Messe Wien Exhibition and Congress Center

International Conference on Learning Representations

May 7 – 11 | Vienna

Georgia Tech is a leading research contributor to the International Conference on Learning Representations (ICLR), a premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning.

Explore the people and work from Georgia Tech and partners.

____________

Georgia Tech at ICLR 2024

Explore Georgia Tech’s experts and the organizations they are working with at ICLR. Click in the chart to go to the OpenReview links for research paper details.

Partner Organizations

Abacus.AI • Adobe • Allen Institute for Artificial Intelligence • Apple • Carnegie Mellon University • Chinese Academy of Sciences • Columbia University • Dartmouth • DeepMind • Duke University • Embodied Intelligence • Emory University • Fordham University • Fudan University • Georgia Tech • Google • Harvard University • IBM • Magnum Engine • Massachusetts Institute of Technology • Meta • Microsoft • Mila • Mistral AI • Montreal Institute of Learning Algorithms • Motional • Nanyang Technological University • NVIDIA • Peking University • Princeton University • Purdue University • RIKEN Center for Advanced Intelligence Project • Salesforce • Shanghai Jiao Tong University • Stanford University • Tencent AI Lab • Tsinghua University • Ukrainian Catholic University • University of Aberdeen • University of California, Berkeley • University of California, Los Angeles • University of California, Merced • University of California, San Diego • University of Illinois, Chicago • University of Illinois, Urbana-Champaign • University of Massachusetts, Amherst • University of Michigan, Ann Arbor • University of Ottawa • University of Palermo • University of Pennsylvania • University of Southern California • University of Texas, Austin • University of Toronto • University of Washington • University of Waterloo

Faculty

Dhruv Batra

Assoc. Professor, Interactive Computing

Yongxin Chen

Assoc. Professor, Aerospace Engineering

Yong Cho

Professor, Civil and Environmental Engineering

Hannah Choi

Asst. Professor, Mathematics

Edmond Chow

Professor, Computational Science and Engineering

Eva Dyer

Asst. Professor, Biomedical Engineering

Irfan Essa

Professor, Interactive Computing

Sehoon Ha

Asst. Professor, Interactive Computing

James Hays

Assoc. Professor, Interactive Computing

Judy Hoffman

Asst. Professor, Interactive Computing

Soon Ho Kim

Post-Doctoral Researcher, Mathematics

Zsolt Kira

Asst. Professor, Interactive Computing

Pan Li

Asst. Professor, Electrical and Computer Engineering

Saibal Mukhopadhyay

Professor, Electrical and Computer Engineering

B. Aditya Prakash

Assoc. Professor, Computational Science and Engineering

Mark Riedl

Professor, Interactive Computing

Alan Ritter

Assoc. Professor, Interactive Computing

Evangelos Theodorou

Assoc. Professor, Aerospace Engineering

Anqi Wu

Asst. Professor, Computational Science and Engineering

Wei Xu

Assoc. Professor, Interactive Computing

Danfei Xu

Asst. Professor, Interactive Computing

Shihao Yang

Asst. Professor, Industrial and Systems Engineering

Chao Zhang

Asst. Professor, Computational Science and Engineering

Tuo Zhao

Asst. Professor, Industrial and Systems Engineering

Juba Ziani

Asst. Professor, Industrial and Systems Engineering

RESEARCH

Oral papers are approximately the top 1% and Spotlight papers are the top 6% of papers accepted to the conference. Click on paper titles for details and to download full papers.

Applications to Neuroscience & Cognitive Science

Multi-modal Gaussian Process Variational Autoencoders for Neural and Behavioral Data

Rabia Gondur, Usama Bin Sikandar, Evan Schaffer, Mikio Aoi, Stephen Keeley

Characterizing the relationship between neural population activity and behavioral data is a central goal of neuroscience. While latent variable models (LVMs) are successful in describing high-dimensional data, they are typically only designed for a single type of data, making it difficult to identify structure shared across different experimental data modalities. Here, we address this shortcoming by proposing an unsupervised LVM which extracts shared and independent latents for distinct, simultaneously recorded experimental modalities. We do this by combining Gaussian Process Factor Analysis (GPFA), an interpretable LVM for neural spiking data with temporally smooth latent space, with Gaussian Process Variational Autoencoders (GP-VAEs), which similarly use a GP prior to characterize correlations in a latent space, but admit rich expressivity due to a deep neural network mapping to observations. We achieve interpretability in our model by partitioning latent variability into components that are either shared between or independent to each modality. We parameterize the latents of our model in the Fourier domain, and show improved latent identification using this approach over standard GP-VAE methods. We validate our model on simulated multi-modal data consisting of Poisson spike counts and MNIST images that scale and rotate smoothly over time. We show that the multi-modal GP-VAE (MM-GPVAE) is able to not only identify the shared and independent latent structure across modalities accurately, but provides good reconstructions of both images and neural rates on held-out trials. Finally, we demonstrate our framework on two real world multi-modal experimental settings: Drosophila whole-brain calcium imaging alongside tracked limb positions, and Manduca sexta spike train measurements from ten wing muscles as the animal tracks a visual stimulus.

One-hot Generalized Linear Model for Switching Brain State Discovery

Chengrui Li, Soon Ho Kim, Chris Rodgers, Hannah Choi, Anqi Wu

Exposing meaningful and interpretable neural interactions is critical to understanding neural circuits. Inferred neural interactions from neural signals primarily reflect functional interactions. In a long experiment, subject animals may experience different stages defined by the experiment, stimuli, or behavioral states, and hence functional interactions can change over time. To model dynamically changing functional interactions, prior work employs state-switching generalized linear models with hidden Markov models (i.e., HMM-GLMs). However, we argue they lack biological plausibility, as functional interactions are shaped and confined by the underlying anatomical connectome. Here, we propose a novel prior-informed state-switching GLM. We introduce both a Gaussian prior and a one-hot prior over the GLM in each state. The priors are learnable. We will show that the learned prior should capture the state-constant interaction, shedding light on the underlying anatomical connectome and revealing more likely physical neuron interactions. The state-dependent interaction modeled by each GLM offers traceability to capture functional variations across multiple brain states. Our methods effectively recover true interaction structures in simulated data, achieve the highest predictive likelihood with real neural datasets, and render interaction structures and hidden states more interpretable when applied to real neural data.

Applications to Physical Sciences (Physics, Chemistry, Biology, Etc.)

PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks

Zhiyuan Zhao, Xueying Ding, B. Aditya Prakash

Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions to partial differential equations (PDEs). However, conventional PINNs, relying on multilayer perceptrons (MLP), neglect the crucial temporal dependencies inherent in practical physics systems and thus fail to propagate the initial condition constraints globally and accurately capture the true solutions under various scenarios. In this paper, we introduce a novel Transformer-based framework, termed PINNsFormer, designed to address this limitation. PINNsFormer can accurately approximate PDE solutions by utilizing multi-head attention mechanisms to capture temporal dependencies. PINNsFormer transforms point-wise inputs into pseudo sequences and replaces point-wise PINNs loss with a sequential loss. Additionally, it incorporates a novel activation function, \texttt{Wavelet}, which anticipates Fourier decomposition through deep neural networks. Empirical results demonstrate that PINNsFormer achieves superior generalization ability and accuracy across various scenarios, including PINNs failure modes and high-dimensional PDEs. Moreover, PINNsFormer offers flexibility in integrating existing learning schemes for PINNs, further enhancing its performance.

