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We hypothesize that typical example problems used in quantitative domains such as algebra
and probability can be represented in terms of subgoals and methods that these problems teach

learners. The “quality” of these subgoals and me
examples. In addition, the likelihood of these su

thods can vary, depending on the features of the
bgoals’ being recognized in novel problems and

the likelihood of learners’ being able to modify an old method for a new problem may be func-
tions of the training examples learners study. In Experiment 1, subjects who studied examples
predicted to teach certain subgoals were often able to recognize those subgoals in nonisomorphic

transfer problems. Subjects who studied examp

les demonstrating two methods rather than one

exhibited no advantages in transfer. Experiment 2 demonstrated that if the conditions for apply-
ing a method are highlighted in exampies, learners are more likely to appropriately adapt that
method in a novel problem, perhaps because they recognize that the conditions do not fully match
those required for any of the old methods. Overall, the results indicate that the subgoal/method
representational scheme may be useful in predicting transfer performance.

A consistent finding in the problem-solving literature
is that learners are often unable to make appropriate use
of prior information to solve new problems if the new
problems differ from training examples in more than minor
ways (e.g., Anderson, Farrell, & Sauers. 1984; Gick &
Holyoak, 1980, 1983: Reed, Dempster, & Etinger, 1985;
Spencer & Weisberg, 1986). Learners often seem to ac-
quire primarily superficial knowledge from training ex-
amples. consisting of little more than a series of memo-
rized steps. For instance, some of the examples used in
the present experiments involve finding the average num-
ber of times an event occurs per trial (such as the aver-
age number of errors per game made by the Detroit
Tigers infield) given the frequencies of the various sub-
events (e.g., the number of games in which the infield
made 0 errors, the number of games in which they made
exactly 1 error, and so on). Learners are good at memoriz-
ing, from examples. the steps of multiplying each sub-
event (0, 1, etc.) by its observed frequency. summing the
results, and dividing by the number of trials in order to
achieve the subgoal of finding the average frequency.
However, they rarely notice that the steps of multiplying
each subevent by its frequency and then summing them
could be viewed as a way of finding the total frequency

This research was supported by NSF Grant BNS 86-15316. Experi-
ment | was reported at the Ninth Annual Meeting of the Cognitive
Science Society, Seattle, July 1987. Please address ail correspondence
10 Richard Catrambone, School of Psychology, Georgia Institute of Tech-
nology. Atlanta, GA 30332.

593

of the event. As a result, these learners are usually un-
able to find the average frequency of an event when a
problem provides the total frequency of that event directly,
rather than requiring that it be derived from the frequen-
cies of the various subevents.

In the present paper, we will argue that the knowledge
people gain from examples in domains that emphasize
solving problems, such as probability, can be represented
by subgoals and methods. Furthermore, manipulations of
examples can affect which subgoals and methods a learner
acquires, thus influencing his or her performance on novel
problems. A subgoal is an unknown entity (numerical or
conceptual) that needs to be found in order to achieve a
higher level (sub)goal of a problem. A method is a series
of steps for achieving a particular subgoal.

Identifying Subgoals and Methods in a Domain

The information that is considered to constitute subgoals
and methods in the work presented here was identified
in a task analysis of the examples and problems used in
the experiments. There presumably do not exist platonic
subgoals and methods for a domain. Rather, the problem-
solving knowledge can be carved up in different ways.
Our choice for representing the domain was based on our
own understanding of the domain, plus the guidance of
some experts. Solutions to the examples and test problems
were examined, and the parts of the solution that seemed
1o be directed toward a single conceptual goal were iden-
tified as a method for that goal.

We assume that learners will form a minimal represen-
tation of an example solution (e.g., Singley & Anderson,
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1989, p. 275). Thus, if an example can be processed in
terms of a series of steps without the overhead of hierar-
chical organization, then, we assume, that is how it will
be processed. The learner would acquire one large goal,
to predict the probability of some event, and one large
method for finding that goal, a series of mathematical
steps. We assume that certain manipulations of examples
can lead to a different organization that explicitly repre-
sents smaller subgoals, such as finding the total frequency
of an event, and their associated methods, as well as the
larger goal. Two of those manipulations are explored in
the experiments presented here: learning multiple methods
for finding a subgoal, and receiving elaborations of ex-
ample methods.

In the present study, we will focus on differential knowl-
edge conveyed by examples, rather than on individual
differences in what people learn from examples. Although
individual differences account for some performance
differences (e.g., Chi, Bassok, Lewis, Reimann, & Glaser,
1989), the quality of training examples can also affect
~ transfer performance. Thus, this research is aimed at de-
termining whether learners’ knowledge and features of
training examples and target problems can be represented
in terms of subgoals and methods, and whether this rep-
resentation can be used to predict learners’ performance.
In addition, we will propose learning constraints that gen-
erate predictions regarding which subgoals and methods
are taught by particular examples.

We hypothesize that it is more effective, with respect
to transfer to a novel problem, for a learner to have his
or her problem-soiving knowledge represented in terms
of relatively small subgoais and methods. A small sub-
goal is one that is achieved, through the use of an explicitly
represented method, on the way to the achievement of
some larger subgoal. We argue that problem-solving
knowledge represented by a few large subgoals, which
are achieved by large, linear methods. has less flexibil-
ity, because potentially useful subgoals are not represented
explicitly. If one of these subgoals is needed to solve a
new problem, a learner who has acquired a larger uni-
tary method would be less likely to solve the problem than
would a learner who has acquired smaller, decomposed
methods and subgoals.

