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Aggregation Bias and the Use of Regression
in Evaluating Models of Human Performance
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Regression analyses are increasingly being used to provide confirmatory evidence
for models of human performance. The amount of information made available to
judge these models is reduced because clearly established standards in the tech-
niques of performing and reporting regression analyses are lacking. This paper
addresses two primary problems in regression analysis: aggregation of data and
the aggregation of variables into composite models. We provide examples of the
misuse of regression techniques and recommend ways in which the amount of
information made available to evaluate the model being tested can be maximized

in analysis and reporting.

REGRESSION MODELS AS
SPECIFICATION SEARCHES

In the last ten years there has been a shift
away from domain-specific psychological
theories toward large-scale models of human
performance. These models—e.g., Adaptive
Control of Thought [ACT*], Anderson, 1983;
Cognitive Complexity Theory, Kieras and
Polson, 1985; Goals, Operators, Methods, and
Selection [GOMS], Card, Moran, and Newell,
1983; State Operator and Results [SOAR],
Laird, Newell, and Rosenbloom, 1987—seek
to identify the cognitive and, sometimes, the
perceptual and motor processes involved in
performing a task and to specify how these
processes interact. The models are often used
to explain performance on various computer-
based tasks, partly because such tasks are
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constrained and therefore more easily quan-
tifiable. Reliance on these models has led re-
searchers away from using factorial designs
tested through analysis of variance and to-
ward task-performance comparisons that use
regression analysis to build and verify the
model.

In this paper we will suggest that, in the
process of building these models of perfor-
mance, researchers have failed to establish
consistent standards for the use and report-
ing of regression analysis. Two frequently
used practices—aggregation of data and ag-
gregation of variables into composite mod-
els—cause biases in the building and evalua-
tion of performance models and reduce the
amount of information made available to
judge the models.

Leamer (1978) has described the primary
purpose of regression analysis in research as
a process of “‘specification search.” Specifica-
tion search is the attempt to build a model of
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performance and to provide information
about the model’s completeness (level of
specification). In a specification search, re-
gression is used to uncover variables relevant
to performance and to determine how these
variables interact to determine performance.

Regression analysis can be a powerful tool,
yet it is not without drawbacks. Numerous
articles have been written addressing such
possible misuses of the technique as viola-
tions of assumptions, collinearity, and effects
of sample size (e.g., Bibby, 1977; Carpenter,
1984; Gordon, 1968).

Our paper neither directly addresses any of
these issues nor attempts to provide mathe-
matical proofs for the issues we raise, al-
though appropriate references are provided.
Instead, we borrow our approach from Mu-
laik’s work on factor analysis (Mulaik, 1991),
in which he suggests that factor analysis
should be viewed as a practice, not merely an
algorithm. We will argue that the primary
purpose of the practice of regression should
be to maximize the amount of information
made available to build and evaluate models
of performance, not to find the highest possi-
ble value of R?.

In regression analysis, the primary mea-
sures are the regression estimates (variable
weightings and intercept value) and the pro-
portion of explained variance (R?). The re-
gression estimates are used primarily to
make predictions and to evaluate the relative
importance of the variables. Once one knows
the estimates of the intercept and the coeffi-
cients for the variables in the equation, these
values can be used to make predictions about
performance in a new task. The value of R? js
important because it provides a rough mea-
sure of the level of specification of the model.
A fully specified model would yield an R?
value of 1.0. When the value of R? is high, one
often assumes that the model tested provides
an adequate theoretical explanation of the
task under study. When the value is not high,
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one assumes that important variables are
missing from the model, and the theory is
judged to be incomplete. In this paper we will
present and discuss practices that affect the
regression estimates and the value of R?
yielded by regression analyses and how some
of these practices can make it difficult to eval-
uate the level of specification of the model.