Applications to Robotics, Autonomy, Planning

CrossLoco: Human Motion Driven Control of Legged Robots via Guided Unsupervised Reinforcement Learning

Tianyu Li, Hyunyoung Jung, Matthew Gombolay, Yong Cho, Sehoon Ha

Human motion driven control (HMDC) is an effective approach for generating natural and compelling robot motions while preserving high-level semantics. However, establishing the correspondence between humans and robots with different body structures is not straightforward due to the mismatches in kinematics and dynamics properties, which causes intrinsic ambiguity to the problem. Many previous algorithms approach this motion retargeting problem with unsupervised learning, which requires the prerequisite skill sets. However, it will be extremely costly to learn all the skills without understanding the given human motions, particularly for high-dimensional robots. In this work, we introduce CrossLoco, a guided unsupervised reinforcement learning framework that simultaneously learns robot skills and their correspondence to human motions. Our key innovation is to introduce a cycle-consistency-based reward term designed to maximize the mutual information between human motions and robot states. We demonstrate that the proposed framework can generate compelling robot motions by translating diverse human motions, such as running, hopping, and dancing. We quantitatively compare our CrossLoco  against the manually engineered and unsupervised baseline algorithms along with the ablated versions of our framework and demonstrate that our method translates human motions with better accuracy, diversity, and user preference. We also showcase its utility in other applications, such as synthesizing robot movements from…

Large Language Models as Generalizable Policies for Embodied Tasks

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Katherine Metcalf, Walter Talbott, Natalie Mackraz, R Devon Hjelm, Alexander Toshev

We show that large language models (LLMs) can be adapted to be generalizable policies for embodied visual tasks. Our approach, called Large LAnguage model Reinforcement Learning Policy (LLaRP), adapts a pre-trained frozen LLM to take as input text instructions and visual egocentric observations and output actions directly in the environment. Using reinforcement learning, we train LLaRP to see and act solely through environmental interactions. We show that LLaRP is robust to complex paraphrasings of task instructions and can generalize to new tasks that require novel optimal behavior. In particular, on 1,000 unseen tasks it achieves 42% success rate, 1.7x the success rate of other common learned baselines or zero-shot applications of LLMs. Finally, to aid the community in studying language conditioned, massively multi-task, embodied AI problems we release a novel benchmark, Language Rearrangement, consisting of 150,000 training and 1,000 testing tasks for language-conditioned rearrangement.

ZeroFlow: Scalable Scene Flow via Distillation

Kyle Vedder, Neehar Peri, Nathaniel Chodosh, Ishan Khatri, ERIC EATON, Dinesh Jayaraman, Yang Liu, Deva  Ramanan, James Hays

Scene flow estimation is the task of describing the 3D motion field between temporally successive point clouds. State-of-the-art methods use strong priors and test-time optimization techniques, but require on the order of tens of seconds to process full-size point clouds, making them unusable as computer vision primitives for real-time applications such as open world object detection. Feedforward methods are considerably faster, running on the order of tens to hundreds of milliseconds for full-size point clouds, but require expensive human supervision. To address both limitations, we propose _Scene Flow via Distillation_, a simple, scalable distillation framework that uses a label-free optimization method to produce pseudo-labels to supervise a feedforward model. Our instantiation of this framework, _ZeroFlow_, achieves **state-of-the-art** performance on the _Argoverse 2 Self-Supervised Scene Flow Challenge_ while using zero human labels by simply training on large-scale, diverse unlabeled data. At test-time, ZeroFlow is over 1000$\times$ faster than label-free state-of-the-art optimization-based methods on full-size point clouds (34 FPS vs 0.028 FPS) and over 1000$\times$ cheaper to train on unlabeled data compared to the cost of human annotation (\\$394 vs ~\\$750,000). To facilitate further research, we will release our code, trained model weights, and high quality pseudo-labels for the Argoverse 2 and Waymo Open datasets.

Datasets And Benchmarks

DyVal: Graph-informed Dynamic Evaluation of Large Language Models SPOTLIGHT

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Gong, Diyi Yang, Xing Xie

Large language models (LLMs) have achieved remarkable performance in various evaluation benchmarks. However, concerns about their performance are raised on potential data contamination in their considerable volume of training corpus. Moreover, the static nature and fixed complexity of current benchmarks may inadequately gauge the advancing capabilities of LLMs. In this paper, we introduce DyVal, a novel, general, and flexible evaluation protocol for dynamic evaluation of LLMs. Based on our proposed dynamic evaluation framework, we build graph-informed DyVal by leveraging the structural advantage of directed acyclic graphs to dynamically generate evaluation samples with controllable complexities. DyVal generates challenging evaluation sets on reasoning tasks including mathematics, logical reasoning, and algorithm problems. We evaluate various LLMs ranging from Flan-T5-large to ChatGPT and GPT4. Experiments demonstrate that LLMs perform worse in DyVal-generated evaluation samples with different complexities, emphasizing the significance of dynamic evaluation. We also analyze the failure cases and results of different prompting methods. Moreover, DyVal-generated samples are not only evaluation sets, but also helpful data for fine-tuning to improve the performance of LLMs on existing benchmarks. We hope that DyVal can shed light on the future evaluation research of LLMs.

Habitat 3.0: A Co-Habitat for Humans, Avatars, and Robots

Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Partsey, Ruta Desai, Alexander Clegg, Michal Hlavac, So Yeon Min, Vladimír Vondruš, Theophile Gervet, Vincent-Pierre Berges, John Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakrishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, Roozbeh Mottaghi

We present Habitat 3.0: a simulation platform for studying collaborative human-robot tasks in home environments. Habitat 3.0 offers contributions across three dimensions: (1) Accurate humanoid simulation: addressing challenges in modeling complex deformable bodies and diversity in appearance and motion, all while ensuring high simulation speed. (2) Human-in-the-loop infrastructure: enabling real human interaction with simulated robots via mouse/keyboard or a VR interface, facilitating evaluation of robot policies with human input. (3) Collaborative tasks: studying two collaborative tasks, Social Navigation and Social Rearrangement. Social Navigation investigates a robot’s ability to locate and follow humanoid avatars in unseen environments, whereas Social Rearrangement addresses collaboration between a humanoid and robot while rearranging a scene. These contributions allow us to study end-to-end learned and heuristic baselines for human-robot collaboration in-depth, as well as evaluate them with humans in the loop. Our experiments demonstrate that learned robot policies lead to efficient task completion when collaborating with unseen humanoid agents and human partners that might exhibit behaviors that the robot has not seen before. Additionally, we observe emergent behaviors during collaborative task execution, such as the robot yielding space when obstructing a humanoid agent, thereby allowing the effective completion of the task by the humanoid agent. Furthermore, our experiments using the human-in-the-loop tool demonstrate that our automated evaluation with humanoids can provide an indication of the relative ordering of different policies when evaluated with real human collaborators. Habitat 3.0 unlocks interesting new features in simulators for Embodied AI, and we hope it paves the way for a new frontier of embodied human-AI interaction capabilities.