For example, with respect to the method discussed
earlier for finding the average number of errors made by
the Detroit Tigers’ infield, it would be better if that method
contained an explicit representation of the subgoal of find-
ing the total number of errors made by the infield, rather
than only a series of steps to achieve the higher level sub-
goal of finding the average number of errors. The addi-
tional subgoal of finding the total frequency would be use-
ful for a novel problem that provided total frequency
directly and did not provide the frequencies of the vari-
ous subevents (i.e., games with 0 errors, 1 error, etc.).
If the learner possessed this additional subgoal, he or she
might be more likely to find the average frequency cor-
rectly than wouid a subject who only knew a single linear
series of steps for finding an average frequency. We will

argue that examples can strongly influence the type of sub-
goals and methods formed by a learner.

Transfer to Novel Problems

A novel probiem could be novel for several reasons in-
volving the transfer of subgoals and methods. A problem
might involve a new subgoal; it might involve old sub-
goals but require that a modification of an old method be
made so that one (or more) of the subgoals can be
achieved; or it might require the use of a completely new
method for an old subgoal to be achieved. To modify a
method is to delete or change one or more of its steps
in order to adjust to the givens in a problem.

An analysis of subgoals and methods provides a poten-
tially useful way of representing the knowledge that
learners acquire from examples, the knowledge that is
available for modification, and the knowledge that is
needed to solve a new problem. To the extent that manipu-
lations designed to alter the subgoals and methods acquired
by subjects are successful, this distinction will gain psy-
chological validity. The success of the manipulations will
be measured by the accuracy of the predictions of sub-
jects’ performance on test problems that are designed to
contain variations on the subgoals and methods presum-
ably learned from training examples.

It is worth it to highlight briefly how this approach
differs from other work on transfer that also involves sub-
goals and methods. Singley and Anderson (1989) use a
production rule formalism to predict transfer from train-
ing to test problems. The degree of overlap in the produc-
tions learned during training with the productions needed
1o solve a test problem provides a prediction of the amount
of expected transfer. This approach has been successful.
to varying degrees, in domains such as learning calcu-
lus, LISP, and text editing (see also Bovair, Kieras, &
Polson, 1990). The empirical emphasis in Bovair et al.’s
(1990) work has been on training manipulations intro-
duced by intelligent tutors and degrees of practice. The
current paper is focused more on learning through ma-
nipulations of the examples themselves. From a theoreti-
cal perspective, our goal is not so much to examine the
detailed (i.e., production rule) overlap between an ac-
quired procedure and a target procedure, but to exam-
ine whether conceptual units such as subgoals and meth-
ods provide a useful way to characterize problem-solving
knowledge.

VanLehn (1982) has examined how children carve up
the rules for subtraction as a function of the training

problems they solve. He has demonstrated that a given -

sequence of training problems can lead to a representa-
tion of the subtraction procedure that has certain omis-
sions. Using the representation presumably acquired by
children after a certain lesson sequence, VanLehn could
successfully account for most of the errors made by chil-
dren as they attempted to solve novel subtraction problems
that required knowledge beyond what they already pos-
sessed. In the present paper, we describe our attempts to
manipulate the representations formed by adult learners



from examples and to begin to develop a set of rules for
predicting the conditions under which a subgoal and/or
method will be learned.

Two Learning Assumptions

We make two assumptions concerning what a person
learns from an example. The first assumption is that if
a subgoal is labeled or clearly highlighted in an exam-
ple’s solution, then this subgoal will also be explicitly rep-
resented in the learner’s knowledge base. Suppose a
learner studies the example in Appendix A. After study-
ing this example, the learner is predicted to have learned
three subgoals: to find the average for some event. to find
the expected probability of a subevent, and to find the ex-
pected frequency of a subevent.

The second assumption is that once a learner acquires
a particular subgoal and method in the context of an ex-
ample, that method can be used to achieve the subgoal
in 2 new problem even if the context of the example and
problem are different (i.e., even if superficial story line
and the other subgoals and methods in the problem are
different from those in the example). This assumption is
based on the work of Singley and Anderson (1988, 1989)
and of Foltz, Davies, Polson, and Kieras (1988), which
suggests that the transfer of procedures or parts of proce-
dures from one task to another can occur successfully.
at least within the domain of learning text-editing skills.
Also, it is likely that relatively experienced problem
solvers, such as the students in our experiments, have
learned that the specific story line is typically irrelevant
to the procedure illustrated in an example (see also
Schoenfeld, 1985).

Given the above learning constraints, a learner who
studies the example in Appendix A would possess a
method for finding the average frequency of EVENT
(EVENT-AVG) that is not further broken down into a
subgoal for finding the total frequency of EVENT. (This
assumption is supported by some pilot work reported in
Catrambone & Holyoak, 1987.) Rather, the learner learns
to apply a series of mathematical operations without any
meaning given to them other than the subgoal that they
as a group enable the learner to achieve. The subgoal of
finding the total frequency of the EVENT was not high-
lighted or labeled in the example solution, and therefore
it is assumed not to be represented explicitly in the knowl-
edge base.

On the basis of the analysis above, we would predict
that a learner would have difficulty solving the novel
problem in Appendix B, which asks for the expected fre-
quency of some subevent but only provides the total fre-
quency of EVENT and not the frequencies of the various
subevents. A learner possessing the subgoals and method
described above would be predicted to recognize the final
subgoal of the problem (find P[X = 2]) as well as the in-
termediate subgoal of finding the average frequency of
EVENT, but would be expected to have difficulty achiev-
ing this subgoal since the steps he or she has learned
for achieving it could no longer be followed (i.¢.. because
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the observed frequencies of the various subevents are
not given).

