called again with a smaller
stepsize. One example is the adaptive ACG variant in [9], which contains a mechanism
for determining the reachability of the first condition in (57) and can even adaptively
choose its other curvature parameters, such as L in Algorithm B.1. Note that if the
ACG has already been called with the βk satisfying (57) during the βk line search,
then it does not need to be called again when executing the steps of Algorithm 2.1.

Before closing this section, we briefly discuss the convergence and iteration com-
plexity of the method. Convergence of the method is straightforward to establish using
the same techniques of Sect. 3 and the fact that λk is bounded (see the remarks above).
On the other hand, it can be shown that the iteration complexity of the method is on the
same order of complexity as in Theorem 2.3. Without going through the cumbersome
technical details, we assert that this follows from the boundedness of the stepsizes
λk , the fact that the search for the next stepsize is done geometrically, and arguments
similar to other adaptive augmented Lagrangian/penalty methods such as the one in
[11].
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