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Abstract
This paper proposes and establishes the iteration complexity of an inexact proximal
accelerated augmented Lagrangian (IPAAL) method for solving linearly constrained
smooth nonconvex composite optimization problems. Each IPAAL iteration consists
of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated
composite gradient (ACG) method followed by a suitable Lagrange multiplier update.
For any given (possibly infeasible) initial point and tolerance ρ > 0, it is shown
that IPAAL generates an approximate stationary solution in O(ρ−3 log(ρ−1)) ACG
iterations, which can be improved toO(ρ−2.5 log(ρ−1)) if it is further assumed that a
certain Slater condition holds.
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1 Introduction

This paper presents an inexact proximal accelerated augmented Lagrangian (IPAAL)
method for solving the linearly constrained smooth nonconvex composite optimization
problem

min{φ(z) := f (z) + h(z) : Az = b}, (1)

where b ∈ R
l , A : Rn �→ R

l is a linear operator, h : Rn → (−∞,∞] is a closed
proper convex function, and, for some 0 < m f ≤ L f , f is a real-valued differentiable
nonconvex function which is m f -weakly convex, i.e., f +m f ‖ · ‖2/2 is convex, and
whose gradient is L f -Lipschitz continuous.

The method, referred to as θ -IPAAL, depends on a given perturbation parameter
θ > 0which in turn determines the θ -augmentedLagrangian (θ -AL) functionLθ

c (z, q)

defined as

Lθ
c (z, q) := f (z) + h(z) + (1 − θ) 〈q, Az − b〉 + c

2
‖Az − b‖2, (2)

where c > 0 is a penalty parameter. Note that when θ = 0, Lθ
c (·, ·) reduces to the

classical quadratic augmented Lagrangian (AL) function which has been thoroughly
studied in the literature (see, for example, [2, 4, 23, 27, 35]). Moreover, when θ = 1,
Lθ
c (·, ·) does not depend on q and reduces to the quadratic penalty function frequently

used by penalty methods for solving (1). For a given tolerance pair (ρ̂, η̂) ∈ R
2++, the

goal of θ -IPAAL is to find a triple (ẑ, q̂, v̂) satisfying

v̂ ∈ ∇ f (ẑ) + ∂h(ẑ) + A∗q̂, ‖v̂‖ ≤ ρ̂, ‖Aẑ − b‖ ≤ η̂. (3)

Before discussing θ -IPAAL,we first outline its static version, referred to as the static θ -
IPAAL, which keeps c always constant. Indeed, for a fixed stepsize λθ > 0 depending
on θ , the static θ -IPAAL repeatedly performs the following iteration for any k ≥ 1:
given (zk−1, qk−1) ∈ domh × R

l , it computes (zk, qk) as

zk ≈ argminz

{
λθLθ

c (z, qk−1) + 1

2
‖z − zk−1‖2

}
, (4)

qk = (1 − θ)qk−1 + c(Azk − b),

where zk should be understood as a suitable approximate solution of the prox sub-
problem (4). We now briefly describe how zk is computed without elaborating on the
inexactness criterion used to solve (4). First note that since f is m f -weakly convex,
the objective function of (4) is strongly convex whenever λθ < 1/m f . The static
θ -IPAAL sets λθ = τθ/m f for some τθ ∈ (0, 1) such that τθ = O(θ) and then
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approximately solves the corresponding subproblem (4) by a strongly convex version
of an accelerated composite gradient (ACG) method (see, for example, [3, 19, 30,
33]) to obtain zk . It is shown that each pair (zk, qk) obtained in the above manner can
always be refined to a triple (ẑ, q̂, v̂) = (ẑk, q̂k, v̂k) satisfying the inclusion in (3).

The static θ -IPAAL is then stopped whenever v̂ = v̂k satisfies the first inequality in
(3). Moreover, it is shown that the static θ -IPAAL satisfies the following properties:
(i) it stops in O(θ−5/2ρ̂−2c1/2 log(c)) ACG iterations1; (ii) every refined iterate ẑk
satisfies ‖Aẑk−b‖ = O(θ−1c−1/2); and (iii) if h in (1) satisfies somemild assumptions
such as the Slater condition int (domh) ∩ {z : Az = b} �= ∅, then every ẑk satisfies
‖Aẑk − b‖ = O(θ−5/2c−1).

Observe that the above property (ii) and/or (iii) guarantees that ẑ = ẑk is a near
feasible point, i.e., satisfies the second inequality in (3), only when c is sufficiently
large. The θ -IPAAL method on the other hand adaptively increases c so as to also
obtain the desired near feasibility, and hence a triple (ẑ, q̂, v̂) satisfying (3). More
specifically, it chooses an initial penalty parameter c and it repeatedly: (a) invokes the
static θ -IPAAL with the current c to obtain a triple (ẑ, q̂, v̂) satisfying the inclusion
and the first inequality in (3); and (b) doubles c whenever the second inequality in (3)
is violated, until it obtains a triple (ẑ, q̂, v̂) satisfying all the conditions in (3). It is
then shown that the ACG iteration complexity of this adaptive variant in terms of the
tolerancepair (ρ̂, η̂) and theparameter θ only isO(θ−7/2η̂−1ρ̂−2 log(η̂−1)).Moreover,
if some mild additional assumptions hold, then the ACG iteration complexity of θ -
IPAAL improves toO(θ−15/4η̂−1/2ρ̂−2 log(η̂−1)). It is worth emphasizing that all the
results mentioned above are derived without assuming that the initial point z0 ∈ domh
is feasible, i.e., it satisfies Az0 = b. Moreover, the iteration complexities which are
mentioned here refer to the effort of obtaining an approximate stationary point as in
(3). Note that even though these complexities are described as bounds on the number
of (possibly ACG) iterations, they are also bounds on the total number of h-resolvent
computations and/or gradient evaluations of f .

RelatedWorks. Iteration-complexity analysis of penalty- and/or AL-type methods
for solving convex versions of (1) was considered in [1, 2, 22, 23, 27, 28, 32, 34, 38].
Inexact proximal point methods for solving convex-concave saddle point problems
andmonotone variational inequalities that use accelerated gradient algorithms to solve
their prox subproblems were previously considered in [6, 11, 12, 15, 31].

Wewill now focus onmethods for solving the nonconvex CO problem (1). Iteration
complexities for proximal quadratic penalty (PQP)methodswere developed in [16, 17,
21, 26]. More specifically, the first bound, namely,O(η̂−1ρ̂−2), was obtained in [16],
which was then improved toO(η̂−1/2ρ̂−2 log(1/η̂)) in [26] under the assumption that
h is Lipschitz continuous on its domain and that the aforementioned Slater condition
holds. AL methods for solving (1) with function h identically zero were studied in
[13, 37].

1 Since each ACG iteration of IPAAL requiresO(1) resolvent evaluations of h and/or gradient evaluations
of f , the ACG iteration complexity also bounds the number of h-resolvent computations (i.e., evaluations
of (I + η∂h)−1 for η > 0) and gradient evaluations of f performed by θ -IPAAL.
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This paragraph discusses AL methods for solving (1) with nontrivial composite
function h. Paper [10]2 studies an unaccelerated proximal AL method based on the θ -
AL function (2)with θ in (0, 1] and establishes anO(1/(η̂4+ρ̂4)) iteration complexity
to compute an approximate stationary point for (1). Each iteration of this method
exactly solves a prox subproblem such as (4) except that f in (2) is replaced by its
linearization at zk−1 and the prox term ‖z − zk−1‖2 is replaced by ‖z − zk−1‖2B∗B for
some suitably chosen matrix B.

Paper [36] studies the iteration complexity of a non-proximal AL-type method for
solving a nonlinearly constrained version of (1) which uses the AG method of [8] to
obtain approximate stationary points of Lck (·; qk−1) for increasing values of ck . It is
worth mentioning that [36] assumes a strong condition relating the feasibility of an
iterate to its stationarity and shows that it holds in the setting of problem (1) with h
being the indicator function of a bounded polyhedron or a 2-norm ball. After the first
release of our paper, [24] proposed a non-proximal AL method related to [36] where
each AL subproblem is solved by an inexact proximal inner accelerated method.

We now describe other papers that are tangentially related to this paper.
Paper [5] considers a primal-dual proximal point scheme and analyzes its complex-

ity under strong conditions on the initial point. Paper [14] considers a penalty-ADMM
method that solves an equivalent reformulation of (1). Paper [39] presents a primal-
dual first-order algorithm for solving (1) with h being the indicator function of a
Euclidean box. Additional discussion of how θ -IPAAL compares with [39] is given
in Sect. 6.

Contributions.We now compare the iteration complexity of θ -IPAAL to the ones
obtained for others methods for solving (1) under the same assumptions made in this
paper (and hence without assuming that h is the indicator function of a Euclidean
box as in [39] or making the strong assumption as in [36]). An Õ(η̂−1/2ρ̂−2) ACG
iteration complexity had already been established in [26] for a prox quadratic penalty-
type method and in [25] for the aforementioned hybrid inexact proximal type method.
Paper [25] also establishes a similar ACG iteration complexity for an inexact proximal
point method applied to (1) (i.e., to the function defined as φ(z) if z is feasible and
+∞ otherwise where φ is as in (1)), where each (strongly convex) prox subproblem is
either solved by a penalty-type method or an AL-type method (and hence its adjective
hybrid). Our work though is the first one to establish the aforementioned iteration-
complexity bound for a prox ALmethod directly applied to (1). Furthermore, it has the
following features: i) it updates the Lagrange multiplier after every ACG call to solve
a composite unconstrained subproblem; ii) its initial point can be infeasible; and iii)
it is a generalization of the prox AL method in Section 3 of [35] to nonconvex setting
of (1). The prox AL method of [10] also satisfies properties i)–iii), but its iteration
complexity is worse, i.e., O(1/(η̂4 + ρ̂4)), and is established under the restrictive
assumption that the initial point z0 is feasible, i.e., satisfies Az0 = b and z0 ∈ domh.