General Machine Learning

On the Stability of Expressive Positional Encodings for Graph Neural Networks

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, Pan Li

Designing effective positional encodings for graphs is key to building powerful graph transformers and enhancing message-passing graph neural networks. Although widespread, using Laplacian eigenvectors as positional encodings faces two fundamental challenges: (1) *Non-uniqueness*: there are many different eigendecompositions of the same Laplacian, and (2) *Instability*: small perturbations to the Laplacian could result in completely different eigenspaces, leading to unpredictable changes in positional encoding.  Despite many attempts to address non-uniqueness, most methods overlook stability, leading to poor generalization on unseen graph structures. We identify the cause of instability to be the use of “hard partition” of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings (SPE), an architecture for processing eigenvectors that uses eigenvalues to “softly partition” eigenspaces. SPE is the first architecture that is (1) provably stable, and (2) universally expressive for basis invariant functions whilst respecting all symmetries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least as expressive as existing methods, and highly capable of counting graph structures. Finally, we evaluate the effectiveness of our method on molecular property prediction, and out-of-distribution generalization tasks, finding improved generalization compared to existing positional encoding methods.

ToolChain*: Efficient Action Space Navigation in Large Language Models with A* Search

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan Rossi, Somdeb Sarkhel, Chao Zhang

Large language models (LLMs) have demonstrated powerful decision-making and planning capabilities in solving complicated real-world problems. LLM-based autonomous agents can interact with diverse tools (e.g., functional APIs) and generate solution plans that execute a series of API function calls in a step-by-step manner. The multitude of candidate API function calls significantly expands the action space, amplifying the critical need for efficient action space navigation. However, existing methods either struggle with unidirectional exploration in expansive action spaces, trapped into a locally optimal solution, or suffer from exhaustively traversing all potential actions, causing inefficient navigation. To address these issues, we propose ToolChain*, an efficient tree search-based planning algorithm for LLM-based agents. It formulates the entire action space as a decision tree, where each node represents a possible API function call involved in a solution plan. By incorporating the A$^*$ search algorithm with task-specific cost function design, it efficiently prunes high-cost branches that may involve incorrect actions, identifying the most low-cost valid path as the solution. Extensive experiments on multiple tool-use and reasoning tasks demonstrate that ToolChain* efficiently balances exploration and exploitation within an expansive action space. It outperforms state-of-the-art baselines on planning and reasoning tasks by 3.1% and 3.5% on average while requiring 7.35x and 2.31x less time, respectively.

Generative Models

Generative Modeling with Phase Stochastic Bridge ORAL

Tianrong Chen, Jiatao Gu, Laurent Dinh, Evangelos Theodorou, Joshua Susskind, Shuangfei Zhai

Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling framework grounded in \textbf{phase space dynamics}, where a phase space is defined as {an augmented space encompassing both position and velocity.} Leveraging insights from Stochastic Optimal Control, we construct a path measure in the phase space that enables efficient sampling. {In contrast to DMs, our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.} This early prediction sets the stage for efficient data generation by leveraging additional velocity information along the trajectory. On standard image generation benchmarks, our model yields favorable performance over baselines in the regime of small Number of Function Evaluations (NFEs). Furthermore, our approach rivals the performance of diffusion models equipped with efficient sampling techniques, underscoring its potential as a new tool generative modeling.

DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R Glass, Pengcheng He

Despite their impressive capabilities, large language models (LLMs) are prone to hallucinations, i.e., generating content that deviates from facts seen during pretraining. We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs that does not require conditioning on retrieved external knowledge nor additional fine-tuning. Our approach obtains the next-token distribution by contrasting the differences in logits obtained from projecting the later layers versus earlier layers to the vocabulary space, exploiting the fact that factual knowledge in an LLMs has generally been shown to be localized to particular transformer layers. We find that this **D**ecoding by C**o**ntrasting **La**yers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts. DoLa consistently improves the truthfulness across multiple choices tasks and open-ended generation tasks, for example improving the performance of LLaMA family models on TruthfulQA by 12-17% absolute points, demonstrating its potential in making LLMs reliably generate truthful facts.

Evoke: Evoking Critical Thinking Abilities in LLMs via Reviewer-Author Prompt Editing

Xinyu Hu, Pengfei Tang, Simiao Zuo, Zihan Wang, Bowen Song, Qiang Lou, Jian Jiao, Denis Charles

Large language models (LLMs) have made impressive progress in natural language processing. These models rely on proper human instructions (or prompts) to generate suitable responses. However, the potential of LLMs are not fully harnessed by commonly-used prompting methods: many human-in-the-loop algorithms employ ad-hoc procedures for prompt selection; while auto prompt generation approaches are essentially searching all possible prompts randomly and inefficiently. We propose Evoke, an automatic prompt refinement framework. In Evoke, there are two instances of a same LLM: one as a reviewer (LLM-Reviewer), it scores the current prompt; the other as an author (LLM-Author), it edits the prompt by considering the edit history and the reviewer’s feedback. Such an author-reviewer feedback loop ensures that the prompt is refined in each iteration. We further aggregate a data selection approach to Evoke, where only the hard samples are exposed to the LLM. The hard samples are more important because the LLM can develop deeper understanding of the tasks out of them, while the model may already know how to solve the easier cases. Experimental results show that Evoke significantly outperforms existing methods. For instance, in the challenging task of logical fallacy detection, Evoke scores above 80, while all other baseline methods struggle to reach 20.

Generalized Schrödinger Bridge Matching

Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos Theodorou, Ricky T. Q. Chen

Modern distribution matching algorithms for training diffusion or flow models directly prescribe the time evolution of the marginal distributions between two boundary distributions. In this work, we consider a generalized distribution matching setup, where these marginals are only implicitly described as a solution to some task-specific objective function. The problem setup, known as the Generalized Schrödinger Bridge (GSB), appears prevalently in many scientific areas both within and without machine learning. We propose Generalized Schödinger Bridge Matching (GSBM), a new matching algorithm inspired by recent advances, generalizing them beyond kinetic energy minimization and to account for nonlinear state costs. We show that such a generalization can be cast as solving conditional stochastic optimal control, for which efficient variational approximations can be used, and further debiased with the aid of path integral theory. Compared to prior methods for solving GSB problems, our GSBM algorithm always preserves a feasible transport map between the boundary distributions throughout training, thereby enabling stable convergence and significantly improved scalability. We empirically validate our claims on an extensive suite of experimental setups, including crowd navigation, opinion depolarization, LiDAR manifolds, and image domain transfer. Our work brings new algorithmic opportunities for training diffusion models enhanced with task-specific optimality structures.

InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian  Peng, Qiang Liu

Diffusion models have revolutionized text-to-image generation with its exceptional quality and creativity. However, its multi-step sampling process is known to be slow, often requiring tens of inference steps to obtain satisfactory results. Previous attempts to improve its sampling speed and reduce computational costs through distillation have been unsuccessful in achieving a functional one-step model.In this paper, we explore a recent method called Rectified Flow, which, thus far, has only been applied to small datasets. The core of Rectified Flow lies in its \emph{reflow} procedure, which straightens the trajectories of probability flows, refines the coupling between noises and images, and facilitates the distillation process with student models. We propose a novel text-conditioned pipeline to turn Stable Diffusion (SD) into an ultra-fast one-step model, in which we find reflow plays a critical role in improving the assignment between noise and images. Leveraging our new pipeline, we create, to the best of our knowledge, the first one-step diffusion-based text-to-image generator with SD-level image quality, achieving an FID (Fréchet Inception Distance) of $23.3$ on MS COCO 2017-5k, surpassing the previous state-of-the-art technique, progressive distillation, by a significant margin ($37.2$ $\rightarrow$ $23.3$ in FID). By utilizing an expanded network with 1.7B parameters, we further improve the FID to $22.4$. We call our one-step models \emph{InstaFlow}. On MS COCO 2014-30k, InstaFlow yields an FID of $13.1$ in just $0.09$ second, the best in $\leq 0.1$ second regime, outperforming the recent StyleGAN-T ($13.9$ in $0.1$ second). Notably, the training of InstaFlow only costs 199 A100 GPU days.