A second important aspect of evaluating a
model is the model’s ability to explain a large
percentage of variance in performance, as
measured by R?, and to “simply” do so. For
example, one model might have many predic-
tor variables, and these variables might re-
quire a great deal of effort to operationalize
(for instance, they might require a compli-
cated production system analysis). This
model explains 75% of the variance in perfor-
mance. Suppose another model has two pre-
dictor variables (e.g., number of keystrokes
and number of letters on the screen), both of
which are simple to operationalize and mea-
sure. A regression analysis using this model
explains 70% of the variance in performance
on the same task. Which model is better? If
the purpose is to simply maximize the per-
centage of variance explained, then the first
model is better. Yet the second provides al-
most as good a description of performance
with fewer variables and considerably less
effort.

If the model is being used to evaluate a new
interface design, the answer might depend on
the ease with which one can apply the two
models. In this case the second model would
undoubtedly be the preferred model. Model
simplicity has practical importance and, as
we will show, sets certain requirements
about how regression analysis should be used
and reported. We are not advocating that all
models must be abandoned if they are com-
plex or require effort to apply. However, be-
cause of the misuse of regression techniques,
the theoretical status of many variables in
complex performance models may not be as
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strong as they appear. The inappropriate in-
clusion of such variables in the model limits
the model’s theoretical value and practical
application.

This paper has three primary goals. First,
we will identify two broad sets of practices in
the use and reporting of regression analyses
and discuss the limitations of these practices.
These practices are the aggregation of data
(aggregating over ranges of values, trials, or
subjects) and the use of composite variables
in a model (failure to test alternative models,
prespecifying relationships among variables).
For each practice we will present examples
from human-computer interaction (HCI) in
which researchers have used one of these
practices to validate a model and discuss the
effects of these practices on model evaluation.
In the final section of the paper we will rec-
omimend techniques for the use and reporting
of regression analysis that can eliminate
these problems.

AGGREGATION OF DATA

In some regression analyses, mean values
of the independent variables are used to pre-
dict mean values of the outcome variable.
This practice has been referred to as aggrega-
tion (e.g., Klein, 1946). Many papers in soci-
ology and economics have focused on the
methodological issues arising from the use of
aggregated data (see Doggan and Rokkan,
1969, for a review of some of this work). In
these fields researchers in the past often had
to rely on secondary data sources, which pro-
vided only aggregated data. For example, re-
searchers using census reports and tax-base
information had access only to data for
ranges of incomes, not for the individual
households. When building models of spend-
ing patterns of households, the researchers
had no alternative but to use aggregated data
in their regression analyses. In current work
in human performance, aggregation over
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data is a choice made by the researcher. This
choice, however, invites error.

To what extent can findings based on a
model derived from aggregated data be ap-
plied to individual behavior? In the census
data example, can one use a model based on
average or grouped performance to draw con-
clusions that are valid for individual house-
holds? The problems associated with draw-
ing inferences about individual performance
from results of regression analysis using ag-
gregated data have been referred to as the
ecological fallacy (e.g., Robinson, 1950) and
cross-level analysis (Hannan, 1971).

As Knight (1984) noted, aggregating over
variables amounts to setting the partial re-
gression coefficients for these variables to
zero. This assumes that the variables have no
relationship to performance—or, at least, no
effect on it that is of interest to one’s under-
standing of task performance. Aggregating
over data or variables can restrict the cases to
which the model's explanatory power ap-
plies. This is especially true when the regres-
sion analysis aggregates over a range of val-
ues of the predictor variable, thereby
eliminating a source of variation that should
be explained by the model.

Types of Aggregation

Aggregation is the process of collapsing
over data points and then using a measure of
central tendency to represent that range of
data. When evaluating the effects of aggrega-
tion, one must determine what was different
about the data points that were aggregated,
or, in Knight's (1984) terms, which partial co-
efficients were set to zero. For instance, in the
census example the data were points that
represented household income. In the regres-
sion using household income as a predictor
variable, variance in that variable had been
removed.