Organization of the Paper. Section2 is divided into three subsections. Section 2.1
provides some notation and basic definitions. Section 2.2 reviews the ACG variant

2 This method generates prox subproblems of the form argminx∈X {λh(x)+[c/2]‖Ax−b‖2/2+[1/2]‖x−
x0‖2B∗B }, which are assumed to be exactly solvable for any x0, c, λ and matrix B.
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that is used to approximately solve the prox subproblems of the θ -IPAAL method.
Section 2.3 states ourmain problem of interest and our assumptions. Section3 contains
two subsections. The first one states the static θ -IPAALmethod and its main iteration-
complexity results. The second subsection introduces an adaptive variant of the static
θ -IPAAL method and establishes its iteration-complexity bounds. Section4 contains
the proofs of Theorems 3.1. This section contains two subsections. The first one is
devoted to the proof of the first two statements of Theorem 3.1, while the second
subsection contains the proof of the last statement of Theorem 3.1. Section5 presents
the proof of an auxiliary technical result. Section6 presents some concluding remarks.
The appendix contains some basic auxiliary results.

2 Notation, Basic Definitions, and BackgroundMaterial

This section contains three subsections. The first one describes some basic notation and
definitions used in our presentation. The second one reviews an accelerated composite
gradient (ACG) variant which will be used as a subroutine by the main algorithm of
this paper. The third subsection presents our problem of interest and our assumptions.

2.1 Basic Notation and Definitions

Let Rn denote the n-dimensional Euclidean space with inner product and associated
norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. We useRl×n to denote the set of all l ×n
matrices. The image space of amatrix S ∈ R

l×n is defined as Im(S) := {Sx : x ∈ R
n},

andPS denotes the Euclidean projection onto Im (S). The smallest positive eigenvalue
of (S∗S)1/2 is denoted by σ+(S). If S is a symmetric and positive semidefinite matrix,
the seminorm induced by S onRn , denoted by ‖·‖S , is defined as ‖·‖S := 〈S(·), ·〉1/2.
The distance of a point x to a closed convex set X is denoted by dist X (x). The normal
cone of X at a point x ∈ X , denoted by NX (x), is defined by NX (x) = {v ∈ R

n :
〈v, z − x〉 ≤ 0, ∀z ∈ X}. For t > 0, we define B̄(0, t) := {z ∈ R

n : ‖z‖ ≤ t} and
log+

1 (t) := max{log t, 1}. The domain of a function g : Rn → (−∞,∞] is the set
domg := {x ∈ R

n : g(x) < +∞}. Moreover, g is said to be proper if g(x) < ∞ for
some x ∈ R

n . The set of closed proper convex functions defined in R
n is denoted by

ConvRn . The ε-subdifferential of a function g ∈ ConvRn is defined by

∂εg(z) := {u ∈ R
n : g(z′) ≥ g(z) + 〈u, z′ − z〉 − ε, ∀z′ ∈ R

n}, ∀z ∈ domg.

(5)

If ψ : Rn → R is differentiable at z̄ ∈ R
n , then its affine approximation �ψ(·, z̄) at

z̄ is defined as

�ψ(z; z̄) := ψ(z̄) + 〈∇ψ(z̄), z − z̄〉 ∀z ∈ R
n . (6)

123



Journal of Optimization Theory and Applications

2.2 An ACGVariant

This subsection reviews and describes the iteration complexity of an ACG variant
which will later be used in the context of the method outlined in the Introduction to
approximately solve the prox subproblem (4).

For the purpose of this subsection only, consider the following composite optimiza-
tion problem:

min{ψ(x) := ψ(s)(x) + ψ(n)(x) : x ∈ R
n}, (7)

where the following conditions are assumed to hold:

(A1) ψ(n) ∈ ConvRn ;
(A2) ψ(s) is convex differentiable on domψ(n) and there exists (μ0, M0) ∈ R

2 such
that M0 > μ0 > 0 and

μ0‖u − x‖2/2 ≤ ψ(s)(u) − �ψ(s) (u; x) ≤ M0‖u − x‖2/2 (8)

for every x, u ∈ domψ(n), where �ψ(s) (·; ·) is as in (6).

We are now ready to state the ACG variant.

ACG

(0) Let a pair of functions (ψ(s), ψ(n)) satisfying (A1) and (A2) for some (μ0, M0) ∈
R
2+, a scalar σ̃ > 0, and an initial point y0 ∈ domψn be given; set x0 = y0,

A0 = 0, τ0 = 1, ζ = 1/(M0 − μ0), and j = 0;
(1) compute the iterates

a j =
ζ τ j +

√
(ζ τ j )2 + 4τ j A j

2
, A j+1 = A j + a j , x̃ j = A j y j + a j x j

A j+1
,

τ j+1 = τ j + μ0a j ,

y j+1 = argminy∈Rn

{
�ψ(s) (y; x̃ j ) + ψ(n)(y) + M0

2
‖y − x̃ j‖2

}
,

x j+1 = 1

τ j+1

[
a j

ζ
(y j+1 − x̃ j ) + μ0a j y j+1 + τ j x j

]
;

(2) compute the quantities

u j+1 = μ0(y j+1 − x j+1) + x0 − x j+1

A j+1
,

η j+1 = 1

2A j+1

(
‖x0 − y j+1‖2 − τ j+1‖x j+1 − y j+1‖2

)
;
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(3) if the inequality

‖u j+1‖2 + 2η j+1 ≤ σ 2
0 ‖y0 − y j+1 + u j+1‖2

holds, then stop and output (y, u, η) := (y j+1, u j+1, η j+1); otherwise, set j =
j + 1 and go to (1).

Some remarks about ACG follow. First, the most common way of describing an
iteration of ACG is as in Step 1. Second, the auxiliary iterates {u j } and {η j } computed
in Step 2 are used to develop a stopping criterion for ACG when it is called as a
subroutine for solving the subproblems generated in Step 1 of static θ -IPAAL in
Sect. 3.

Third, it can be shown (see, for example, [7, 19]) that ACG (without Steps 2 and
3) with μ0 = 0 corresponds to the well-known FISTA algorithm.

Fourth, the sequence {A j } has the following increasing property:

A j ≥ 1

M0 − μ0
max

{
j2

4
,

(
1 +

√
μ0

4(M0 − μ0)

)2( j−1)
}

, ∀ j ≥ 1.

The next result, whose proof can be found, for example, in [19, Lemma 2.13],
summarizes the main properties of ACG used in this paper.

Proposition 2.1 Let {(y j , u j , η j )} j≥1 be the sequence generated by ACG applied to
(7), where (ψ(s), ψ(n)) is a given pair of data functions satisfying (A1) and (A2).
Then, the following statements hold:

(a) for every j ≥ 1, we have η j ≥ 0 and u j ∈ ∂η j (ψ
(s) + ψ(n))(y j );

(b) for any σ0 > 0, the ACG method outputs a triple (y, u, η) ∈ R
n ×R

n × [0,+∞)

satisfying

u ∈ ∂η(ψ
(s) + ψ(n))(y) ‖u‖2 + 2η ≤ σ 2

0 ‖y0 − y + u‖2

in at most

⌈
3

√
M0

μ0
log+

1 Q0

⌉
(9)

iterations, where

Q0 := 4(2μ0 + 3)M0

σ 2
0

. (10)
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2.3 Problem of Interest and Assumptions

This section contains notation, basic definitions, and assumptions considered in this
paper.

The main problem of interest in this paper is (1) with f , h : Rn → (−∞,∞],
A : Rn → R

l and b ∈ R
l satisfying the following assumptions:

(B1) A is a nonzero linear operator and the feasible set F := {z ∈ domh : Az =
b} �= ∅;

(B2) h ∈ ConvRn and there exists kh such that

∂h(z) ⊆ B̄(0, kh) + NH(z), ∀z ∈ H := domh;

(B3) the diameter Dh := sup{‖z − z′‖ : z, z′ ∈ H} is finite;
(B4) f is nonconvex and differentiable on H, and there exist L f ≥ m f > 0 such

that, for every z, z′ ∈ H,

‖∇ f (z′) − ∇ f (z)‖ ≤ L f ‖z′ − z‖, f (z′) − � f (z
′; z) ≥ −m f

2
‖z′ − z‖2.

(11)

Some results of this paper also assume (in addition to the above assumptions) that
the following Slater condition holds:

(B5) there exists z̄ ∈ intH such that Az̄ = b.

Some comments about the above conditions are in order. First, (B2)3 has been previ-
ously used as an assumption in [26] where (up to a logarithmic term) anO(ρ̂−2η̂−1/2)

iteration complexitywas established for a penalty-typemethod. Second, it can be easily
shown that the first condition in (11) implies that | f (z′)−� f (z′; z)| ≤ L f ‖z′ − z‖2/2
for every z, z′ ∈ H, and hence that the second condition in (11) holds with m f = L f .
However, our analysis considers the case in which m f < L f since it may poten-
tially lead to better iteration-complexity bounds. Third, the second condition in (11)
is equivalent to the function f (·)+m f ‖ · ‖2/2 being convex onH. Moreover, since f
is nonconvex on H, the smallest m f satisfying (11) is positive. Finally, (B4) implies
that H ⊆ dom f , and hence H = domφ, where φ is as in (1).

It is well known that, under some mild conditions, if z̄ is a local minimum of (1),
then there exists q̄ ∈ R

l such that (z̄, q̄) is a stationary point of (1), i.e.,

0 ∈ ∇ f (z̄) + ∂h(z̄) + A∗q̄, Az̄ − b = 0. (12)

The main complexity results of this paper are stated in terms of the following notion
of approximate stationary point, which is a natural relaxation of (12).

3 It is shown in Lemma A.2 of paper [18], which appeared after this work, that (B2) is equivalent to the
more usual condition that h restricted to its domainH is kh -Lipschitz continuous.
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Definition 2.1 Given a tolerance pair (ρ̂, η̂) ∈ R++ × R++, a triple (ẑ, q̂, v̂) ∈ R
n ×

R
l ×R

n is said to be a (ρ̂, η̂)-approximate stationary point of (1) if it satisfies (3), i.e.,

v̂ ∈ ∇ f (ẑ) + ∂h(ẑ) + A∗q̂, ‖v̂‖ ≤ ρ̂, ‖Aẑ − b‖ ≤ η̂. (13)

Sections 3.1 and 3.2 formally describe the static θ -IPAAL method and its adaptive
version, respectively, for finding a (ρ̂, η̂)-approximate stationary point of (1) in the
sense of Definition 2.1.