Language Model Beats Diffusion – Tokenizer is key to visual generation

Lijun Yu, José Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, Boqing Gong, Ming-Hsuan Yang, Irfan Essa, David Ross, Lu Jiang

While Large Language Models (LLMs) are the dominant models for generative tasks in language, they do not perform as well as diffusion models on image and video generation. To effectively use LLMs for visual generation, one crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens appropriate for LLM learning. In this paper, we introduce \modelname{}, a video tokenizer designed to generate concise and expressive tokens for both videos and images using a common token vocabulary. Equipped with this new tokenizer, we show that LLMs outperform diffusion models on standard image and video generation benchmarks including ImageNet and Kinetics. In addition, we demonstrate that our tokenizer surpasses the previously top-performing video tokenizer on two more tasks: (1) video compression comparable to the next-generation video codec (VCC) according to human evaluations, and (2) learning effective representations for action recognition tasks.

Toward effective protection against diffusion-based mimicry through score distillation

Haotian Xue, Chumeng Liang, Xiaoyu Wu, Yongxin Chen

While generative diffusion models excel in producing high-quality images, they can also be misused to mimic authorized images, posing a significant threat to AI systems. Efforts have been made to add calibrated perturbations to protect images from diffusion-based mimicry pipelines. However, most of the existing methods are too ineffective and even impractical to be used by individual users due to their high computation and memory requirements. In this work, we present novel findings on attacking latent diffusion models (LDM) and propose new plug-and-play strategies for more effective protection. In particular, we explore the bottleneck in attacking an LDM, discovering that the encoder module rather than the denoiser module is the vulnerable point. Based on this insight, we present our strategy using Score Distillation Sampling (SDS) to double the speed of protection and reduce memory occupation by half without compromising its strength. Additionally, we provide a robust protection strategy by counterintuitively minimizing the semantic loss, which can assist in generating more natural perturbations. Finally, we conduct extensive experiments to substantiate our findings and comprehensively evaluate our newly proposed strategies. We hope our insights and protective measures can contribute to better defense against malicious diffusion-based mimicry, advancing the development of secure AI systems.

Learning On Graphs And Other Geometries & Topologies

Polynomial Width is Sufficient for Set Representation with High-dimensional Features

Peihao Wang, Shenghao Yang, Shu Li, Zhangyang Wang, Pan Li

Set representation has become ubiquitous in deep learning for modeling the inductive bias of neural networks that are insensitive to the input order. DeepSets is the most widely used neural network architecture for set representation. It involves embedding each set element into a latent space with dimension $L$, followed by a sum pooling to obtain a whole-set embedding, and finally mapping the whole-set embedding to the output. In this work, we investigate the impact of the dimension $L$ on the expressive power of DeepSets. Previous analyses either oversimplified high-dimensional features to be one-dimensional features or were limited to analytic activations, thereby diverging from practical use or resulting in $L$ that grows exponentially with the set size $N$ and feature dimension $D$. To investigate the minimal value of $L$ that achieves sufficient expressive power, we present two set-element embedding layers: (a) linear + power activation (LP) and (b) linear + exponential activations (LE). We demonstrate that $L$ being $\operatorname{poly}(N, D)$ is sufficient for set representation using both embedding layers. We also provide a lower bound of $L$ for the LP embedding layer. Furthermore, we extend our results to permutation-equivariant set functions and the complex field.

Learning On Graphs And Other Geometries & Topologies

VCR-Graphormer: A Mini-batch Graph Transformer via Virtual Connections

Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich, Jingrui He, Bo Long

Graph transformer has been proven as an effective graph learning method for its adoption of attention mechanism that is capable of capturing expressive representations from complex topological and feature information of graphs. Graph transformer conventionally performs dense attention (or global attention) for every pair of nodes to learn node representation vectors, resulting in quadratic computational costs that are unaffordable for large-scale graph data. Therefore, mini-batch training for graph transformers is a promising direction, but limited samples in each mini-batch can not support effective dense attention to encode informative representations.Facing this bottleneck, (1) we start by assigning each node a token list that is sampled by personalized PageRank (PPR) and then apply standard multi-head self-attention only on this list to compute its node representations. This PPR tokenization method decouples model training from complex graph topological information and makes heavy feature engineering offline and independent, such that mini-batch training of graph transformers is possible by loading each node’s token list in batches. We further prove this PPR tokenization is viable as a graph convolution network with a fixed polynomial filter and jumping knowledge. However, only using personalized PageRank may limit information carried by a token list, which could not support different graph inductive biases for model training. To this end, (2) we rewire graphs by introducing multiple types of virtual connections through structure- and content-based super nodes that enable PPR tokenization to encode local and global contexts, long-range interaction, and heterophilous information into each node’s token list, and then formalize our Virtual Connection Ranking based Graph Transformer (VCR-Graphormer). Overall, VCR-Graphormer only needs $O(m+klogk)$ complexity for graph tokenization as compared to $O(n^{3})$ of previous works. We also show that VCR-Graphormer outperforms the state-of-the-arts on node classification in 12 datasets.

Learning Theory

Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances SPOTLIGHT

Mikhail Khodak, Edmond Chow, Nina Balcan, Ameet Talwalkar

Solving a linear system ${\bf Ax}={\bf b}$ is a fundamental scientific computing primitive, and numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved but are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used instead. We consider the common setting in which many related linear systems are  solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation~(SOR), a standard solver whose parameter $\omega$ has a strong impact on its runtime. For this method, we prove that a bandit algorithm—using only the number of iterations as feedback—can select parameters for a sequence of instances such that the overall cost is almost as good as that the best fixed $\omega$ would have obtained. Furthermore, when given additional structural information, we show that a {\em contextual} bandit method approaches the performance of the {\em instance-optimal} policy, which selects the best $\omega$ for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.