To solve the problem in Appendix B, the learner would
need to understand that some of the steps in the method
for finding EVENT-AVG invoived finding the total
EVENT frequency. Of course. even if the learner real-
ized this, he or she would still have to recognize that this
value (total EVENT frequency) is given directly in the
problem statement. However, since the learner would at
least possess the needed subgoal of finding total EVENT
frequency, he or she might have a better chance at solv-
ing this problem than would someone who does not have
this subgoal.

Learning and Transfer from Examples

Although learners can be given general procedures for
solving problems in a domain. it is usually the case that
learners prefer to study or refer to examples. This prefer-
ence is manifested in the usefulness of allowing learners
to have an example in front of them while working on
a new problem (Piroili & Anderson, 1985). in their ex-
plicit mentioning of examples when solving a problem
(e.g., Chi et al., 1989; Lancaster & Kolodner, 1988,
Ross, 1984), and in their following of examples rather
than instructions when the two conflict (LeFevre & Dixon,
1986). Thus, the preference for using examples seems
quite strong.

Prior research on transfer from training examples to
target problems has often been focused on the effects of
the relationships between superficial features of examples
and problems (Ross, 1987, 1989a) or between the form
of equations used in examples versus problems (Reed &
Actor, 1989; Reed et al., 1985). This work has indicated
that if a worked-out example and a target problem have
similar objects (such as both problems’ involving vehi-
cles and car mechanics), the learner will try to give simi-
lar objects corresponding roles in the new problem and
in the example, even when the problem structure implies
different roles (Ross, 1987, 1989a). Similarly, learners
will often try to repeat the same steps in a new problem
by taking numbers from the problem statement and put-
ting them into the equation without full regard for their
‘meaning’’ (Reed et al., 1985). These studies support the
notion that learners rely heavily on examples and tend to
learn superficially from them; however, such results do
not provide guidance for how to design examples to pro-
mote more meaningful learning. The subgoal/method dis-
tinction provides a way of predicting the places in a novel
problem where learners should succeed and have diffi-
culty, and it may suggest ways of designing examples to
increase meaningful learning—that is, to influence the
number and type of subgoals and methods learned.

Overview of Experiments

In the present experiments, we investigated the useful-
ness of the subgoal/method distinction by examining the
effects of different manipulations of training examples on
whether learners acquire particular subgoals and methods,
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and whether they can modify old methods for new prob-
lems. The manipulations involved varying the superficial
similarity of the examples, the methods and subgoals in
the examples, and the presence of explanatory text in
which we attempted to highlight the subgoals and methods
for the learner. After they had studied examples, the sub-
jects were given target problems to solve. Their perfor-
mance on the problems was used to determine which sub-
goals and methods they seemed to possess, as well as their
degree of success in modifying and constructing methods.

In these experiments, the participants were paid volun-
teers from undergraduate probability courses. In these
courses, students learn counting rules (e.g., ordered and
unordered sampling) and are then introduced to the no-
tion of a random variable. The students next learn about
certain basic discrete probability distributions such as the
binomial, Poisson, and geometric. The binomial distri-
bution is typically introduced first, followed by the
Poisson distribution. The present experiments dealt with
the Poisson distribution, and the students participated in
them just before learning the Poisson in their classes.

The Poisson distribution is often used to approximate
binomial probabilities for events that occur with some
small probability p. The Poisson equation is

(e (N

x!

P(X =x) =

where \ is the expected value (the average) of the ran-
dom variable X.

EXPERIMENT 1

Although prior work has shown that learners are heav-
ily influenced by superficiai feature overlap between ex-
amples and target probiems (e.g., Ross. 1984, 1987.
1989a), there is little evidence that manipulations of su-
perficial features among training examples affect trans-
fer to nonisomorphic problems (e.g., Gick & Holyoak.
1983). However, there may be a systematic effect due to
manipulations of structural features. In Experiment 1, we
examined whether learners who study examples that
demonstrate two methods for finding a subgoal would be
more likely to recognize that subgoal in a new problem
and to adapt an old method to achieve it, relative to
learners who only study examples demonstrating one
method. In addition. we tested the two learning constraints
proposed earlier by examining whether the subjects ap-
peared to have learned the predicted subgoals.

The sociologist example presented in Appendix A deals
with an event occurring randomiy in time. The Poisson
distribution can also be used to model events occurring
randomly in space. For instance, one could reasonably
fit a Poisson distribution to the number of fossils found
in each section of a partitioned quarry. This problem can
be solved using the same steps as the sociologist example.

Clearly, a person could learn to solve problems of this
type by memorizing the series of operations without form-
ing all the *‘correct’’ subgoals. This could occur because

learners usually focus on more superficial features of
problems and on the operations used to-achieve an end
goal, for these aspects are easier to identify than the un-
derlying subgoals and methods (see, e.g., Ross, 1989b;
Schoenfeld & Herrmann, 1982). Studénts have consider-
able experience with the typical objects, such as decks
of cards and blocks of wood, that populate the world of
quantitative problems in domains such as probability and
mechanics. It is therefore not surprising that these stu-
dents would tend to focus their attention on features. and
on mathematical operations involving those features., with
which they are most familiar (Greeno, Riley, & Gelman,
1984; Hayes, Waterman, & Robinson, 1977).