3 The �-IPAALMethod andMain Complexity Results

This section contains two subsections. The first one states the static θ -IPAAL method
and its iteration-complexity bounds. The second subsection presents an adaptive vari-
ant of the static θ -IPAAL method and its iteration-complexity bounds.

3.1 The Static�-IPAALMethod and its Iteration Complexity

This subsection presents the static θ -IPAAL method and its iteration-complexity
bounds.

We start by stating the static θ -IPAAL.

Static θ -IPAAL Method

(0) Let parameters θ ∈ (0, 1) and ν > 0, initial point z0 ∈ H, tolerance ρ̂ > 0, and
penalty parameter c > 0 be given, and set q0 = 0, k = 1, and

Lc := L f + c‖A‖2, τθ := min

{
1

2
,

θ

88(1 − θ)

}
, λθ := τθ

m f
, (14)

where (m f , L f ) is as in (B4); also, choose σ ∈ (0, τθ ] and set

σ̃ := min

{
ν√

λθ Lc + 1
, σ

}
; (15)

(1) let (zk, vk, εk) = (y, u, η) denote the output of the ACG described in Sect. 2.2
with inputs

(ψ(s), ψ(n))=(ψ
(s)
k , λθh), (M0, μ0)=(λθ Lc + 1, 1/2), x0=zk−1, σ0=σ̃ ,

(16)

where

ψ
(s)
k := λθ

(Lθ
c (·, qk−1) − h

)+ 1

2
‖ · −zk−1‖2, (17)
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and set

qk = (1 − θ)qk−1 + c(Azk − b); (18)

(2) compute (ẑk, q̂k, v̂k) as

ẑk := argminu

{
〈λθ

[∇ f (zk) + A∗qk
]− rk, u〉 + λθh(u) + λθ Lc + 1

2
‖u − zk‖2

}
,

(19)

q̂k := (1 − θ)qk−1 + c
(
Aẑk − b

)
,

v̂k := 1

λθ

[
(λθ Lc + 1)(zk − ẑk) + rk

]+ ∇ f (ẑk) − ∇ f (zk) + cA∗A(ẑk − zk),

where rk is given by

rk := vk + zk−1 − zk . (20)

(3) if‖v̂k‖ ≤ ρ̂, then output (ẑ, q̂, v̂) := (ẑk, q̂k, v̂k) and stop; otherwise, set k ← k+1
and return to Step 1.

We now make a few remarks about the static θ -IPAAL. First, it makes two types of
iterations, namely the outer iterations indexed by k and the ACG iterations performed
during its calls to the ACG method in Step 1. Second, the triple (zk, vk, εk) computed
in Step 1 can be regarded as an approximate stationary solution of subproblem (4) in a
sense that will be described in Proposition 3.1(d) and the remarks following the proof
of this proposition. Third, Step 2 uses (zk, qk, vk) computed in Step 1 to construct a
triple (ẑk, q̂k, v̂k) satisfying v̂k ∈ ∇ f (ẑk) + ∂h(ẑk) + A∗q̂k and some other technical
properties described in Lemma 4.1. Fourth, the static θ -IPAAL stops when the kth
residual v̂k is small as described in Step 3. Fifth, the method terminates, it is shown in
Theorem 3.1 that, if c is sufficiently large, then the feasibility residual ‖Aẑk − b‖ is
also small, and hence that ẑk is an approximate solution in the sense of Definition 2.1.
Sixth, using (14) and (15), it can be easily seen that

σ̃ ≤ σ ≤ τθ ≤ 1/2, max{σ, τθ } = O(θ). (21)

Finally, the second paragraph in the Concluding Remarks discusses an equivalent way
of describing the static θ -IPAAL method in terms of the classical Lagrangian, i.e., the
perturbed Lagrangian Lθ

c (·, ·) in (2) with θ = 0.
The result below describes some properties of the ACG call in Step 1 of the static

θ -IPAAL.

Proposition 3.1 For every k ≥ 1, if we define

ψk(·) := ψ
(s)
k (·) + λθh(·) = λθLθ

c (·, qk−1) + ‖ · −zk−1‖2/2, (22)

where ψ
(s)
k (·) is as in (17), then the following statements hold:
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(a) the function ψ
(s)
k (·) − λθc‖A(·)‖2/2, and hence ψk(·) − λθc‖A(·)‖2/2, is 1/2-

strongly convex; as a consequence bothψ
(s)
k (·) andψk(·) are 1/2-strongly convex;

(b) ψ(s)(·) = ψ
(s)
k (·) satisfies the second inequality in (8)with M0 = λθ Lc+1, where

(λθ , Lc) is as in (14);
(c) the ACG method invoked in Step 1 of the static θ -IPAAL method finds its output

(zk, vk, εk) in at most

I (c) :=
⌈
6

(√
L f + √

τθc‖A‖√
m f

)
log(Q(c))

⌉
(23)

ACG iterations, where (τθ , Lc) is as in (14) and Q(c) is given by

Q(c) := 64

[
L f + τθc‖A‖2

m f

]2
max

{
ν−2, σ−2

}
; (24)

(d) (zk, vk, εk) satisfies

vk ∈ ∂εk

(
λθLθ

c (·, qk−1) + 1

2
‖ · −zk−1‖2

)
(zk), ‖vk‖2 + 2εk ≤ σ̃ 2‖rk‖2,

(25)

where (σ, σ̃ ) is as in (15) and rk is as in (20).

Proof (a) To prove this statement, it suffices to show that ψ(s)
k (·) − λθc‖A(·)‖2/2 is

(1/2)-strongly convex as this claim trivially implies all the other three claims in a).
Indeed, first observe that assumption (B4) and the fact that τθ ≤ 1/2 (see (21)) imply
that λθ f (·) + ‖ · ‖2/2 is strongly convex with modulus 1− λθm f = 1− τθ ≥ 1/2.

The aforementioned claim now follows by noticing that ψ(s)
k (·) − λθc‖A(·)‖2/2 is

equal to λθ f (·) + ‖ · ‖2/2 plus a suitably defined affine function.
(b) The fact that ∇ f is L f -continuous in dom h (see (B5)) and the definitions

ofLθ
c andψ

(s)
k in (2) and (17), respectively, imply that∇ψ

(s)
k is (λθ Lc+1)-Lipschitz

continuous in dom h, and hence that b) holds.
(c) & (d) First note that (a) and (b) imply that (ψ(s), ψ(n)) and (M0, μ0) in (16)
satisfy the assumptions of Proposition 2.1. Now, from the definitions ofQ0 in (10),
σ̃ in (15), and (μ0, M0, σ0) in (16), we have

Q0 = 4(2μ0 + 3)M0

σ 2
0

= 16M0

σ̃ 2 ≤ 16M0(λθ Lc + 1)max
{
ν−2, σ−2

}

= 16M2
0 max

{
ν−2, σ−2

}
.
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On the other hand, using the definitions of (λθ , Lc) in (14) and M0 in (16), we have

M0 = λθ Lc + 1 = τθ (L f + c‖A‖2)
m f

+ 1 ≤ (τθ + 1)L f + cτθ‖A‖2)
m f

≤ 2

(
L f + τθc‖A‖2

m f

)

where the last inequality is due to the fact that m f ≤ L f and τθ < 1 (see (B4)
and (14)). It follows from the above two inequalities and the definition of Q(c)
in (24) that Q0 ≤ Q(c). Hence, statement (c) follows from (9), the last displayed
inequality above, and the fact that μ0 = 1/2. Statement (d) follows immediately
from Proposition 2.1(b).

��
We now give some comments about (25). First, observe that if (vk, εk) = (0, 0)

then (25) implies that zk is an optimal solution of (4). Second, the quantity ‖vk‖2+2εk
in (25) can be viewed as the size of the residual pair (vk, εk), which in turn measures
the inexactness of zk as an approximate solution of (4). Finally, the inequality in (25)
requires the size of (vk, εk) to be small relative to ‖rk‖2, and hence it is a criterion that
does not involve the tolerances ρ̂ and η̂.

The following result, whose proof will be given in Sects. 4.1 and 4.2, presents
some iteration-complexity bounds for the static θ -IPAAL method, under the assump-
tions introduced in Sect. 2.3. Its statement and several proofs below make use of the
quantities

φ∗ = inf
z∈F

φ(z), φ := inf
z∈Rn

φ(z), (26)

where F is as in (B1). Clearly, φ∗ ≥ φ and they can be easily seen to be finite in view
of (B1)–(B4).

Theorem 3.1 Assume that conditions (B1)–(B4) hold and define

R̄θ := 88(1 + 2ν)2

θτθ

(
φ∗ − φ + m f D

2
h

)
, (27)

R̂θ := 4

σ+(A)dist∂H(z̄)

⎡
⎣
⎛
⎝L f Dh + ‖∇ f (z0)‖ + Kh +

(1 + ν)

√
m f R̄θ√

2τθ

⎞
⎠ Dh + 3R̄θ√

2θ

⎤
⎦ ,

(28)

where τθ is as in (14), (φ∗, φ) is as in (26), and (Kh,H), Dh, (m f , L f ), and z̄ are as
in (B2), (B3), (B4), and (B5), respectively. Then, the following statements about the
static θ -IPAAL method hold:

(a) its number of outer iterations is bounded by

Oθ (ρ̂) :=
⌈
1 + m f R̄θ

2τθ ρ̂2

⌉
; (29)
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(b) its output (ẑ, q̂, v̂) satisfies

v̂ ∈ ∇ f (ẑ) + ∂h(ẑ) + A∗q̂, ‖v̂‖ ≤ ρ̂, ‖Aẑ − b‖ ≤
√

R̄θ

c
; (30)

as a consequence, if

c ≥ c̄θ (η̂) := R̄θ

η̂2
, (31)

for some tolerance η̂ > 0, then (ẑ, q̂, v̂) is a (ρ̂, η̂)-approximate stationary solution
of (1);

(c) if in addition, the Slater condition (B5) holds, then ẑ also satisfies

‖Aẑ − b‖ ≤ R̂θ

c
; (32)

as a consequence, if

c ≥ ĉθ (η̂) := min

{
c̄θ (η̂),

R̂θ

η̂

}
, (33)

then (ẑ, q̂, v̂) is a (ρ̂, η̂)-approximate stationary solution of (1).