Oracle Efficient Algorithms for Groupwise Regret

Krishna Acharya, Eshwar Ram Arunachaleswaran, Sampath Kannan, Aaron Roth, Juba Ziani

We study the problem of online prediction, in which at each time step $t \in \{1,2, \cdots T\}$, an individual $x_t$ arrives, whose label we must predict. Each individual is associated with various groups, defined based on their features such as age, sex, race etc., which may intersect. Our goal is to make predictions that have regret guarantees not just overall but also simultaneously on each sub-sequence comprised of the members of any single group. Previous work such as  [Blum & Lykouris][1] and [Lee et al][2] provide attractive regret guarantees for these problems; however, these are computationally intractable on large model classes (e.g., the set of all linear models, as used in linear regression). We show that a simple modification of the sleeping experts technique of [Blum & Lykouris][1] yields an efficient *reduction* to the well-understood problem of obtaining diminishing external regret *absent group considerations*. Our approach gives similar regret guarantees compared to [Blum & Lykouris][1]; however, we run in time linear in the number of groups, and are oracle-efficient in the hypothesis class. This in particular implies that our algorithm is efficient whenever the number of groups is  polynomially bounded and the external-regret problem can be solved efficiently, an improvement on [Blum & Lykouris][1]’s stronger condition that the model class must be small. Our approach can handle online linear regression and online combinatorial optimization problems like online shortest paths. Beyond providing theoretical regret bounds, we evaluate this algorithm with an extensive set of experiments on synthetic data and on two real data sets — Medical costs and the Adult income dataset, both instantiated with intersecting groups defined in terms of race, sex, and other demographic characteristics. We find that uniformly across groups, our algorithm gives substantial error improvements compared to running a standard online linear regression algorithm with no groupwise regret guarantees.

Optimization

LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models ORAL

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, Tuo Zhao

Quantization is an indispensable technique for serving Large Language Models (LLMs) and has recently found its way into LoRA fine-tuning (Dettmers et al., 2023). In this work we focus on the scenario where quantization and LoRA fine- tuning are applied together on a pre-trained model. In such cases it is common to observe a consistent gap in the performance on downstream tasks between full fine-tuning and quantization plus LoRA fine-tuning approach. In response, we propose LoftQ (LoRA-Fine-Tuning-aware Quantization), a novel quantization framework that simultaneously quantizes an LLM and finds a proper low-rank initialization for LoRA fine-tuning. Such an initialization alleviates the discrep- ancy between the quantized and full-precision model and significantly improves the generalization in downstream tasks. We evaluate our method on natural lan- guage understanding, question answering, summarization, and natural language generation tasks. Experiments show that our method is highly effective and out- performs existing quantization methods, especially in the challenging 2-bit and 2/4-bit mixed precision regimes. We will release our code.

A ROBUST DIFFERENTIAL NEURAL ODE OPTIMIZER

Panagiotis Theodoropoulos, Guan-Horng Liu, Tianrong Chen, Augustinos Saravanos, Evangelos Theodorou

Neural networks and neural ODEs tend to be vulnerable to adversarial attacks, rendering robust optimizers critical to curb the success of such attacks. In this regard, the key insight of this work is to interpret Neural ODE optimization as a min-max optimal control problem. More particularly, we present Game Theoretic Second-Order Neural Optimizer (GTSONO), a robust game theoretic optimizer based on the principles of min-max Differential Dynamic Programming.The proposed method exhibits significant computational benefits due to efficient matrix decompositions and provides convergence guarantees to local saddle points.Empirically, the robustness of the proposed optimizer is demonstrated through greater robust accuracy  compared to benchmark optimizers when trained on clean images. Additionally, its ability to provide a performance increase when adapted to an already existing adversarial defense technique is also illustrated.Finally, the superiority of the proposed update law over its gradient based counterpart highlights the potential benefits of incorporating robust optimal control paradigms into adversarial training methods.

Probabilistic Methods (Bayesian Methods, Variational Inference, Sampling, Uq, Etc.)

Forward $\chi^2$ Divergence Based Variational Importance Sampling SPOTLIGHT

Chengrui Li, Yule Wang, Weihan Li, Anqi Wu

Maximizing the marginal log-likelihood is a crucial aspect of learning latent variable models, and variational inference (VI) stands as the commonly adopted method. However, VI can encounter challenges in achieving a high marginal log-likelihood when dealing with complicated posterior distributions. In response to this limitation, we introduce a novel variational importance sampling (VIS) approach that directly estimates and maximizes the marginal log-likelihood. VIS leverages the optimal proposal distribution, achieved by minimizing the forward $\chi^2$ divergence, to enhance marginal log-likelihood estimation. We apply VIS to various popular latent variable models, including mixture models, variational auto-encoders, and partially observable generalized linear models. Results demonstrate that our approach consistently outperforms state-of-the-art baselines, in terms of both log-likelihood and model parameter estimation. Code: \url{https://github.com/JerrySoybean/vis}.

Conformal Prediction via Regression-as-Classification

Etash Guha, Shlok Natarajan, Thomas Möllenhoff, Mohammad Emtiyaz Khan, Eugene Ndiaye

Conformal prediction (CP) for regression can be challenging, especially when the output distribution is heteroscedastic, multimodal, or skewed. Some of the issues can be addressed by estimating a distribution over the output, but in reality, such approaches can be sensitive to estimation error and yield unstable intervals. Here, we circumvent the challenges by converting regression to a classification problem and then use CP for classification to obtain CP sets for regression. To preserve the ordering of the continuous-output space, we design a new loss function and present necessary modifications to the CP classification techniques. Empirical results on many benchmarks show that this simple approach gives surprisingly good results on many practical problems.

Reinforcement Learning

Improving Language Models with Advantage-based Offline Policy Gradients

Ashutosh Baheti, Ximing Lu, Faeze Brahman, Ronan Le Bras, Maarten Sap, Mark Riedl

Language Models (LMs) achieve substantial language capabilities when finetuned using Reinforcement Learning with Human Feedback (RLHF). However, RLHF is an unstable and data-hungry process that continually requires new high-quality LM-generated data for finetuning. We introduce Advantage-Leftover Lunch RL (A-LoL), a new class of offline policy gradient algorithms that enable RL training on any pre-existing data. By assuming the entire LM output sequence as a single action, A-LoL allows incorporating sequence-level classifiers or human-designed scoring functions as rewards. Subsequently, by using LM’s internal sequence-level value estimate, A-LoL filters negative advantage (low-quality) data points during training, making it resilient to noise. Overall, A-LoL is an easy-to-implement LM training recipe that is sample-efficient and stable.We demonstrate the effectiveness of A-LoL and its variants with a set of four different language generation tasks. We compare against both online RL (PPO) and recent preference-based (DPO, PRO) and reward-based (GOLD) offline RL baselines. On the commonly-used RLHF benchmark, Helpful and Harmless Assistant (HHA), LMs trained with A-LoL methods achieve the highest diversity while also being rated more safe and helpful than baselines according to humans. Additionally, in the remaining three tasks, A-LoL could optimize multiple distinct reward functions even when using noisy or suboptimal training data.

Sample-Efficient Learning of POMDPs with Multiple Observations In Hindsight

Jiacheng Guo, Minshuo Chen, Huan Wang, Caiming Xiong, Mengdi Wang, Yu Bai

This paper studies the sample-efficiency of learning in Partially Observable Markov Decision Processes (POMDPs), a challenging problem in reinforcement learning that is known to be exponentially hard in the worst-case. Motivated by real-world settings such as loading in game playing, we propose an enhanced feedback model called “multiple observations in hindsight”, where after each episode of interaction with the POMDP, the learner may collect multiple additional observations emitted from the encountered latent states, but may not observe the latent states themselves. We show that sample-efficient learning under this feedback model is possible for two new subclasses of POMDPs: \emph{multi-observation revealing POMDPs} and \emph{distinguishable POMDPs}. Both subclasses generalize and substantially relax \emph{revealing POMDPs}—a widely studied subclass for which sample-efficient learning is possible under standard trajectory feedback. Notably, distinguishable POMDPs only require the emission distributions from different latent states to be \emph{different} instead of \emph{linearly independent} as required in revealing POMDPs.