There were three groups in Experiment 1. The super-
ficial variety (SV) groups studied four superficially differ-
ent, worked-out examples isomorphic to the sociologist
and Detroit Tigers problems (the SV-T group) or the
‘‘cookie’” problem (the SV-C group; see Appendix C,
top). The procedural variety (PV) group studied two ex-
amples isomorphic to the sociologist problem and two ex-
amples isomorphic to the cookie problem. The first ques-
tion of interest was whether subjects would learn the
subgoals they were predicted to learn on the basis of the
first learning constraint—that is, whether subjects would
learn the subgoals of EVENT-AVG, expected probabil-
ity, and expected frequency. The second question was how
well subjects in the SV and PV groups could modify an
old method to find A (EVENT-AVG) in novel problems.

Four target problems were used in Experiment |. The
first was an isomorph to the sociologist example. This
problem dealt with the number of errors made per game
by the Detroit Tigers’ infield over the course of a sea-
son. The problem should have been difficult for the SV-C
subjects, since they were not predicted to have formed
some of the necessary subgoals and methods during train-
ing (see below for the method for solving the cookie
problem).

The second target problem was the cookie problem. Its
final subgoal is to find EVENT-AVG. However. the
method for achieving this subgoal is substantially differ-
ent from the method used in the sociologist example. In-
stead of multiplying and summing a series of observed
frequencies and dividing by trials, the average frequency
is found by inserting the given value for P(X = 0) (the
desired probability of finding zero raisins in a cookie) into
the Poisson equation and solving for A. The SV-T group
was expected to have great difficulty with this probiem,
because the method for finding A in the cookie problem
was not a straightforward modification of the method they
learned during training. Nevertheless, the assumption that
learned subgoals can be transferred would predict that
these subjects would demonstrate that they were trying
to find A.

The third target problem is presented in Appendix C,
(bottom). This ‘‘birthday’’ problem requires that the
learner realize that A can be calculated by dividing the
number of people (total frequency of EVENT) by the
number of days (total trials). Then N\ can be used in the
Poisson equation to find P(X = 3).



The fourth target problem was the **football™’ probiem
(see Appendix B), which is isomorphic to the birthday
problem. The football problem was expected to be easier
than the birthday problem, since the latter could lead sub-
jects to think that there was something special about Janu-
ary | instead of realizing that the problem could apply
to any day of the year. Thus, subjects could be confused
about what events and trials were in the birthday problem.
The football problem was more straightforward and
should have produced performance more closely tied to
subjects” ability at modifying old methods, rather ‘than
their ability to identify events and trials.

Method

Subjects. Fifty students from a probability class were recruited
and were paid for their participation.

Materials and Procedure. The subjects in Experiments | and
2 were run in groups of anywhere from 1 to 10 people. The sub-
Jjects were first given a booklet to study. The cover sheet contained
" a description of the relationship between the binomial and Poisson
distributions and provided the Poisson equation. The next four pages
contained the four worked-out Poisson distribution examples. The
subjects were told to study the examples carefully, since after study-
ing them they would be asked to solve four problems. They were
also toid that they could refer back to the cover page but not to
the examples while working on the problems. This restriction was
intended to increase the likelihood that the subjects would pay at-
tention to the examples and how they were solved. The SV-T group
(n = 13) studied four training examples isomorphic to the sociol-
ogist example. The SV-C group (n = 15) studied four training ex-
amples isomorphic to the cookie probiem. The PV group (n = 22)
studied two sociologist isomorphs and two cookie isomorphs. Af-
ter studyving the examples for about 15-20 min. the subjects then
received four target problems to solve in the following order: Detroit
Tigers. cookie, birthday, and football.

The subjects worked at their own pace for the entire experiment.
In general, the subjects took about 30-45 min to complete the ex-
periment. They were asked to show all their work but could use
a calculator for the basic arithmetic.

Resuits and Discussion

The subjects’ answers to the target problems were first
scored as correct or incorrect. The solution and error fre-
quencies were analyzed using the likelihood ratio chi-
square test (G?; Bishop, Fienberg, & Holland. 1975).

The subjects’ written solutions were anaiyzed to evalu-
ate whether subjects were trying to find subgoals such as
A and P(X = x). It should be noted that, given that the
subjects knew that all problems deait with the Poisson dis-
tribution, it would not be too surprising if their protocols
indicated that they were trying to find X or some P(X = x)
in the test problems even if the protocols otherwise indi-
cated that the subjects really did not know what they were
doing. Nonetheless, the subjects’ attempts to find these
unknowns serve as a rough measure of whether or not
they possessed a particular subgoal.

Tiger and cookie problems. Whereas all of the SV-T
and PV subjects solved the Detroit Tigers problem cor-
rectly, only 13% of the SV-C subjects did. This differ-
ence is. of course, significant [G*(2) = 45.5, p < .0001].
Similarly, whereas most of the SY-C and PV subjects
solved the cookie problem correctly (87% and 86%,
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respectively), a much lower percentage (31%) of the
SV-T subjects did [G*(2) = 13.9, p < .001]. The 13%
solution rate of SV-C subjects on the Detroit Tigers
problem is not significantly less than the 31% success rate
of the SV-T subjects on the cookie problem [G*(1) =
1.27, p < .3].

Of the 9 SV-T subjects who failed to solve the cookie
problem, 7 failed to realize that the final subgoal was to
solve for \, all 9 failed to realize the P(X = 0) = .01
was provided in the problem, and 3 of them tried to make
up a frequency table as an aid to solve the problem. In
contradiction to Learning Constraint 1. this indicates that
most SV-T subjects did not recognize solving for A as
a subgoal, but rather simply attempted to apply the oper-
ations from the examples. This observation is further sup-
ported by the fact that most of these subjects went on to
calculate expected frequencies rather than stopping after
having calculated A. It appears that these SV-T subjects
did not make up the observed frequency table to calcu-
late A per se, but rather created the table so that they could
apply the stereotyped operations and thereby achieve the
subgoal of finding an expected frequency.