We now make a few remarks about Theorem 3.1. First, it follows from Proposi-
tion 3.1(b) and Theorem 3.1 that, if c is sufficiently large, then the static θ -IPAAL
successfully terminates with a (ρ̂, η̂)-approximate stationary solution of (1) in
Oθ (ρ̂)I (c) ACG iterations, where I (c) and Oθ (ρ̂) are as in (23) and (29), respec-
tively. Second, the smaller c is, the smaller the latter complexity is. Hence, if we could
only make a single choice of c so as to guarantee successful termination of the static θ -
IPAAL and (B5) does not hold (resp., (B5) holds), then a safe one would be c = c̄θ (η̂)

given in (31) (resp. c = ĉθ (η̂) given in (33)), in which case its total ACG complexity
in terms of the tolerances (ρ̂, η̂) would be O(ρ̂−2η̂−1) (resp., O(ρ̂−2η̂−1/2) in view
of (23) and (29). Third, since the quantities c̄θ (η̂) and ĉθ (η̂) are difficult to compute,
it is usually impossible to have at our disposal a scalar c as in statements c) or d) of
Theorem 3.1, and hence it is not clear how to obtain a (ρ̂, η̂)-approximate stationary
point of (1) by just solving a single penalized subproblem.

The next subsection presents an adaptive version of the static θ -IPAALwhich adap-
tively updates the penalty parameter c and whose overall ACG iteration complexity
is essentially the same as that of the static θ -IPAAL method with c = c̄θ (η̂) (or with
c = ĉθ (η̂) if (B5) holds).

3.2 The�-IPAALMethod and its Iteration Complexity

This subsection presents an adaptive version of θ -IPAAL to obtain a (ρ̂, η̂)-
approximate stationary point to (1). This method basically consists of applying the
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static θ -IPAALand repeatedly doubling the penalty parameter until the second inequal-
ity in (13) is satisfied. The main iteration-complexity result of this scheme is also
presented in this subsection.

We start by stating the adaptive version of the θ -IPAAL, which will be simply
referred to as θ -IPAAL method for shortness.

θ -IPAAL Method

(0) Let an initial point z0 ∈ H, scalars θ ∈ (0, 1) and ν > 0, and a pair of tolerances
(ρ̂, η̂) ∈ R++ ×R++ be given, choose an initial penalty parameter c1 > 0 and set
c = c1;

(1) execute the static θ -IPAALwith input (z0, θ, ν, c, ρ̂), and let (ẑ, v̂, q̂) be its output;
(2) if ‖Aẑ − b‖ ≤ η̂, stop and output (ẑ, v̂, q̂); otherwise, set c ← 2c and return to

Step 1.

The next result states the overall ACG iteration complexity of θ -IPAAL for obtain-
ing a (ρ̂, η̂)-approximate stationary point of (1).

Theorem 3.2 Assume that conditions (B1)–(B4) hold and let c̄θ (η̂) and ĉθ (η̂)) as in
(31) and (33), respectively. Then, the following statements hold:

(a) the θ -IPAAL method obtains a (ρ̂, η̂)-approximate stationary solution (ẑ, q̂, v̂) of
the problem (1) in

O
⎛
⎝�
√
L f log

(
1 + χ̄−1

)+
(
(1 + χ̄ )1/2

√
τθ c̄θ (η̂)

)
‖A‖

√
m f

log
(Q̄1(η̂)

)�Oθ (ρ̂)

⎞
⎠
(34)

ACG iterations, where Oθ (ρ̂) is as in (29), c̄θ (η̂) is as in (31), χ̄ := c1/c̄θ (η̂),
Q̄1(η̂) := Q(c1 + c̄θ (η̂)), and the quantity Q(·) is as in (24);

(b) if in addition, the Slater condition (B5) holds, then θ -IPAAL obtains a (ρ̂, η̂)-
approximate stationary solution (ẑ, q̂, v̂) of the problem (1) in

O
⎛
⎝�
√
L f log

(
1 + χ̂−1

)+
(
(1 + χ̂ )1/2

√
τθ ĉθ (η̂)

)
‖A‖

√
m f

log
(
Q̂1(η̂)

)
�Oθ (ρ̂)

⎞
⎠
(35)

ACG iterations, where ĉθ (η̂) is as in (33), χ̂ := c1/ĉθ (η̂) and Q̂1(η̂) := Q(c1 +
ĉθ (η̂)).

Proof (a) First note that the lth loop of the θ -IPAAL method invokes the static θ -
IPAAL with penalty parameter c = cl , where cl := 2l−1c1 for all l ≥ 1. Hence, it
follows from the stopping criterion in Step 2 of θ -IPAAL and Theorem 3.1(b) that
θ -IPAAL computes a (ρ̂, η̂)-approximate stationary solution (ẑ, q̂, v̂) of (1) in at
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most l̄ iterations, where l̄ := min
{
l : cl ≥ c̄θ (η̂)

}
and c̄θ (η̂) is as (31). Hence, we

have

cl = c12
l−1 ≤ max

{
c1, 2c̄θ (η̂)

} ≤ 2(c1 + c̄θ (η̂)) ∀l = 1, . . . , l̄. (36)

Moreover, in view of Theorem 3.1(a) and Proposition 3.1(b), we conclude that the
total number of ACG iterations performed by θ -IPAAL is on the order of

O
⎛
⎝Oθ (ρ̂)

l̄∑
l=1

I (cl)

⎞
⎠ , (37)

where I (c) is as in (23) and Oθ (ρ̂) is as in(29). To simplify this bound, note that
the definitions ofQ(·) in (24) and Q̄1(η̂) in statement (a), combined with (36) and
the fact that τθ ≤ 1/2 (see (21)), imply that

Q(cl) = 64

[
L f + τθcl‖A‖2

m f

]2
max

{
ν−2, σ−2

}
≤ Q(2τθ [c1 + c̄θ (η̂)]) ≤ Q̄1(η̂),

∀l = 1, . . . , l̄.

Moreover, (36) and the definition of χ̄ in the statement of Theorem 3.2(a) imply
that

l̄∑
l=1

(√
L f + √

τθcl‖A‖
)

= l̄
√
L f + √

τθc1‖A‖
l̄∑

l=1

√
2
l−1

≤ l̄
√
L f + (1 + √

2)
√

τθ

√
2c1

l̄‖A‖
≤ √L f log

(
4[c1 + c̄θ (η̂)]

c1

)
+ 8
√

τθ [c1 + c̄θ (η̂)]‖A‖

=
(√

L f log
(
4
(
1+χ̄−1

))
+8
√

(1+χ̄)τθ c̄θ (η̂)‖A‖
)

.

It then follows from the last two inequalities above and the definition of I (c) in
(23) that

l̄∑
l=1

I (cl)=O
(

1√
m f

(√
L f log

(
1 + χ̄−1)+√(1+χ̄)τθ c̄θ (η̂)‖A‖

)
log
(Q̄1(η̂)

))
,

which combined with (37) proves statement (a).
(b) The proof of this statement follows the same steps of the proof of (a), but uses

Theorem 3.1(c) and the quantities ĉθ (η̂) given in (33) and (χ̂ , Q̂1(η̂)) defined in
statement (b), instead of Theorem 3.1(b) and the quantities c̄θ (η̂) given in (31) and
(χ̄ , Q̄1(η̂)) defined in statement (a), respectively.

��
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We now make some remarks about Theorem 3.2.
First, if the initial penalty parameter c1 is chosen so as to satisfy max{χ̄−1, χ̄} =

O(1) (resp.,max{χ̂−1, χ̂} = O(1)), then the iteration-complexity bound in (34) (resp.,
(35)) reduces to

Oθ (ρ̂)I (c̄θ (η̂)),
(
resp., Oθ (ρ̂)I (ĉθ (η̂))

)
, (38)

where I (·) and Oθ (ρ̂) are as in (23) and (29), respectively, i.e., to the ACG iteration
complexity of the static θ -IPAAL (see the paragraph following Theorem 3.1) with
c = c̄θ (η̂) (resp., c = ĉθ (η̂)). Second, bound (38) in terms of (ρ̂, η̂) and θ becomes

O
(

1

θ7/2ρ̂2η̂

)
,

(
resp.,O

(
1

θ15/4ρ̂2η̂1/2

))
, (39)

due to the definition of c̄θ (η̂) in (31) (resp., ĉθ (η̂) in (33)), and the fact that (21) implies
that τθ = O(θ) and hence that the quantity R̄θ defined in (27) (resp., R̂θ defined in
(28)) satisfy R̄θ = O(θ−2) (resp., R̂θ = O(θ−5/2)).

Third, a choice of c1 which satisfies the condition in the first remark and does not
depend on R̄θ (resp., R̂θ ) is c1 = κη̂−2 (resp., c1 = κ min{η̂−1, η̂−2}), for some
constant κ > 0 that does not depend on the tolerances ρ̂ and η̂ (e.g., κ = 1).

4 Proof of Theorem 3.1

This section contains two subsections. More specifically, the first subsection contains
the proofs of statements (a) and (b) of Theorem 3.1, whereas the second subsection
presents the proof of its statement (c).

4.1 Proofs of Statements (a) and (b) of Theorem 3.1

Thefirst technical result belowdescribes some important properties about the sequence
{(ẑk, q̂k, ŵk)} computed in Step 2 of static θ -IPAAL.