Aggregation can be used in three primary
ways: aggregation over trials or repeated
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measures, aggregation over subjects, and ag-
gregation over ranges of the predictor vari-
ables. The purpose and possible effects of
each type of aggregation are discussed next.

Aggregation over trials. One common prac-
tice is to aggregate multiple trials with the
same levels of the predictor variables to cre-
ate a mean measure of performance. The ra-
tionale for this type of aggregation is that sen-
sitive dependent measures, such as reaction
times, can be badly skewed by differences in
attention, learning over trials, or other fac-
tors. The effect of these extrancous variables
is reduced by collapsing over the multiple ob-
servations, which results in means that are
believed to provide a closer approximation to
the true value. By aggregating over multiple
observations of the same task, error variance
is removed from the equation.

Aggregation over subjects. The purpose of
this type of aggregation is to remove the ef-
fects of differences in subjects’ abilities on
performance by eliminating the variance as-
sociated with the individual differences
through the use of mean group performance
rather than individual scores. In this type of
aggregation, the removed variance might be
assumed to be unrelated to the predictor vari-
ables in the model if individual differences do
not interact with the treatment variables.

Aggregation over values of a predictor vari-
able. The third type of aggregation is similar
to the previous census data example. Here
data are aggregated across the values of a
predictor variable in the model. For example,
if household income is hypothesized to be a
predictor of the proportion of total spending
on transportation, and categorized ranges of
incomes (e.g., $10,000 to $20,000) are used as
the predictor variable, then one is aggregat-
ing over levels of the predictor variable. This
type of aggregation, which we will refer to as
variable aggregation, removes variance that is
directly related to the predictor variable—in
this example, family income.
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Dangers of Aggregation

Reductions in the amount of variance in
the data through aggregation can both elim-
inate important information and falsely in-
flate the value of R? yielded by the regression
analysis. Although these two issues are re-
lated, we will address them separately.

Inflating the value of R2. Cramer’s (1964)
work is helpful in determining the amount of
inflation in the value of R? that has been in-
troduced by the aggregation. As Cramer and
numerous others have suggested (e.g., Hai-
tovsky, 1973; Pearson and Hartley, 1958;
Prais and Aitchison, 1954; Thorndike, 1939),
the use of grouped data forces aggregation
across a source of variation. If there were no
variation within the values (or variables), the
effect of grouping on R* would be nil. This is
rarely the case. When there is variation in
these values, regression analysis yields an in-
flated value of R?. The amount of inflation
cannot be determined precisely unless one
has access to the individual data points. How-
ever, Cramer developed a two-step estima-
tion procedure (based in part on the work of
Pearson and Hartley, 1958) that can be used
to estimate the magnitude of bias resulting
from aggregation in the value of R2.

First, R? is transformed into a C value using
the equation:

C = R*(1 — R?. ¢}

This transformation changes the range of val-
ues for the measure of explained variance. C
can now range from 0 to infinity.

Second, C is entered into the following
equation:

C*IC = (t — 2)N - 2). 2

In this equation C* is the transformed R?
for the grouped data, and C is the R? for the
ungrouped data. N is the total number of ob-
servations or values of the predictor variable,
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and ¢t is the number of groups or means used
in the grouped data regression.

To see how this estimation procedure
works, take a case in which 60 observations of
a variable have been aggregated into six
ranges. For this example we will assume ag-
gregation over subjects and trials without
considering their possible effects. The means
for these six ranges are regressed on an out-
come variable, and the resulting regression
yields an R? of 0.90. Applying the transforma-
tion of R? (Equation 1), the C value is 9.0.
Using this value in the estimation equation
(2) yields a value of C* = 0.62.

Using the value of C* in place of C in Equa-
tion 1 produces an estimated value of R? for
the ungrouped data of 0.38. Because R? is of-
ten used to judge how well the model speci-
fies the component processes of performance,
the R? from the grouped data suggests an al-
most complete specification. The estimated
R? for the ungrouped data clearly does not. Of
course, these adjusted values of R* are only
estimates. The actual degree of inflation in
the value of R? caused by the use of aggre-
gated data depends on the nature of the vari-
ation in the aggregated variable (e.g., are the
data equally distributed across the range of
values being aggregated?).