Of the 13 SV-C subjects who were scored as not solv-
ing the Detroit Tigers problem, all of them tried to cal-
culate A. However, 12 of these subjects tried to calcuiate
\ by taking an observed frequency for some X (usually
X = 0) and plugging that into the Poisson equation to
solve for A. This is the *‘wrong’’ method to use, because
it ignores available frequency data that could give a bet-
ter estimate of A. Moreover. of these 12 subjects, 11
stopped after solving for A and did not go on to calculate
the expected frequencies (a new subgoal) for the various
values of X. The remaining subject who got the problem
wrong calculated A using the frequency table approach,
but did not go on to generate predicted frequencies for
the various values of X.

The above results suggest that SV-C subjects had
learned the subgoal of finding EVENT-AVG. However,
the fact that 13 of the 15 SV-C subjects did not use A
to find expected frequencies suggests that they were
mostly unable to recognize the new subgoal of finding ex-
pected frequencies. Rather, they seemed to consider A as
being the only possible final subgoal.

The fact that all the SV-C subjects tried to find A in
the Tigers problem supports the assumption that to label
a subgoal in an example helps a learner learn that sub-
goal and recognize it in a new context. However, the fact
that 7 of the 13 SV-T subjects did not try to find A in
the cookie problem seems to contradict the assumption.
It may be, however, that the novel way in which the
cookie problem was phrased (‘‘How many raisins will a
cookie contain on the average in order to achieve this
result?”’) could have made it difficult for SV-T subjects
to recognize that they were being asked to find A. That
is. the problem asked for a prediction of A in order to
achieve some desired outcome (only 1 cookie out of 100
having zero raisins) rather than a calculation of A based
on some known outcome (observed frequencies). The un-
derstanding that the relationship between A and an out-
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come can go in either direction may have been too large
a leap for most subjects.

Finally, with respect to the Tigers and cookie problems.
it is worth noting that both the SV-T and SV-C subjects
had difficulty in trying to come up with the correct method
for finding \ for the novel problem. For both groups, the

old method could not be adapted to the required method: -

rather, an essentially new method was needed. It seemed
to be beyond the skills of most of the subjects to create
a new method.

Birthday and football problems. There were no sig-
nificant differences in solution rates among the three
groups for the birthday or football problems (which were
not isomorphic to any of the training examples). Over-
all, 48% of the subjects solved the birthday problem
[SVC-T = 46%, SV-C =47%, PV =50%:
G*2) = .06, p = .97] and 46% solved the football
problem [SV-T = 31%, SV-C = 53%, PV = 50%:
G*(2) = 1.72,p = .42]. Two SV-T subjects who solved
the birthday problem failed to solve the football problem.
producing a nonsignificant difference {46% vs. 31%:
G¥1) = .65, p < .5]in success rates on those problems
for that group. Both of these subjects set up the football
problem correctly but calculated A as 539/1,200 rather
than 539/300. That is. they were confused about whether
the fact that the tackles were made over four games mat-
tered, and therefore multiplied the number of pieces of
the field by the number of games. This finding is reminis-
cent of Reed et al.’s (1985) subjects. who needlessly (and
incorrectly) multiplied amounts together in algebra word-
mixture problems rather than realizing that these amounts
were ready to be used directly in the equation.

The percentages of subjects who tried to find N in the
birthday problem (including subjects who solved the
problem correctly) in order to find P(X = 3) were 92%.
60%, and 86%, for the SV-T, SV-C, and PV groups.
respectively. The difference among the groups is margin-
* ally significant [G*(2) = 5.27,p < .08]. This pattern of
results suggests that subjects who studied examples iso-

morphic to the Detroit Tigers problem (SV-T and PV sub- .

jects) may have been somewhat more likely to recognize
that EVENT-AVG has to be found in order to find an
expected probability. If the SV-T and PV groups are com-
bined and compared to the SV-C group, the performance
difference is significant {G2(1) = 4.97, p < .05].
Performance on the football problem was similar to the
performance on the birthday problem. The percentages
of subjects who tried to find \ were 100%, 67%, and
95%, for the SV-T. SV-C, and PV groups, respectively.
This difference is significant [G*(2) = 9.46, p < .017,
supporting the claim that the SV-C subjects lacked the
necessary subgoal relationship of finding an expected
probability by first finding EVENT-AVG. Again, if the
combined SV-T and PV groups are compared with the
SV-C group, the performance difference is significant
[G*(1) = 8.52, p < .01]. Overall. the performance of
the SV-C subjects on the Detroit Tigers problem and the
performance of the SV-T and PV subjects on the birth-

day and football problems support the assumption that sub-
goals, once learned. can be recognized in new problems
that have a different context and contain only a subset of
the subgoals from the studied examples. However, some
of the results, such as the fact that SV-C subjects tried
to find EVENT-AVG less often than did other subjects
on the football and birthday problems, lend less support
to this assumption (although even the SV-C subjects
recognized this subgoal over 60% of the time in these new
contexts).