Representation Learning For Computer Vision, Audio, Language, And Other Modalities

Large Language Models are Efficient Learners of Noise-Robust Speech Recognition SPOTLIGHT

Yuchen Hu, CHEN CHEN, Huck Yang, Ruizhe Li, Chao Zhang, Pin-Yu Chen, Ensiong Chng

Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR), which leverages the rich linguistic knowledge and powerful reasoning ability of LLMs to improve recognition results. The latest work proposes a GER benchmark with “HyPoradise” dataset to learn the mapping from ASR N-best hypotheses to ground-truth transcription by efficient LLM finetuning, which shows great effectiveness but lacks specificity on noise-robust ASR. In this work, we extend the benchmark to noisy conditions and investigate if we can teach LLMs to perform denoising for GER just like what robust ASR do, where one solution is introducing noise information as a conditioner into LLM. However, directly incorporating noise embeddings from audio encoder could harm the LLM tuning due to cross-modality gap. To this end, we propose to extract a language-space noise embedding from the N-best list to represent the noise conditions of source speech, which can promote the denoising process in GER. Furthermore, in order to enhance its representation ability of audio noise, we design a knowledge distillation (KD) approach via mutual information estimation to distill the real noise information in audio embeddings to our language embedding. Experiments on various latest LLMs demonstrate our approach achieves a new breakthrough with up to 53.9% correction improvement in terms of word error rate while with limited training data. Analysis shows that our language-space noise embedding can well represent the noise conditions of source speech, under which off-the-shelf LLMs show strong ability of language-space denoising.

Constrained Decoding for Cross-lingual Label Projection

Duong Le, Yang Chen, Alan Ritter, Wei Xu

Zero-shot cross-lingual transfer utilizing multilingual LLMs has become a popular learning paradigm for low-resource languages with no labeled training data. However, for NLP tasks that involve fine-grained predictions on words and phrases, the performance of zero-shot cross-lingual transfer learning lags far behind supervised fine-tuning methods. Therefore, it is common to exploit translation and label projection to further improve the performance by (1) translating training data that is available in a high-resource language (e.g., English) together with the gold labels into low-resource languages, and/or (2) translating test data in low-resource languages to a high-source language to run inference on, then projecting the predicted span-level labels back onto the original test data. However, state-of-the-art marker-based label projection methods suffer from translation quality degradation due to the extra label markers injected in the input to the translation model. In this work, we explore a new direction that leverages constrained decoding for label projection to overcome the aforementioned issues. Our new method not only can preserve the quality of translated texts but also has the versatility of being applicable to both translating training and translating test data strategies. This versatility is crucial as our experiments reveal that translating test data can lead to a considerable boost in performance compared to translating only training data. We evaluate on two cross-lingual transfer tasks, namely Named Entity Recognition and Event Argument Extraction, spanning 20 languages. The results demonstrate that our approach outperforms the state-of-the-art marker-based method by a large margin and also shows better performance than other label projection methods that rely on external word alignment.

EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision

Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Seung Wook Kim, Boyi Li, Tong Che, Danfei Xu, Sanja Fidler, Marco Pavone, Yue Wang

We present EmerNeRF, a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes. Grounded in neural fields, EmerNeRF simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping. EmerNeRF hinges upon two core components: First, it stratifies scenes into static and dynamic fields. This decomposition emerges purely from self-supervision, enabling our model to learn from general, in-the-wild data sources. Second, EmerNeRF parameterizes an induced flow field from the dynamic field and uses this flow field to further aggregate multi-frame features, amplifying the rendering precision of dynamic objects. Coupling these three fields (static, dynamic, and flow) enables EmerNeRF to represent highly-dynamic scenes self-sufficiently, without relying on ground truth object annotations or pre-trained models for dynamic object segmentation or optical flow estimation. Our method achieves state-of-the-art performance in sensor simulation, significantly outperforming previous methods when reconstructing static (+2.39 PSNR) and dynamic (+3.25 PSNR) scenes. In addition, to bolster EmerNeRF’s semantic generalization, we lift 2D visual foundation model features into 4D space-time and address a general positional bias in modern Transformers, significantly boosting 3D perception performance (e.g., 78.5% relative improvement in occupancy prediction accuracy). Finally, we construct a diverse and challenging 120-sequence dataset to benchmark neural fields under extreme and highly-dynamic settings. Visualizations, code, and data will be anonymously available at https://anonymous.4open.science/r/EmerNeRF_review-003B/

GAFormer: Enhancing Timeseries Transformers Through Group-Aware Embeddings

Jingyun Xiao, Ran Liu, Eva Dyer

Analyzing multivariate time series is important in many domains. However, it has been difficult to learn robust and generalizable representations within multivariate datasets due to complex inter-channel relationships and dynamic shifts. In this paper, we introduce a novel approach for learning spatiotemporal structure and using it to improve the application of transformers to timeseries datasets. Our framework learns a set of group tokens, and builds an instance-specific group embedding (GE) layer that assigns input tokens to a small number of group tokens to incorporate  structure into learning. We then introduce a novel architecture, Group-Aware transFormer (GAFormer), which incorporates both spatial and temporal group embeddings to achieve state-of-the-art performance on a number of time-series classification and regression tasks. In evaluations on a number of diverse timeseries datasets, we show that GE on its own can provide a nice enhancement to a number of backbones, and that by coupling spatial and temporal group embeddings, the GAFormer can outperform the existing baselines. Finally, we show how our approach discerns latent structures in data even without information about the spatial ordering of channels, and yields a more interpretable decomposition of spatial and temporal structure underlying complex multivariate datasets.

It’s Never Too Late: Fusing Acoustic Information into Large Language Models for Automatic Speech Recognition

CHEN CHEN, Ruizhe Li, Yuchen Hu, Sabato Siniscalchi, Pin-Yu Chen, Ensiong Chng, Huck Yang

Recent studies have successfully shown that large language models (LLMs) can be successfully used for generative error correction (GER) on top of the automatic speech recognition (ASR) output. Specifically, an LLM is utilized to carry out a direct mapping from the N-best hypotheses list generated by an ASR system to the predicted output transcription. However, despite its effectiveness, GER introduces extra data uncertainty since the LLM is trained without taking into account acoustic information available in the speech signal. In this work, we aim to overcome such a limitation by infusing acoustic information before generating the predicted transcription through a novel late fusion solution termed Uncertainty-Aware Dynamic Fusion (UADF). UADF is a multimodal fusion approach implemented into an auto-regressive decoding process and works in two stages: (i) It first analyzes and calibrates the token-level LLM decision, and (ii) it then dynamically assimilates the information from the acoustic modality. Experimental evidence collected from various ASR tasks shows that UADF surpasses existing fusion mechanisms in several ways. It yields significant improvements in word error rate (WER) while mitigating data uncertainty issues in LLM and addressing the poor generalization relied with sole modality during fusion. We also demonstrate that UADF seamlessly adapts to audio-visual speech recognition.