Lemma 4.1 The sequence {(ẑk, q̂k, v̂k)} generated by the static θ -IPAAL and the
sequence {rk} defined in (20) satisfy, for every k ≥ 1, the following relations:

v̂k ∈ ∇ f (ẑk) + ∂h(ẑk) + A∗q̂k, (40)

λθ‖v̂k‖ ≤
(
1 + 2σ̃

√
λθ Lc + 1

)
‖rk‖, ‖ẑk − zk‖ ≤ σ̃√

λθ Lc + 1
‖rk‖, (41)

where Lc is as in (14).
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Proof First note that the elements (g̃, h̃), (z, ε), and L̃ defined as

g̃ :=λθ [Lθ
c (·, qk−1) − h] −〈vk, · − zk〉 + 1

2
‖ · −zk−1‖2,

h̃ :=λθh, (z, ε) := (zk, εk),

L̃ :=λθ Lc + 1, (42)

satisfy the assumptions of Lemma A.2. Indeed, the first assumption of Lemma A.2
holds due to (B2), the second and third assumptions hold due to (B4) and by taking
into account the definitions of Lθ

c in (2) and �g̃ in (6) with ψ = g̃, (11), and the
fact that λθ = τθ/m f with τθ ∈ (0, 1/2] (see (14)). The inclusion in the assumption
of Lemma A.2 holds due to the inclusion in (25) and by taking into account the
definitions of Lθ

c in (2) and ε-subdifferential in (5). Note also that the relations qk =
(1 − θ)qk−1 + c(Azk − b) and rk = vk + zk−1 − zk together with (2) and the first
relation in (42) imply that ∇ g̃(z) = λθ (∇ f (zk) + A∗qk) − rk . Moreover, (z̃, w̃) in
(81) corresponds to (ẑk, (λθ Lc + 1)(zk − ẑk)), in view of the definition of ẑk in Step 2
of the static θ -IPAAL. Thus, it follows from the conclusion of Lemma A.2 that

(λθ Lc + 1)(zk − ẑk) − [λθ (∇ f (zk) + A∗qk) − rk] ∈ ∂(λθh)(ẑk), (43)

(λθ Lc + 1)‖(zk − ẑk)‖ ≤ √2(λθ Lc + 1)εk . (44)

Hence, inclusion (40) follows by dividing (43) by λθ , adding ∇ f (ẑk) + A∗q̂k to both
sides of the resulting inclusion, and by noting that A∗q̂k − A∗qk = cA∗A(ẑk − zk) in
view of the identities qk = (1−θ)qk−1+c(Azk−b) and q̂k = (1−θ)qk−1+c(Aẑk−b)
given in (18) and (19), respectively. Now, the L f -Lipschitz continuity of ∇ f , the fact
that Lc = L f +c‖A‖2 (see (14), the definition of v̂k in (19) together with the Cauchy–
Schwarz inequality imply that

λθ‖v̂k‖ ≤ ‖(λθ Lc + 1)(zk − ẑk) + rk‖ + λθ (L f + c‖A‖2)‖ẑk − zk‖
≤ ‖rk‖ + 2(λθ Lc + 1)‖ẑk − zk‖.

Hence, the first inequality in (41) follows from the inequalities in (25) and (44). The
second inequality in (41) immediately follows from the inequalities in (25) and (44).

��

Note that (40) of Lemma 4.1 implies that the triple (ẑ, q̂, v̂) := (ẑk, q̂k, v̂k) satisfies
the inclusion in (13).

The next result describes some relations related to the quantities

�qk := qk − qk−1, �zk := zk − zk−1, ∀k ≥ 1, (45)

which are frequently used in our analysis.
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Lemma 4.2 Let {(zk, vk, qk)} be generated by the static θ -IPAALmethod and consider
{rk} as in (20). Then, for every k ≥ 1, we have

�qk+1 = (1 − θ)�qk + cA�zk+1, (1 − σ̃ )‖rk‖ ≤ ‖�zk‖ ≤ (1 + σ̃ )‖rk‖.
(46)

Moreover, ‖�zk‖ ≤ Dh and ‖rk‖ ≤ 2Dh, where Dh is as in (B3).

Proof The first relation in (46) follows from (45) and the fact that qk = (1−θ)qk−1 +
c(Azk − b). Now, note that the inequality in (25) implies that ‖vk‖ ≤ σ̃‖rk‖, where
rk = vk+zk−1−zk . Hence, the last relation in (45) togetherwith the triangle inequality
implies that

‖rk‖ ≤ ‖�zk‖ + ‖vk‖ ≤ ‖�zk‖ + σ̃‖rk‖,
‖�zk‖ ≤ ‖�zk − vk‖ + ‖vk‖ ≤ (1 + σ̃ )‖rk‖.

The above inequalities clearly imply that both inequalities in (46) hold. The last state-
ment of the lemma follows from the definition of �zk in (45), the definition of Dh in
(B3), the first inequality in (46) and the fact that σ̃ ≤ 1/2 (see (21)).

The next result describes a preliminary estimate of the sequence {Lθ
c (zk, qk) −

Lθ
c (zk−1, qk−1)} where Lθ

c (·, ·) is as in (2). ��
Lemma 4.3 Let {(zk, vk, qk)} be generated by the static θ -IPAAL method and let {rk}
and {(�qk,�zk)} be as in (20) and (45), respectively. Then, for every k ≥ 1, the
following relations hold:

Lθ
c (zk , qk) − Lθ

c (zk , qk−1) = (1 − θ)(2 − θ)

2c
‖�qk‖2 + (1 − θ)θ

2c

(
‖qk‖2 − ‖qk−1‖2

)
,

(47)

Lθ
c (zk , qk) − Lθ

c (zk−1, qk−1) ≤ −3m f

8τθ
‖rk‖2 + (1 − θ)(2 − θ)

2c
‖�qk‖2

+ (1 − θ)θ

2c

(
‖qk‖2 − ‖qk−1‖2

)
. (48)

Proof In view of the definition of Lθ
c given in (2), the fact that qk = (1 − θ)qk−1 +

c(Azk − b), and the first relation in (45), we have

Lθ
c (zk, qk) − Lθ

c (zk, qk−1) = (1 − θ) 〈�qk, Azk − b〉
= (1 − θ)

〈
�qk,

qk − (1 − θ)qk−1

c

〉

= 1 − θ

c

[
‖�qk‖2 + θ 〈�qk , qk−1〉

]

= 1 − θ

c

[
‖�qk‖2 + θ

2

(
[‖�qk + qk−1‖2 − ‖�qk‖2 − ‖qk−1‖2

)]
,
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which immediately implies (47) upon using the identity qk = �qk + qk−1. Now, it
follows from (25), the identity rk = vk + zk−1 − zk , the second relation in (45), and
the Cauchy–Schwarz inequality, that

λθLθ
c (zk, qk−1) − λθLθ

c (zk−1, qk−1) ≤ −1

2
‖zk − zk−1‖2 + 〈vk, zk − zk−1〉 + εk

= −1

2
‖�zk − vk‖2 +

(‖vk‖2
2

+ εk

)
≤ −1 − σ̃ 2

2
‖�zk − vk‖2 = −1 − σ̃ 2

2
‖rk‖2,

and hence that (48) holds in view of (47) and the facts that λθ = τθ/m f and σ̃ ≤ 1/2
(see (14) and (21)). ��

While the previous result does not use the fact that τθ is given by (14), the next one
uses (14) to show that the “bad” term ‖�qk‖2 in (48) is majorized by a multiple of
‖rk‖2 and some summable terms.

Lemma 4.4 Let {rk} and {(�qk,�zk)} be as in (20) and (45), respectively, and define

Bθ := 2(1 − θ)

θ

[
τθ (1 + σ̃ )2

2(1 + τθ )
+ 2σ̃ (1 + σ̃ ) + σ̃ 2(1 + τθ )

τθ

]
(49)

tk := m f (1 − θ)

τθ θ

[
‖�zk‖2 +

(
σ̃θ (1 + σ̃θ ) + σ̃ 2(1 + τθ )

τθ

)
‖rk‖2

]
, (50)

where τθ is as in (14), σ̃ is as in (15), and m f is as in (B2). Then, the following
statements hold:

(a) there holds Bθ ≤ 1/8;
(b) for every k ≥ 2, we have

(1 − θ)(2 − θ)

c
‖�qk‖2 + (1 − θ)3

θc

[
‖�qk‖2 − ‖�qk−1‖2

]

≤ m f Bθ

τθ

‖rk‖2 + tk−1 − tk . (51)

Proof (a) The definition of Bθ in (49) and the facts that σ̃ ≤ τθ and τθ ≤ 1/2 (see
(21)) imply that

Bθ ≤ 7(1 − θ)

θ
τθ (τθ + 1) ≤ 21(1 − θ)

2θ
τθ ,

which proves the conclusion of b) in view of the fact that τθ ≤ θ/[88(1− θ)] (see
(14).

(b) The proof of this statement will be presented in Sect. 5.

Lemma 4.5 Let {rk}, {(�qk,�zk)}, and {tk} be as in (20), (45), and (50), respectively.
Define

ηk := (1 − θ)3

θc
‖�qk‖2 − (1 − θ)θ

2c
‖qk‖2 + tk, ∀k ≥ 1. (52)
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Then, for every k ≥ 2, we have

Lθ
c (zk, qk) + ηk + m f

4τθ

‖rk‖2 ≤ Lθ
c (zk−1, qk−1) + ηk−1, (53)

Lθ
c (zk, qk) + ηk + m f

4τθ

k∑
i=2

‖ri‖2 ≤ Lθ
c (z1, q1) + η1, (54)

where τθ and m f are as in (14) and (B2), respectively.