Besides examining whether subjects tried to find
EVENT-AVG in the birthday and football problems. it
is instructive to examine the errors they made in trying
to achieve this subgoal. For the birthday problem, 3 of
the 7 unsuccessful SV-T subjects tried to find EVENT-
AVG by setting it equal to 365/500 rather than 500/365.
This suggests some confusion between events and trials.
An additional subject found EVENT-AVG correctly (and
labeled it as such) but for some reason did not go on to
solve the problem. Thus, using a lenient criterion that al-
lows the above responses, we could say that 4 of the 7
unsuccessful SV-T subjects were more or less able to
adapt an old method to find EVENT-AVG. Applying this
analysis to the PV group; only 1 of the 11 unsuccessful
PV subjects adapted the old method in this way. Interest-
ingly, 3 PV subjects tried to find a value for P(X = 0)
and used this (incorrectly calculated) value to find A
through the Poisson equation. That is, they tried to use
the approach from the cookie problem to find EVENT-
AVG. Although all 3 of these subjects used this value of
A to calculate P(X = 3), it seems that they suffered from
some negative transfer from the cookie-type training iso-
morphs. For the footbail problem, 7 of the 9 unsuccess-
ful SV-T subjects set \ = 539/1,200 or 300/539, but only
3 of the 11 unsuccessful PV subjects did so. Four of the
11 PV subijects used a cookie-type approach to find X,
again suggesting negative transfer.

The results above suggest that to label a subgoal in train-
ing examples helps learners learn the subgoal and recog-
nize it in new problems. This result provides initial sup-
port for the value of researchers’ and teachers’
conceptualizing examples and test problems in terms of
the subgoals they presumably teach. A second result from
Experiment 1 is that someone who learns two methods
for achieving a subgoal does not seem to possess any ad-
vantage in modifying one of those methods in a novel
problem, relative to someone who learns only one modifi-
able method. If anything, there is an increased possibil-
ity of negative transfer due to a less appropriate old
method’s intruding on the new problem. Perhaps direct
instruction regarding the conditions under which each
method is applied might help learners realize that some-
times neither of the old methods should be applied without
adaptation to a novel problem; that is, learners would be
better able to recognize that an old approach is not cor-
rect (see, e.g., Morris & Rouse, 1985). Negative trans-
fer would therefore be reduced, since learners would be
more likely to try to modify, rather than import, an old



method to solve a novel problem requiring a modifica-
tion in the old method. This issue was examined in Ex-
periment 2.

EXPERIMENT 2

The difficulties that subjects in Experiment 1 had in
recognizing when and how to modify an old method sug-
gest that explicit mention of why a particular method was
used in each example might help learners recognize when
and how to adapt an old method for use in a novel
problem. There is evidence from other research that when
learners are given help in focusing on the goal structure
of examples, they are more likely to apply the informa-
tion presented in examples to a new problem correctly
(Brown. Kane, & Echols, 1986; McKendree, 1986).
Schoenfeld (1979) suggested that students can learn to do
mathematical proofs from examples more effectively if
heuristics for determining when to apply a particular ap-
proach are presented along with the examples. In addi-
tion, researchers have argued that learners often need ex-
plicit guidance concerning the underlying concepts of
examples in order to be able to apply the examples to new
problems (Gick & Holyoak, 1987; Mayer & Greeno.
1972; Stein et al., 1982). Lewis and Anderson (1985)
showed that learners were more likely to learn correspon-
dences between the givens in a geometry problem and ap-
propriate solution methods for new problems if the
learners explicitly indicated during training which method
they thought was appropriate for each example and what
information they would need in order to solve ir.

Although it has been shown that additional explanatory
material can help learning, there is evidence that not just
any additional material aids learning. For example. Kieras
and Bovair (1984) found that only information that helped
learners infer how to operate a device enabled them to
learn more quickly than a group that learned to operate
the device by trial and error. Similarly, Reder, Charney.,
and Morgan (1986) found beneficial effects for explana-
tory material that focused on the syntax of computer com-
mands but not for material that focused on elaborations
of computer concepts. .

Experiment 2 was designed to examine whether ex-
plicitly identifying the subgoals and methods in training
examples and explaining why a particular method was
chosen would aid subjects in recognizing subgoals in the
target problems and reduce negative transfer resulting
from their trying to apply an old method inappropriately
rather than modify an old method.

Methed

Subjects. Seventeen students from a probability class were
recruited and were paid for their participation.

Materials and Procedure. There were two groups: the highlight
group (n = 10) and the no-highlight group (rn = 7). All subjects
received a booklet containing a cover sheet, four training problems,
and six :arget problems. No-highlight subjects received the same
training examples as did the PV group in Experiment 1: that is,
they studied two problems isomorphic to the Detroit Tigers problem
and two problems isomorphic to the cookie problem. Highlight sub-
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jects received the same training examples; however, the solutions
were annotated with comments indicating the subgoal and method
that were being used in each part of the soiution procedure. The
comments also indicated why the subgoals and methods were ap-
propriate for that example. Two of the annotated problems are
presented in Appendix D, with the goal and method comments in
the solutions highlighted. Care was taken to ensure that the anno-
tated comments did not include other helpful information for un-
derstanding the problems, such as reminding the student that A
represented an average.

The six transfer problems involved the Detroit Tigers. cookie,
birthday, and football, as well as **London,"” and the **Grateful
Dead.’” The London problem was similar to the Detroit Tigers
problem, except that EYENT-AVG was given directly in the
probiem and observed frequencies for different values of X were
not specified (so EVENT-AVG could not be calculated). The Grate-
ful Dead problem was like the birthday problem. except that
EVENT-AVG was given directly in the problem. The football
problem was modified so that 76 tackles were made over the course
of one game. This was done to eliminate the confusion demonstrated
by some subjects in Experiment 1 concerning whether or not the
fact that the tackles were made over four games was relevant to
the solution. The Detroit Tigers and cookie problems were thus
isomorphic to examples studied by all subjects, whereas the birth-
day. football. London, and Grateful Dead problems were not.

Results and Discussion

Both groups did well on the problems that were iso-
morphic to the training examples. Nine out of 10 high-
light subjects and all 7 no-highlight subjects solved the
Detroit Tigers problem correctly. Nine out of 10 high-
light subjects and 6 out of 7 no-highlight subjects solved
the cookie problem correctly.