M3C: A Framework towards Convergent, Flexible, and Unsupervised Learning of Mixture Graph Matching and Clustering

Jiaxin Lu, Zetian Jiang, Tianzhe Wang, Junchi Yan

Existing graph matching methods typically assume that there are similar structures between graphs and they are matchable. However, these assumptions do not align with real-world applications. This work addresses a more realistic scenario where graphs exhibit diverse modes, requiring graph grouping before or along with matching, a task termed mixture graph matching and clustering. We introduce Minorize-Maximization Matching and Clustering (M3C), a learning-free algorithm that guarantees theoretical convergence through the Minorize-Maximization framework and offers enhanced flexibility via relaxed clustering. Building on M3C, we develop UM3C, an unsupervised model that incorporates novel edge-wise affinity learning and pseudo label selection. Extensive experimental results on public benchmarks demonstrate that our method outperforms state-of-the-art graph matching and mixture graph matching and clustering approaches in both accuracy and efficiency. Source code will be made publicly available.

Retrieval-Based Reconstruction For Time-series Contrastive Learning

Maxwell Xu, Alexander Moreno, Hui Wei, Benjamin M Marlin, James Rehg

The success of self-supervised contrastive learning hinges on identifying positive data pairs that, when pushed together in embedding space, encode useful information for subsequent downstream tasks. However, in time-series, this is challenging because creating positive pairs via augmentations may break the original semantic meaning. We hypothesize that if we can retrieve information from one subsequence to successfully reconstruct another subsequence, then they should form a positive pair. Harnessing this intuition, we introduce our novel approach: REtrieval-BAsed Reconstruction (REBAR) contrastive learning. First, we utilize a convolutional cross-attention architecture to calculate the REBAR error between two different time-series. Then, through validation experiments, we show that REBAR error is a predictor for mutual class membership, justifying its usage as a positive/negative labeler. Finally, once integrated into a contrastive learning framework, our REBAR method is able to learn an embedding that achieves state-of-the-art performance on downstream tasks across diverse modalities.

Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs

Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, Tuo Zhao

In human-written articles, we often leverage the subtleties of text style, such as bold and italics, to guide the attention of readers. These textual emphases are vital for the readers to grasp the conveyed information.  When interacting with large language models (LLMs), we have a similar need — steering the model to pay closer attention to user-specified information, e.g., an instruction. Existing methods, however, are constrained to process plain text and do not support such a mechanism. This motivates us to introduce PASTA — Post-hoc Attention STeering Approach, a method that allows LLMs to read text with user-specified emphasis marks. To this end, PASTA identifies a small subset of attention heads and applies precise attention reweighting on them, directing the model attention to user-specified parts. Like prompting, PASTA is applied at inference time and does not require changing any model parameters. Experiments demonstrate that PASTA can substantially enhance an LLM’s ability to follow user instructions or integrate new knowledge from user inputs, leading to a significant performance improvement on a variety of tasks, e.g., an average accuracy improvement of 22\% for LLAMA-7B. Code is provided at https://anonymous.4open.science/r/PASTA-10E9.

Window Attention is Bugged: How not to Interpolate Position Embeddings

Daniel Bolya, Chaitanya Ryali, Judy Hoffman, Christoph Feichtenhofer

Window attention, position embeddings, and high resolution finetuning are core concepts in the modern transformer era of computer vision. However, we find that naively combining these near ubiquitous components can have a detrimental effect on performance. The issue is simple: interpolating position embeddings while using window attention is wrong. We study two state-of-the-art methods that have these three components, namely Hiera and ViTDet, and find that both do indeed suffer from this bug. To fix it, we introduce a simple absolute window position embedding strategy, which solves the bug outright in Hiera and allows us to increase both speed and performance of the model in ViTDet. We finally combine the two to obtain HieraDet, which achieves 61.7 box mAP on COCO, making it state-of-the-art for models that only use ImageNet-1k pretraining. This all stems from what is essentially a 3 line bug fix, which we name “absolute win”.

ZipIt! Merging Models from Different Tasks without Training

George Stoica, Daniel Bolya, Jakob Bjorner, Pratik Ramesh, Taylor Hearn, Judy Hoffman

Typical deep visual recognition models are capable of performing the one task they were trained on. In this paper, we tackle the extremely difficult problem of combining distinct models with different initializations, each solving a separate task, into one multi-task model without any additional training. Prior work in model merging permutes one model to the space of the other then averages them together. While this works for models trained on the same task, we find that this fails to account for the differences in models trained on disjoint tasks. Thus, we introduce “ZipIt!”, a general method for merging two arbitrary models of the same architecture that incorporates two simple strategies. First, in order to account for features that aren’t shared between models, we expand the model merging problem to allow for merging features within each model by defining a general “zip” operation. Second, we add support for partially zipping the models up until a specified layer, naturally creating a multi-head model. We find that these two changes combined account for a staggering 20-60% improvement over prior work, making it feasible to merge models trained on disjoint tasks without retraining.

Societal Considerations Including Fairness, Safety, Privacy

Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game SPOTLIGHT

Sam Toyer, Olivia Watkins, Ethan Mendes, Justin Svegliato, Luke Bailey, Tiffany Wang, Isaac Ong, Karim Elmaaroufi, Pieter Abbeel, trevor  darrell, Alan Ritter, Stuart Russell

We present a dataset of over 100,000 prompt injection attacks and 30,000 anti-injection “defense” prompts created by players of an online game, Tensor Trust. To the best of our knowledge, it is the largest dataset of human-generated adversarial examples for instruction-following LLMs. Using the Tensor Trust dataset, we create benchmarks for resistance to two types of prompt injection (which we refer to as prompt extraction and prompt hijacking) as well as a benchmark for detecting when an LLM has leaked sensitive information from the prompt. We also show that many attacks in our dataset have an intuitive structure that sheds light on the weaknesses of these models. The full Tensor Trust dataset and source code are available at `[URL removed for review]`.

Towards Poisoning Fair Representations

Tianci Liu, Haoyu Wang, Feijie Wu, Hengtong Zhang, Pan Li, Lu Su, Jing Gao

Fair machine learning seeks to mitigate model prediction bias against certain demographic subgroups such as elder and female. Recently, fair representation learning (FRL) trained by deep neural networks has demonstrated superior performance, whereby representations containing no demographic information are inferred from the data and then used as the input to classification or other downstream tasks. Despite the development of FRL methods, their vulnerability under data poisoning attack, a popular protocol to benchmark model robustness under adversarial scenarios, is under-explored. Data poisoning attacks have been developed for classical fair machine learning methods which incorporate fairness constraints into shallow-model classifiers.Nonetheless, these attacks fall short in FRL due to notably different fairness goals and model architectures. This work proposes the first data poisoning framework attacking FRL. We induce the model to output unfair representations that contain as much demographic information as possible by injecting carefully crafted poisoning samples into the training data.This attack entails a prohibitive bilevel optimization, wherefore an effective approximated solution is proposed. A theoretical analysis on the needed number of poisoning samples is derived and sheds light on defending against the attack. Experiments on benchmark fairness datasets and state-of-the-art fair representation learning models demonstrate the superiority of our attack.