Proof Inequality (53) follows by combining Lemma 4.4 with (48) and by using the
definitions of {tk} and {ηk} given in (50) and (52), respectively. Finally, (54) is obtained
by summing (53) from k = 2 to k. ��

Lemma 4.5 shows that the quantity Lθ
c (zk, qk) + ηk plays the role of a (iterate

dependent) potential for the static θ -IPAAL. The next result provides a lower bound
on the kth potential Lθ

c (zk, qk) + ηk in terms of the feasibility gap ‖Azk − b‖ and the
quantity ‖qk‖.
Lemma 4.6 Let {(zk, vk, qk)} be generated by the static θ -IPAALmethod and consider
{ηk} as in (52). Then, for every k ≥ 1, we have:

Lθ
c (zk, qk) + ηk ≥ φ(zk) + c

2
‖Azk − b‖2 + (1 − θ)θ

4c
‖qk‖2. (55)

Proof Noting that (52) and the assumption that θ ∈ (0, 1) imply that tk ≥ 0, and using
the definitions of Lθ

c and {ηk} given in (2) and (52), respectively, we conclude that for
every k ≥ 1,

Lθ
c (zk, qk) + ηk ≥ Lθ

c (zk, qk) − (1 − θ)θ

2c
‖qk‖2 + (1 − θ)3

θc
‖�qk‖2

= φ(zk) + c

2
‖Azk − b‖2 + (1 − θ) 〈qk , Azk − b〉

− (1 − θ)θ

2c
‖qk‖2 + (1 − θ)3

θc
‖�qk‖2

= φ(zk) + c

2
‖Azk − b‖2 + (1 − θ)θ

2c
‖qk‖2

+ (1 − θ)2

c
〈qk ,�qk〉 + (1 − θ)3

θc
‖�qk‖2,

where the second equality follows from the fact that c(Azk −b) = (1− θ)�qk + θqk ,
in view of the relations qk = (1 − θ)qk−1 + c(Azk − b) and �qk = qk − qk−1 (see
(18) and (45)). The conclusion of the lemma now follows by noting that the minimum
value with respect to �qk of the expression in the third line of the above inequality
agrees with the right side of (55). ��

The next result provides an upper bound on the first potentialLθ
c (z1, q1)+η1 which

is independent of c.
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Lemma 4.7 The first potentialLθ
c (z1, q1)+η1 of the static θ -IPAALmethod is bounded

by

Lθ
c (z1, q1) + η1 ≤ 11Nθ

θ
+ φ, (56)

where φ and η1 are as in (26) and (52), respectively, and Nθ is defined as

Nθ := φ∗ − φ + m f D2
h

τθ

. (57)

Proof Using (47) and (52) both with k = 1 and the fact that q0 = 0 (and hence that
�q1 = q1), we have

Lθ
c (z1, q1) + η1 − Lθ

c (z1, q0) − t1

=
[
θ(2 − θ) + 2(1 − θ)2

] (1 − θ)‖q1‖2
2θc

≤ 3‖q1‖2
2θc

, (58)

where the last inequality is due to the fact that θ ∈ (0, 1). Moreover, noting that (25)
with k = 1 together with the fact that r1 = v1 + z0 − z1 (see (20)) implies that the
assumptions of Lemma A.3 with φ̃ = λθLθ

c (·, q0) hold, the conclusion of this lemma
with s = 1 and z ∈ F , the fact that Lθ

c (z, q0) = φ(z) when z ∈ F (see (2) and (B1))
and σ̃ ≤ 1/2 (see (21)), then imply that

Lθ
c (z1, q0) ≤ min

z∈F

{
φ(z) + 1

λθ
‖z − z0‖2

}
≤ D2

h

λθ

+ min
z∈F

φ(z),

= m f D2
h

τθ

+ φ∗ = Nθ + φ (59)

where the second inequality follows from the definition of Dh in (B3), the first equality
follows from the fact that λθ = τθ/m f and the definition of φ∗ in (26), and the last
equality is due to (57). The above inequality, the definition of Lθ

c in (2), the definition
of φ in (26), and the fact that q0 = 0, and hence q1 = c(Az1 − b) in view of (18) with
k = 1, then imply that

Nθ ≥ Lθ
c (z1, q0) − φ = (φ(z1) − φ) + c

2
‖Az1 − b‖2 ≥ c

2
‖Az1 − b‖2 = ‖q1‖2

2c
.

(60)

Combining (58), (59), and (60), and the fact that 0 < θ < 1, we then conclude that

Lθ
c (z1, q1) + η1 − t1 ≤ Nθ + φ + 3Nθ

θ
≤ 4Nθ

θ
+ φ.
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Now, using the definition of t1 in (50) and the bounds on ‖�zk‖ and ‖rk‖ in Lemma4.2,
we conclude that

t1 ≤
[
1 + 4

(
σ̃ (1 + σ̃ ) + (1 + τθ )σ̃

2

τθ

)]
(1 − θ)m f D2

h

τθ θ

≤ 7m f D2
h

τθ θ
≤ 7Nθ

θ
,

where the second inequality is due to the fact that θ ∈ (0, 1) and σ̃ ≤ τθ ≤ 1/2 (see
(21), and the last inequality is due to the definition of Nθ in (57). The conclusion of
the lemma now follows by combining the above two relations. ��

The next result shows that ‖Aẑk − b‖ = O(1/
√
c) and ‖q̂k‖ = O(

√
c).

Lemma 4.8 The sequence {(ẑk, q̂k)} generated by the static θ -IPAAL satisfies, for
every k ≥ 2,

‖Aẑk − b‖ ≤
√

R̄θ

c
, ‖q̂k‖ ≤ 3

√
cR̄θ

2θ
,

k∑
j=2

‖v̂ j‖2 ≤ m f R̄θ

2τθ

, (61)

where ν and R̄θ are as in Step 0 of the θ -IPAAL and (27), respectively.

Proof Using the fact that φ(zk) ≥ φ (see (26)) and the relations (54), (55), and (56),
we conclude that

c

2
‖Azk − b‖2+ (1 − θ)θ

4c
‖qk‖2 +

k∑
j=2

m f

4τθ

‖r j‖2 ≤ Lθ
c (zk, qk) + ηk

− φ(zk) +
k∑
j=2

m f

4τθ

‖r j‖2

≤ Lθ
c (z1, q1) + η1 − φ(zk) ≤ 11Nθ

θ
− [φ(zk) − φ] ≤ R̄θ

8(1 + 2ν)2
,

where the last inequality is due to the definitions of R̄θ and Nθ given in (27) and (57),
respectively. Hence, since ν > 0, the following inequalities hold:

‖Azk − b‖ ≤ 1

2

√
R̄θ

c
,

√
1 − θ ‖qk‖ ≤

√
cR̄θ

2θ
,

k∑
j=2

‖r j‖2 ≤ τθ R̄θ

2m f (1 + 2ν)2
.

(62)
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Now, using the triangle inequality for norms and the second inequality in (41), we
obtain

‖Aẑk − b‖ − ‖Azk − b‖ ≤ ‖A(ẑk − zk)‖ ≤ ‖A‖‖ẑk − zk‖
≤ σ̃‖A‖√

λθ Lc + 1
‖rk‖ ≤ 1

2

√
m f

τθc
‖rk‖,

where the last inequality is due to the λθ Lc = [τθ/m f ](L f + c‖A‖2) ≥
[τθc/m f ]‖A‖2 and σ̃ ≤ 1/2 (see (14) and (21)). Hence, the first inequality in (61)
follows in view of the first and third inequalities in (62), and the fact that ν > 0. Since
θ ∈ (0, 1) and q̂k = (1− θ)qk−1 + c

(
Aẑk − b

)
(see (19)), it follows from the triangle

inequality for norms, the first inequality in (61), and the second inequality in (62) that

‖q̂k‖ ≤ (1 − θ)‖qk−1‖ + c‖Aẑk − b‖ ≤
√
cR̄θ

2θ
+ c

√
R̄θ

c
,

which clearly proves the second inequality in (61). Finally, the last inequality in (61)
follows immediately from the last inequality in (62) combinedwith the fact that ‖v̂k‖ ≤
‖rk‖ (1 + 2ν)m f /τθ in view of the first inequality in (41), the fact that λθ = τθ/m f ,
and the definition of σ̃ (see (14) and (15)). ��

We are now ready to prove statements (a), (b) and (c) of Theorem 3.1.

Proofs of Statements (a) and (b) of Theorem 3.1 (a) The last inequality in (61) implies
that

(k − 1) min
j=1,...,k

‖v̂ j‖2 ≤ m f R̄θ

2τθ

∀k ≥ 2,

and hence that the stopping criterion in step 3 of the static θ -IPAAL is satisfied at
some iteration k ≤ Oθ (ρ̂) where Oθ (ρ̂) is as in (29).

(b) First note that the output (ẑ, q̂, v̂) is equal to (ẑk, q̂k, v̂k) for some iteration k.
Hence, the inclusion in (30) follows from the one in (40). The first inequality in
(30) follows from the stopping criterion of static θ -IPAAL given in Step 3. The
last inequality in (30) follows from the first inequality in (61). The last statement
of (b) follows from (30), the assumption on c in (31), and Definition 2.1.

��

4.2 Proof of Statement (c) of Theorem 3.1

This subsection contains the proof of statement (c) of Theorem 3.1. Before presenting
this proof, we establish the boundedness of the Lagrangian multipliers sequence {qk}
and its associated sequence {q̂k}.

We start by recalling a technical result which will be used in the proof of the
subsequent lemma. Its proof can be found, for instance, in [26, Lemma 1].
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Lemma 4.9 Assume that X is a convex set and x̄ ∈ int (X), and let ∂X denote the
boundary of X. Then, dist ∂X (x̄) > 0 and

‖ξ‖ ≤ 〈ξ, x − x̄〉
dist ∂X (x̄)

∀x ∈ X , ∀ξ ∈ NX (x).

The following result shows that the component of the inclusion in (40) lying in
∂h(ẑk) is bounded. It is worth noting that its proof strongly relies on the bound for
‖q̂k‖ derived in Lemma 4.8.

Lemma 4.10 Assume that (B1)–(B5) hold and let Mθ be defined by

Mθ := 1

dist∂H(z̄)

⎡
⎣
⎛
⎝L f Dh + ‖∇ f (z0)‖ + Kh +

√
m f R̄θ√
2τθ

⎞
⎠ Dh + 3R̄θ√

2θ

⎤
⎦ ,

(63)

where R̄θ is as in (27), Dh is as in (B3), and z̄ is as in (B5). Let {(ẑk, q̂k, v̂k)} be
generated by the static θ -IPAAL method and consider the sequence { ˆξk} given by

ξ̂k := v̂k − ∇ f (ẑk) − A∗q̂k, ∀k ≥ 1. (64)

Then, we have ξ̂k ∈ ∂h(ẑk) and ‖ξ̂k‖ ≤ Kh + Mθ , for every k ≥ 2.