The number of subjects who solved the birthday
problem did not differ significantly between the two
groups fhighlight = 4 out of 10 (40%), no-highlight = 2
out of 7 (29%); G*(1) = .238, p = .63). However, their
performance did differ on the football problem [high-
light = 9 out of 10 (90%), no-highlight = 3 out of 7
(43%); G¥1) = 4.5, p < .04}. Thus, although the an-
notations provided in the training examples did not seem
to help the highlight subjects when they solved the birth-
day problem, these subjects did benefit on the football
problem. This difference in performance on the football
problem is due to 5 highlight subjects’ finding EVENT-
AVG correctly on the football problem but not finding
it correctly in the birthday problem. No-highlight subjects
had difficulty finding EVENT-AVG in both problems,
although 1 subject who was unsuccessful on the birthday
problem was successful on the football probiem. These
results suggest that the football problem might provide
an easier mapping onto events and trials than the birth-
day problem does. Thus, when subjects are given train-
ing that encourages them to recognize the conditions for
applying a learned method, and when this is combined
with a novel problem that provides an easier mapping task,
then the old method is more likely to be successfully
modified.

All but 1 subject in each group solved the London
problem correctly and all but 2 subjects in each group
solved the Grateful Dead problem correctly. This suggests
that. as predicted by Learning Constraint 2, most subjects
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were fairly good at realizing the need to achieve an oid
subgoal (finding EVENT-AVG) in a new context. Fur-
thermore, most subjects were good at recognizing that
EVENT-AVG was provided directly in these two
problems. This recognition was probably aided by the fact
that EVENT-AVG was labeled with the term *‘average”
in the London and Grateful Dead problem statements.

In sum, subgoal and method annotations seem to pro-
vide some benefit in modifying an old method, at least
when the target problem provides only a moderately
difficult mapping task. Annotations do not seem neces-

sary for enhancing the noticing of old subgoals, at least -

for the problems tested here. As in Experiment 1, manipu-
lations of subgoals and methods were correlated with per-
formance differences, again supporting the usefulness of
the subgoal/method representational scheme.

GENERAL DISCUSSION

Two assumptions concerning the conditions under
which learners acquire and transfer subgoals and methods
have been proposed in this paper. A subgoal was assumed
to be learned if it was labeled in an example solution, and
it was assumed that this subgoal could be noticed in a new
context. Across the two experiments, the subjects were
generally successful in recognizing when a presumably
learned subgoal needed to be achieved in a novel problem.

It was hypothesized that if a method for achieving a sub-
goal consisted of a linear series of steps rather than a hi-
erarchy of other subgoals, it would be hard to adapt this
method. This assumption was largely supported by the
finding that subjects had difficulty adapting an old method
in novel problems, even though the old method implicitly
contained the needed subgoal. Because this subgoal was
not explicit, the learner was less able to modify old steps
to create the necessary method to achieve that subgoal.
It would be interesting to teach learners, in the context
of different examples, all the necessary subgoals to solve
a novel problem but not all the methods needed to achieve
those subgoals in the novel problem. This situation would
allow an examination of method modification without im-
posing the additional burden of recognizing a new subgoal.

In some sense, improved performance via smaller sub-
goals and methods seems contradictory to the notion of
knowledge compilation (see, e.g., Anderson, 1983).
However, these two notions are different. The size of the
initial subgoals and methods is assumed to be strongly in-
fluenced by the examples the learner studies, whereas
compilation is largely a function of practice. There is noth-
ing to prevent a learner, with experience, from combin-
ing methods that are frequently executed in order into a
large, compiled method. However, representations of the
smaller, precompiled methods, may continue to coexist
with the new compiled method, especially if the originai
methods continue to be used in a variety of combinations
across different types of problems.

The use of annotations in examples to highlight sub-
goals and methods seems to increase the likelihood that

a learner will modify an old method rather than apply it
without adaptation, perhaps because the learner is more
likely to encode the conditions for applying the old
method. However, further work should be done to ex-
amine which features of the annotation are most benefi-
cial for reducing negative transfer (i.e., applying an old
method without adaptation) and for aiding the adapting
of an old method. For example, it may be that the justifi-
cation for using a particular method is the most impor-
tant feature for reducing negative transfer (Lewis & An-
derson, 1985), and it may be that calling the learner’s
attention to the methods themselves (a form of elabora-
tion) is what helps the learner modify the method in a
novel problem (Reder et al., 1986).

The subjects’ difficulty on the birthday problem rela-
tive to the football problem in Experiment 2 suggests that
learners may need practice in mapping the parts of
problems to the appropriate concepts or variables, perhaps
without the additional requirement of solving the problem
(cf. Sweller, Mawer, & Ward, 1983). This suggestion
could also be explored in a domain such as mechanics,
where students may need practice in setting up problems,
such as drawing free-body diagrams, apart from actually
solving them. Since mapping (perhaps ‘‘translating’’ is
a better term) is only part of what is required to solve
a problem, it may get less attention than it deserves un-
less the student is fortunate enough to recognize that map-
ping is a separate subtask. Students typically are not so
fortunate (see also Larkin, 1983). Teachers rarely seem
to isolate underlying subgoals or highlight the conditions
for why a particular method is used when they present
examples. In addition, examples done in class can involve
a consistent mapping, further preventing the student from
even recognizing that mapping is a separate-component.