Transfer Learning, Meta Learning, And Lifelong Learning

AUGCAL: Improving Sim2Real Adaptation by Uncertainty Calibration on Augmented Synthetic Images

Prithvijit Chattopadhyay, Bharat Goyal, Boglarka Ecsedi, Viraj Prabhu, Judy Hoffman

Synthetic data (Sim) drawn from simulators have emerged as a popular alternative for training models where acquiring annotated real-world images is difficult. However, transferring models trained on synthetic images to real-world applications can be challenging due to appearance disparities. A commonly employed solution to counter this Sim2Real gap is unsupervised domain adaptation, where models are trained using labeled Sim data and unlabeled Real data. Mispredictions made by such Sim2Real adapted models are often associated with miscalibration – stemming from overconfident predictions on real data. In this paper, we introduce AUGCAL, a simple training-time patch for unsupervised adaptation that improves Sim2Real adapted models by – (1) reducing overall miscalibration, (2) reducing overconfidence in incorrect predictions and (3) improving confidence score reliability by better guiding misclassification detection – all while retaining or improving Sim2Real performance. Given a base Sim2Real adaptation algorithm, at training time, AUGCAL involves replacing vanilla Sim images with strongly augmented views (AUG intervention) and additionally optimizing for a training time calibration loss on augmented Sim predictions (CAL intervention). We motivate AUGCAL using a brief analytical justification of how to reduce miscalibration on unlabeled Real data. Through our experiments, we empirically show the efficacy of AUGCAL across multiple adaptation methods, backbones, tasks and shifts.

In-Context Learning through the Bayesian Prism

Madhur Panwar, Kabir Ahuja, Navin Goyal

In-context learning (ICL) is one of the surprising and useful features of large language models and subject of intense research. Recently, stylized meta-learning-like ICL setups have been devised that train transformers on sequences of input-output pairs $(x, f(x))$ using the language modeling loss. The function $f$ comes from a function class and generalization is checked by evaluation on sequences for unseen functions from the same class. One of the main discoveries in this line of research has been that for several function classes, such as linear regression, transformers successfully generalize to new functions in the class. However, the inductive biases of these models resulting in this behavior are not clearly understood. A model with unlimited training data and compute is a Bayesian predictor: it learns the pretraining distribution.In this paper we empirically examine how far this Bayesian perspective can help us understand ICL. To this end, we generalize the previous meta-ICL setup to hierarchical meta-ICL setup which involve unions of multiple task families. We instantiate this setup on a diverse range of linear and nonlinear function families and find that transformers can do ICL in this setting as well. Where Bayesian inference is tractable, we find evidence that high-capacity transformers mimic the Bayesian predictor. The Bayesian perspective provides insights into the inductive bias of ICL and how transformers perform a particular task when they are trained on multiple tasks. We also find that transformers can learn to generalize to new function classes that were not seen during pretraining. This involves deviation from the Bayesian predictor. We examine deviations from the Bayesian predictor in more depth offering new insights and hypotheses.

Translating Labels to Solve Annotation Mismatches Across Object Detection Datasets

Yuan-Hong Liao, David Acuna, Rafid Mahmood, James Lucas, Viraj Prabhu, Sanja Fidler

In object detection, varying annotation protocols across datasets can result in annotation mismatches, leading to inconsistent class labels and bounding regions. Addressing these mismatches typically involves manually identifying common trends and fixing the corresponding bounding boxes and class labels. To alleviate this laborious process, we introduce the label translation problem in object detection. Here, the goal is to translate bounding boxes from one or more source datasets to match the annotation style of a target dataset. We propose a data-centric approach, Label-Guided Pseudo-Labeling (LGPL), that improves downstream detectors in a manner agnostic to the detector learning algorithms and model architectures. Validating across four object detection scenarios, defined over seven different datasets and three different architectures, we show that translating labels for a target task via LGPL consistently improves the downstream detection in every setting, on average by $1.88$ mAP and $2.65$ AP$^{75}$. Most importantly, we find that when training with multiple labeled datasets, carefully addressing annotation mismatches with LGPL alone can improve downstream object detection better than off-the-shelf domain adaptation techniques that align only image features.

Unsupervised, Self-Supervised, Semi-Supervised, And Supervised Representation Learning

ARM: Refining Multivariate Forecasting with Adaptive Temporal-Contextual Learning

Jiecheng Lu, Xu Han, Shihao Yang

Long-term time series forecasting (LTSF) is important for various domains but is confronted by challenges in handling the complex temporal-contextual relationships. As multivariate input models underperforming some recent univariate counterparts, we posit that the issue lies in the inefficiency of existing multivariate LTSF Transformers to model series-wise relationships: the characteristic differences between series are often captured incorrectly. To address this, we introduce ARM: a multivariate temporal-contextual adaptive learning method, which is an enhanced architecture specifically designed for multivariate LTSF modelling. ARM employs Adaptive Univariate Effect Learning (**A**UEL), Random Dropping (**R**D) training strategy, and Multi-kernel Local Smoothing (**M**KLS), to better handle individual series temporal patterns and correctly learn inter-series dependencies. ARM demonstrates superior performance on multiple benchmarks without significantly increasing computational costs compared to vanilla Transformer, thereby advancing the state-of-the-art in LTSF. ARM is also generally applicable to other LTSF architecture beyond vanilla Transformer.

Sparse Spiking Neural Network: Exploiting Heterogeneity in Timescales for Pruning Recurrent SNN

Biswadeep Chakraborty, Beomseok Kang, Harshit Kumar, Saibal Mukhopadhyay

Recurrent Spiking Neural Networks (RSNNs) have emerged as a computationally efficient and brain-inspired machine learning model. The design of sparse RSNNs with fewer neurons and synapses helps reduce the computational complexity of RSNNs. Traditionally, sparse SNNs are obtained by first training a dense and complex SNN for a target task and, next, eliminating neurons with low activity (activity-based pruning) while maintaining task performance. In contrast, this paper presents a task-agnostic methodology for designing sparse RSNNs by pruning an untrained (arbitrarily initialized) large model. We introduce a novel Lyapunov Noise Pruning (LNP) algorithm that uses graph sparsification methods and utilizes Lyapunov exponents to design a stable sparse RSNN from an untrained RSNN. We show that the LNP can leverage diversity in neuronal timescales to design a sparse Heterogeneous RSNN (HRSNN). Further, we show that the same sparse HRSNN model can be trained for different tasks, such as image classification and time-series prediction. The experimental results show that, in spite of being task-agnostic, LNP increases computational efficiency (fewer neurons and synapses) and prediction performance of RSNNs compared to traditional activity-based pruning of trained dense models.

StructComp: Substituting propagation with Structural Compression in Training Graph Contrastive Learning

Shengzhong Zhang, Wenjie Yang, Xinyuan Cao, Hongwei Zhang, Zengfeng Huang

Graph contrastive learning (GCL) has become a powerful tool for learning graph data, but its scalability remains a significant challenge. In this work, we propose a simple yet effective training framework called Structural Compression (StructComp) to address this issue. Inspired by a sparse low-rank approximation on the diffusion matrix, StructComp trains the encoder with the compressed nodes. This allows the encoder not to perform any message passing during the training stage, and significantly reduces the number of sample pairs in the contrastive loss. We theoretically prove that the original GCL loss can be approximated with the contrastive loss computed by StructComp. Moreover, StructComp can be regarded as an additional regularization term for GCL models, resulting in a more robust encoder. Empirical studies on seven benchmark datasets show that StructComp greatly reduces the time and memory consumption while improving model performance compared to the vanilla GCL models and scalable training methods.

See you in Vienna!

Development: College of Computing
Project Lead/Data Graphics: Joshua Preston
Data Management: Joni Isbell