Proof The first statement of the lemma immediately follows from (40) and the defini-
tion of ξ̂k given in (64). It follows from the Cauchy–Schwarz inequality and the first
two inequalities in (61) that

|〈q̂k, Aẑk − b〉| ≤ ‖q̂k‖‖Aẑk − b‖ ≤ 3

√
cR̄θ

2θ

√
R̄θ

c
≤ 3R̄θ√

2θ
, ∀k ≥ 2. (65)

On the other hand, since ξ̂k ∈ ∂h(ẑk) for every k ≥ 2, it follows from (B2) that
ξ̂k ∈ B̄(0, Kh) + NH(ẑk), or equivalently, there exist ξ̂ sk and ξ̂nk such that

ξ̂k = ξ̂ sk + ξ̂nk , ξ̂nk ∈ NH(ẑk), ‖ξ̂ sk ‖ ≤ Kh . (66)

Let z̄ be as in (B5) and note that Az̄ = b. Hence, it follows from Lemma 4.9 with
x = ẑk , x̄ = z̄ and X = H, the definition of ξ̂k in (64), and the first two relations in
(66) that, for every k ≥ 2,

dist∂H(z̄)‖ξ̂nk ‖ ≤ 〈ξ̂nk , ẑk − z̄〉 = 〈ξ̂k − ξ̂ sk , ẑk − z̄〉
= 〈v̂k − ∇ f (ẑk) − ξ̂ sk , ẑk − z̄〉 − 〈A∗q̂k, ẑk − z̄〉,
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which in view of the Cauchy–Schwarz inequality, the triangle inequality for norms,
the L f -Lipschitz continuity of ∇ f , and the inequality in (66), imply that

dist∂H(z̄)‖ξ̂nk ‖ ≤
(
‖∇ f (ẑk) − ∇ f (z0)‖ + ‖∇ f (z0)‖ + ‖ξ̂ sk ‖ + ‖v̂k‖

)
‖

z̄ − ẑk‖ − 〈q̂k, Aẑk − b〉

≤
⎛
⎝L f ‖zk − z0‖ + ‖∇ f (z0)‖ + Kh +

√
m f R̄θ√
2τθ

⎞
⎠ ‖z̄ − ẑk‖ + 3R̄θ√

2θ
,

where the last inequality is due to the last inequality in (61) and (65). It then fol-
lows from the above inequality and the definitions of Dh and Mθ in (B3) and
(63), respectively, that ‖ξ̂nk ‖ ≤ Mθ , for all k ≥ 2. From the last inequality, the
first and third relations in (66), and the triangle inequality for norms, we obtain
‖ξ̂k‖ ≤ ‖ξ̂ sk ‖ + ‖ξ̂nk ‖ ≤ Kh + Mθ for every k ≥ 2, which proves the last statement of
the lemma. ��

In the following, we state a basic result that will be used in the proof of the subse-
quent lemma. Its proof can be found, for instance, in [9, Lemma 1.4].

Lemma 4.11 Let S ∈ R
l×n be a nonzero matrix and let σ+(S) denote the smallest

positive eigenvalue of (S∗S)1/2. Then, for every u ∈ R
l , there holds

‖PS(u)‖ ≤ 1

σ+(S)
‖S∗u‖.

The next result shows that the sequences ofmultipliers {qk} and {q̂k} are bounded by
a quantity which does not depend on the penalty parameter c. This fact easily implies
that ‖Aẑk − b‖ = O(1/c).

Lemma 4.12 Under the assumptions (B1)–(B5), we have

‖q̂k‖ ≤ R̂θ

2
, ‖qk‖ ≤ R̂θ

2
, ∀k ≥ 2, (67)

where R̂θ is as in (28).

Proof It follows from the definition of ξ̂k in (64) and the triangle inequality for norms
that

‖A∗q̂k‖ = ‖v̂k − ∇ f (ẑk) − ξ̂k‖ ≤ ‖∇ f (ẑk) − ∇ f (z0)‖ + ‖∇ f (z0)‖ + ‖ξ̂k‖ + ‖v̂k‖

≤ L f Dh + ‖∇ f (z0)‖ + Kh + Mθ +
√
m f R̄θ√
2τθ

, (68)

where the last inequality is due to the L f -Lipschitz continuity of ∇ f (see (11)),
the definition of Dh in (B3), the last inequality in (61), and the last statement of
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Lemma 4.10. On the other hand, since q0 = 0 and b ∈ Im A, the relations qk =
(1 − θ)qk−1 + c(Azk − b) and q̂k = (1 − θ)qk−1 + c(Aẑk − b) given in (18) and
(19), respectively, imply that qk, q̂k ∈ Im A, for every k ≥ 1. Hence, it follows from
Lemma 4.11 with S = A that ‖q̂k‖ ≤ ‖A∗q̂k‖/[σ+(A)], which combined with (68)
imply that

‖q̂k‖ ≤ 1

σ+(A)

⎡
⎣L f Dh + ‖∇ f (z0)‖ + Kh + Mθ +

√
m f R̄θ√
2τθ

⎤
⎦ , ∀k ≥ 2.

(69)

The first inequality in (67) then follows from the above inequality, the definitions
of R̂θ and Mθ in (28) and (63), respectively, and the facts that Dh/dist∂H(z̄) ≥ 1
and σ+(A)/‖A‖ ≤ 1. Now, from the relations of qk and q̂k given above, we obtain
qk − q̂k = cA(zk − ẑk). Then, using the triangle inequality for norms, the second
inequality in (41), the facts that λθ = τθ/m f and Lc = L f + c‖A‖2 (see (14)), and
the definition of σ̃ in (15), we have

‖qk‖ − ‖q̂k‖ ≤ c‖A(zk − ẑk)‖ ≤ σ̃c‖A‖‖rk‖√
λθ Lc + 1

≤ νm f c‖A‖
τθ (L f + c‖A‖2)‖rk‖ ≤ νm f

τθ‖A‖‖rk‖

≤
ν

√
m f R̄θ

‖A‖√2τθ

,

where the last inequality is due to the last inequality in (62). Hence, the last inequality
in (67) follows from the above inequality, (69), and the definitions of R̂θ in (28) and
Mθ in (63), and the facts that Dh/dist∂H(z̄) ≥ 1 and σ+(A)/‖A‖ ≤ 1. ��

Now we are ready to prove statement (c) of Theorem 3.1.

Proof of Statement (c) of Theorem 3.1 From the relation q̂k = (1−θ)qk−1+c(Aẑk−b)
given in (19), we have c

(
Aẑk − b

) = q̂k − (1 − θ)qk−1, and then it follows from
the triangle inequality for norms that c‖Aẑk − b‖ ≤ ‖q̂k‖ + (1 − θ)‖qk−1‖, which
immediately implies that (32) holds, in view of (67) and the fact that θ ∈ (0, 1). To
conclude the proof, note that if ĉ(η̂) = c̄(η̂), then the last statement of (c) follows from
the last statement of (b); otherwise, the last statement of (c) follows from the first two
relations in (30), inequality (32), the assumption on c in (33), and Definition 2.1. ��

5 Proof of Statement (b) of Lemma 4.4

Before presenting the proof of statement (b) of Lemma 4.4, we state and prove a
technical result which provides a preliminary bound on the left-hand side of (51).

Lemma 5.1 Let {(zk, qk, εk)} generated by the static θ -IPAAL and define

sk := (1 − θ)(2 − θ)

c
‖�qk‖2 + (1 − θ)3

θc

[
‖�qk‖2 − ‖�qk−1‖2

]
, (70)
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where τθ is as in (14) and {�qk} is as in (45). Then, for every k ≥ 2, we have

θλθ

2(1 − θ)
sk ≤ 〈�zk−1,�zk〉 − 1

2(1 + τθ )
‖�zk‖2 + 〈�vk,�zk〉

+(1 + τ−1
θ )(εk−1 + εk). (71)

Proof Let Q denote the positive definite matrix Q := I/2 + cλθ A∗A and let ψk be
as in (22).

Then, it follows from Proposition 3.1a) and the above definition of Q that ψk(·) −
‖ · ‖2Q/2 is convex. Hence, it follows from the inclusion in (25) with k = k − 1 and
Lemma A.1 with ψ(·) = ψk−1(·), (ξ, τ ) = (1, τθ ), (y, v, η) = (zk−1, vk−1, εk−1),
and u = zk , that

〈vk−1, zk − zk−1〉 + 1

2(1 + τθ )
‖zk − zk−1‖2Q − (1 + τ−1

θ )εk−1

≤ ψk−1(zk) − ψk−1(zk−1). (72)

Similarly, it follows from the inclusion in (25) and Lemma A.1 with ψ(·) = ψk(·),
(ξ, τ ) = (1, τθ ), (y, v, η) = (zk, vk, εk), and u = zk−1, that

〈vk, zk−1 − zk〉 + 1

2(1 + τθ )
‖zk−1 − zk‖2Q − (1 + τ−1

θ )εk ≤ ψk(zk−1) − ψk(zk).

(73)

Also, it is easy to see that the definition ofψk(·) in (22) implies thatψk(·) = ψk−1(·)+
ak−1(·) where ak−1(·) is an affine function such that its constant gradient ∇ak−1 is
given by

∇ak−1 = −�zk−1 + λθ (1 − θ)A∗�qk−1, ∀k ≥ 2. (74)

Now, summing (72) and (73), and using the previous observation and the fact that
�zk = zk − zk−1 and �vk = vk − vk−1, we obtain

−〈�vk,�zk〉 + 1

(1 + τθ )
‖�zk‖2Q − (1 + τ−1

θ )(εk−1 + εk) ≤ ak−1(zk−1) − ak−1(zk)

= −〈∇ak−1,�zk〉 = 〈�zk−1,�zk〉 − λθ (1 − θ)〈�qk−1, A�zk〉.

Rearranging the above inequality and using the fact that Q = I/2+cλθ A∗A, we have

〈�vk,�zk〉 + 〈�zk−1,�zk〉 − 1

2(1 + τθ )
‖�zk‖2 + (1 + τ−1

θ )(εk−1 + εk)

≥ λθc

1 + τθ

‖A�zk‖2 + λθ (1 − θ)〈�qk−1, A�zk〉 =: s̃k . (75)
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Now, using the facts that τθ < 1 (see (21)) and A�zk = [�qk − (1 − θ)�qk−1]/c in
view of the first identity in (46), we have

s̃k ≥ λθ

2c

[
‖�qk − (1 − θ)�qk−1‖2 + 2(1 − θ)〈�qk−1,�qk − (1 − θ)�qk−1〉

]

= λθ

2c

{
θ(2 − θ)‖�qk‖2 + (1 − θ)2

[
‖�qk‖2 − ‖�qk−1‖2

]}
= θλθ sk

2(1 − θ)
,

where the last identity is due to the definition of sk in (70). Hence, (71) follows
immediately by combining (75) with the above inequality.

Now, we are ready to prove Lemma 4.4b).