It may be possible to develop a theoretically motivated
methodology for constructing examples for textbooks in
quantitative domains. This methodology would involve
first identifying the subgoals and methods that students
need to learn (Bovair et al., 1990; Catrambone, 1990) and
then designing examples that should lead to the acquisition
of these subgoals and methods and the ability to modify
the methods. This characterization in terms of subgoals
and methods could help teachers construct examples that
convey the concepts they wish students to learn, as well
as help them construct more diagnostic test problems. Ul-
timately, careful theory-driven development of training
examples may make it easier for learners to see beyond
the superficial features of problems to the subgoals and
methods that need to be acquired.
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APPENDIX A
Example Poisson Distribution Problem

Eighty-four sociologists were asked how many journal articles
they had published in the last 3 years. It was observed that 23
sociologists published 0 articles, 29 published | article, 17 pub-
lished 2 articles, and 15 published 3 articles. Fit a Poisson dis-
tribution to x; that is, give the expected frequencies for the differ-
ent values of x based on the Poisson model.

Solution:
[023)+1(29)+2(17)+3(15)] 108
E = = — =
() 84 ) 84 1.3
= A
= average number of articles
published per sociologist
THN 2.71871)(1.3* 27(1.3*
P(X=x) = (e D] _ @718 )(1.39] _ (:2D(1.3%)
x! x! x!
27(1.3°
(so. for example, whenx = 3, P(X = 3) = (—-)3('—3) =.10)

Fitted Poisson Distribution:

X Expected Frequency
0 .27-84=23

1 .35-84=29

2 .23-84=19

3 .10-84=8
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APPENDIX B
Another Example Poisson Distribution Problem

A football field was cut up into 300 equally sized pieces.
A total of 539 tackles were made on the field over the course
of four games. Use the Poisson distribution to determine
the probability that a randomly chosen piece of the field
had exactly 1 tackle made on it.

APPENDIX C
Cookie and Birthday Problems

Suppose you were making a batch of raisin cookies and you
did not want more than one cookie out of 100 to be without
a raisin. How many raisins will a cookie contain on the aver-
age in order to achieve this result? Use the Poisson distri-
bution to find your answer.

Suppose you took a random sampie of 500 people and found
out their birthdays. A ‘‘success’ is recorded each time a
person’s birthday turns out to be January 1. Assume there
are 365 days in a year, each equally likely to be a randomiy
chosen person’s birthday. Fit a Poisson distribution to x (the
number of people born on January 1) and find the predicted
likelihood that exactly 3 people from the sample are born
on January 1.

APPENDIX D
Examples of Annotated Problems for
Highlight Subjects (Experiment 2)

Example 1

In the 432 years from 1500 to 1931. war broke out somewhere
in the world a number of times. The table below gives the dis-
tribution of the number of years on which x wars broke out,
forx = 0, 1, 2, 3, 4 (or more). Fit a Poisson distribution to
x and give the expected frequencies for the different values of
x based on the Poisson model.

Number of Wars

Beginning in a Given Year Observed Frequency

0 223

1 142

2 48

3 15

4 or more ) 4
Total 432

Solution:

The goal of this probiem is to create an expected frequency ta-
ble. In order to do that, we must calculate the expected proba-
bilities for the different values of x using the Poisson equation.
We can then multiply these expected probabilities by the total
number of *‘chances’’ in order to get the expected frequencies.

Since we know the values of x we are interested in, the only
value we need to find before we can use the Poisson equation is .

One way to determine A (the next problem shows a different
way) is to divide the total number of events by the total number
of chances.

E(X) = [0(223)+1(142) +2(48) +3(15) +4(4)}/432
= 299/432 = 692 '
=\

average number of wars that broke out
each year

Now that we have determined \, we can calculate the expected
probabilities for various values of x. The Poisson equation
becomes:

P(X = x) = [e”"%2.692")/x! = [(.5006)(.692))/x!
(so, for example, when x = 3, P[X = 3]
= [(.5006)(.692)%)/3! = .0276).

We now muitiply the expected probabilities by the total num-
ber of chances in order to get the expected frequencies for each x.

Fitted Poisson Distribution:

x Expected Frequency
0 .5006-432=216
i .3464:432=150
2 .1199-432=52
3 .0276-432=12

4 or more .0048-432=2

Example 2
An archaeologist found a horizontal quarry surface that had been

previously divided up into 30 squares about 1 m on a side. He .

dug in each square in order to find specimens of the extinct mam-
mal Ditolestes motissimus. Out of all the squares, 16 of them
contained no specimens. Use the Poisson distribution to deter-
mine how many specimens were found on the average in each
square.

Solution:

Our goal is to find \.

Note that, in the prior problem, finding A was not the final goal.
but in this problem it is. However, unlike the prior problem we
cannot calculate the exact value of \ from the observed values
of x, since we are not given all of the observed values. A different
way to find X is to use the Poisson equation, P(X = x) =
{e "*\")/x!, and solve for \ rather than P(X = x). In order to
solve for \ though, we need a value for at least one PX =x).
We are given enough information to calculate P(X = 0):
P(X = 0) = 16/30 = .53 = probability of a square having no
specimens, so:

Now we can use the Poisson equation to estimate \:

53 = [e"N\0! = P(X = 0)
now, since 0! = 1 and \® = 1, then
53 =72
Solve for \ by taking natural log of both sides:
In[.53] = Infe}] -
—.635 =\

.635 = X\ = average number of specimens found in
each square
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We could have used this approach to finding X in the prior  problem we would have been ignoring the rest of the informa-
problem by just calculating P(X = 0) in that problem and plug- tion (the observed frequencies for all the other values of x), which
ging it into the Poisson equation to get \. However, inthe prior  helped us to calculate A more precisely.
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