Proof of Lemma 4.4b) To prove this result, we proceed to bound the right-hand side of
(71) in terms of ‖rk‖ and tk−1 − tk .

Indeed, using the fact that 〈a1, a2〉 ≤ (‖a1‖2 + ‖a2‖2)/2, we have

〈�zk−1,�zk〉 − 1

2(1 + τθ )
‖�zk‖2 ≤ ‖�zk−1‖2

2
+ ‖�zk‖2

2
− 1

2(1 + τθ )
‖�zk‖2

= 1

2

(
‖�zk−1‖2 − ‖�zk‖2

)
+ τθ

2(1 + τθ )
‖�zk‖2

≤ 1

2

(
‖�zk−1‖2 − ‖�zk‖2

)
+ τθ (1 + σ̃ )2

2(1 + τθ )
‖rk‖2,
(76)

where the last inequality is due to the second inequality in (46). Now, using the fact
that �vk = vk − vk−1, the Cauchy–Schwarz inequality, the triangle inequality, and
the inequality in (25), we have

〈�vk,�zk〉 ≤ (‖vk‖ + ‖vk−1‖)‖�zk‖ ≤ σ̃ (‖rk‖ + ‖rk−1‖)‖�zk‖

≤ σ̃ (1 + σ̃ )(‖rk‖ + ‖rk−1‖)‖rk‖ ≤ σ̃ (1 + σ̃ )‖rk−1‖2
2

+ 3σ̃ (1 + σ̃ )‖rk‖2
2

= σ̃ (1 + σ̃ )

2

[
‖rk−1‖2 − ‖rk‖2

]
+ 2σ̃ (1 + σ̃ )‖rk‖2, (77)

where the last two inequalities are due to the second inequality in (46) and the fact that
‖rk−1‖‖rk‖ ≤ (‖rk‖2 + ‖rk−1‖2)/2, respectively. The inequality in (25) also yields

εk−1 + εk ≤ σ̃ 2‖rk−1‖2
2

+ σ̃ 2‖rk‖2
2

= σ̃ 2‖rk‖2 + σ̃ 2

2

[
‖rk−1‖2 − ‖rk‖2

]
.

(78)

Now, combining (71),(76), (77), and (78), and using the definitions of sk , Bθ , and tk
given in (70), (49), and (50), respectively, we easily see that (51) holds. ��
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6 Concluding Remarks

We start by making two remarks about the analysis of this paper.
First, the static θ -IPAALmethod was stated using the perturbed Lagrangian (2) but

it can also be stated in terms of the usual LagrangianLc(·, ·) := L0
c(·, ·), i.e., the special

case of (2) with θ = 0. Indeed, if we define the scaled multipliers pk = (1 − θ)qk
and p̂k = (1 − θ)q̂k for every k ≥ 1, then we have Lθ

c (·, qk) = Lc(·, pk) and the
multiplier formulae qk = (1−θ)qk−1+c(Azk−b) and q̂k = (1−θ)qk−1+c(Aẑk−b)
given in (18) and (19), respectively, reduce to pk = (1 − θ)[pk−1 + c(Azk − b)]
and p̂k := (1 − θ)[pk−1 + c

(
Aẑk − b

)], respectively. This observation and a close
examination of the statement of the static θ -IPAAL show that this method can be stated
solely in terms of the Lagrangian Lc(·, ·) and the multiplier sequences {pk} and { p̂k}.

Second, our analysis assumes that domh is bounded and that all the constraints are
linear since these assumptions greatly simplifies its analysis. The analysis for the case
where domh is unbounded but all the constraints are still linear can be found in the
first version of this paper (see [29]) and is considerably more involved than the current
one. Although not pursued in this paper, the authors wonder whether the techniques
developed in [18] and in the paper [20] (which was released after the current work)
can be used to extend θ -IPAAL to the case where some of or all the constraints in (1)
are smooth nonlinear convex functions.

We nowdiscuss how θ -IPAAL compareswith the S-prox-ALmethod of [39], which
also sequentially solves prox subproblems but updates multipliers in a manner that
differs from the one in this paper. First, it is shown in [39] that S-prox-ALM has
an O(ρ̂−2) iteration complexity under the assumption that the function h in (1) is
the indicator of a box in R

n . Second, S-prox-AL generates a sequence of proximal
subproblems as in (4) but, instead of solving them by using an ACG-type subroutine, it
applies a single composite gradient step to inexactly solve a variant4 of (4). Third,while
the θ -IPAAL method only requires choosing its parameters based on the scalars m f

and L f to guarantee convergence, the S-prox-ALM requires choosing its parameters
based on the supremum of a set of Hoffman constants (see the proof of [39, Lemma
3.10] and [39, Lemma 4.8]) that is generally difficult to compute and even to adaptively
estimate. It is worth noting that, after the first release of this paper, the analysis of [39]
was extended to the case where h in (1) is the indicator function of a polyhedron by
[40], for which all remarks above still apply.

We end this section by discussing some possible extensions of our paper. First, it
would be interesting to study an adaptive version of θ -IPAAL where the prox stepizes
vary from iteration to iteration and are chosen in an adaptive manner. Second, a draw-
back of θ -IPAAL is that the following issues arise as θ approaches zero: (1) the
complexity bounds in (39) diverge to infinity which make our analysis invalid for the
case where θ = 0; and (2) potential deterioration of its computational performance
due to the fact that the prox stepsize λθ defined in (14) converges to zero. Hence, it
would be interesting to develop a prox AL method which does not depend on θ and
whose Lagrange multiplier update formula is (18) with θ = 0.

4 Instead of inexactly minimizing the function λL(·; pk−1) + ‖ · −zk−1‖2/2, the S-prox-AL exactly
minimizes the linear approximation of the function λL(·; pk−1)+‖z − z̃k−1‖/2 for a point z̃k−1 different
from zk−1.
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Appendices

A Three Technical Results

This section contains three technical results about the ε-subdifferential of a convex
function perturbed by a prox term.

The following result is used in the proof of Lemma 4.4b).

Lemma A.1 Assume that ξ > 0, ψ ∈ ConvRn and Q ∈ Sn++ are such that ψ −
(ξ/2)‖ · ‖2Q is convex and let (y, v, η) ∈ R

n × R
n × R+ be such that v ∈ ∂ηψ(y).

Then, for any τ > 0,

ψ(u) ≥ ψ(y) + 〈v, u − y〉 − (1 + τ−1)η + (1 + τ)−1ξ

2
‖u − y‖2Q ∀u ∈ R

n .

(79)

Proof Let ψv := ψ − 〈v, ·〉. The assumptions imply that ψv has a unique global
minimum ȳ and that

ψv(u) ≥ ψv(ȳ) + ξ

2
‖u − ȳ‖2Q ≥ ψv(y) − η + ξ

2
‖u − ȳ‖2Q (80)

for every u ∈ R
n . The above inequalities with u = y imply that (ξ/2)‖ȳ − y‖2Q ≤ η.

Hence, adding and subtracting the term (τ−1ξ/2)‖ȳ − y‖2Q in the right-hand side of

(80) and using the inequality τ−1‖ũ‖2 +‖u′‖2 ≥ (1+ τ)−1‖ũ+ u′‖2 with ũ = u− ȳ
and u′ = ȳ − y, we obtain

ψv(u) ≥ ψv(y) − η − τ−1ξ

2
‖ȳ − y‖2Q + ξ

2

(
τ−1‖y − ȳ‖2Q + ‖u − ȳ‖2Q

)

≥ ψv(y) − (1 + τ−1)η + (1 + τ)−1ξ

2
‖u − y‖2Q

for every u ∈ R
n . Hence, (79) follows from the above conclusion and the definition

of ψv . ��

The next result is used to prove Lemma 4.1. Its proof easily follows from [11,
Lemma 32].
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Lemma A.2 Assume that h̃ ∈ ConvRn, g̃ is a differentiable convex function on domh̃,
and (z, L̃) ∈ domh̃ × R+ is such that g̃(u) − �g̃(u; z) ≤ L̃‖u − z‖2/2 for every
u ∈ domh̃, and define

z̃ := argminu

{
�g̃(u; z) + h̃(u) + L̃

2
‖u − z‖2

}
, w̃ := L̃(z − z̃). (81)

If 0 ∈ ∂ε(g̃ + h̃)(z) for some ε ≥ 0, then w̃ ∈ ∇ g̃(z) + ∂ h̃(z̃) and ‖w̃‖ ≤
√
2L̃ε.

The following result is used in the proof of Lemma 4.7.

Lemma A.3 Assume that σ0 > 0, (z0, z1) ∈ R
n × domφ̃, (v1, ε1) ∈ R

n × R+, and a
proper function φ̃ : Rn → (−∞,∞] such that φ̃ + ‖ · ‖2/2 is convex, satisfy

v1 ∈ ∂ε1

(
φ̃ + 1

2
‖ · −z0‖2

)
(z1), ‖v1‖2 + 2ε1 ≤ σ̃ 2‖v1 + z0 − z1‖2. (82)

Then, for every z ∈ R
n and s > 0, we have

φ̃(z1) + 1

2

[
1 − σ̃ 2(1 + s−1)

]
‖v1 + z0 − z1‖2 ≤ φ̃(z) + s + 1

2
‖z − z0‖2.

Proof Using the inclusion in (82), the definition of ε-subdifferential in (5), and the
fact that |〈u, ũ〉| ≤ [s‖u‖2 + s−1‖ũ‖2]/2 for every u, ũ ∈ R

n and s > 0, we conclude
that for every z ∈ R

n ,

φ̃(z) + ‖z − z0‖2
2

− φ̃(z1)

≥ ‖z1 − z0‖2
2

+ 〈v1, z − z1〉 − ε1

= ‖z1 − z0‖2
2

+ 〈v1, z0 − z1〉 + 〈v1, z − z0〉 − ε1

≥ ‖z1 − z0‖2
2

+ 〈v1, z0 − z1〉 − ε1 − s−1‖v1‖2
2

− s‖z − z0‖2
2

= ‖v1 + z0 − z1‖2
2

− 1

2
(1 + s−1)

[
‖v1‖2 + 2ε1

]
− s‖z − z0‖2

2
,

which immediately implies the conclusion of the lemma in view of the inequality in
(82). ��
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