Type of information eliminated. The second
issue that must be addressed to determine the
effects of aggregation on the evaluation of the
model] tested by regression relates to the type
of information that was eliminated by aggre-
gation. Here one must determine which
source of variance was eliminated and how
that relates to the model being tested. For ex-
ample, when one collapses over values of a
predictor variable, one is reducing, at least in
part, variance that is actually caused by the
variation in the predictor variable. Given
that different values of this variable almost
certainly cause variation in the outcome vari-
able, one is strongly biasing the test of the
model. As many researchers have shown (e.g.,
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Haitovsky, 1973; Pearson and Hartley, 1958;
Prais and Aitchison, 1954; Thorndike, 1939),
the bias results in an inflated value of R2.
Aggregating over repeated measures (mul-
tiple observations) of a single value of the pre-
dictor variable or over subjects can also bias
the value of R?. However, the effects of these
biases on interpretation of the level of speci-
ficity of the model might not be as severe as
those caused by aggregation over ranges of
the predictor variable because the variance
being removed from the data is not directly
related to the model. Collapsing over re-
peated measures assumes that the variance
lost is not related to the value of the predictor
variable but is, instead, at least partly a re-
sult of error. When aggregating over scores
from different subjects, one is removing vari-
ance arising primarily from individual differ-
ences in background, motivation, or abilities.
If this source of variation is beyond the scope
of the model, then there is no problem asso-
ciated with aggregation across subjects.

An Example of Aggregation in HCI

John and her colleagues used a variant of
the Goals, Operators, Methods, and Selection
model to explain stimulus-response compati-
bility (e.g., John and Newell, 1987; John,
Rosenbloom, and Newell, 1985). They created
algorithms of the perceptual, cognitive, and
motor processes required to recall and use
abbreviations of computer commands. Their
resulting model was then used to predict the
time required to recall and use computer
command key bindings. v

Based on their model, John and Newell
(1987) predicted the performance times for
three sets of key bindings for 12 computer
commands (e.g., "D for “delete’). A set of pos-
sible algorithms was created for each com-
mand in each condition that modeled the pro-
cesses required by a person to produce the
appropriate key binding. The algorithms for
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each command included four types of opera-
tors (perceptual, mapping, retrieval, and mo-
tor). With the operators specified for each
command, all that was needed to describe
performance was a set of values (times) re-
quired for each of these operations to be
performed.

John and Newell chose values based on
their earlier work (drawn from the regression
analyses presented in John et al., 1985). With
this information they could calculate pre-
dicted times for both the time to the initial
response (hitting the first key) and execution
time (time from the first key press until the
response was completed) for each command
in each of the three key binding conditions.
This allowed John and Newell to predict the
time required to produce each key binding
and to compare these predictions with per-
formance times. Using the six predicted times
(the mean predicted times for the time to the
first key press and the times for the remain-
ing key presses for each of the three key bind-
ing systems) as the predictor variable and six
mean performance times as the outcome vari-
able in a regression analysis, they found a
value of R? = 0.776.

Although this R? certainly shows that this
model can be used to predict average perfor-
mance on this task, does it provide evidence
that the model was well specified? This ques-
tion can be addressed by first estimating the
value of R? after correcting for the various
types of aggregation used in the analysis and
then determining what data were aggregated.

In the analysis reported by John and New-
ell (1987), six predicted times were regressed
on six mean performance times (three each
for initial response times and execution
times). To obtain these six predicted times
and the six observed means, John and Newell
aggregated over repeated trials (five trials for
each command in three key binding systems),
over subjects (N = 12), and over the com-
mands used in each key binding system (12).
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Collapsing over repeated observations of
the same command seems to be a valid prac-
tice because this analysis is using response
times as a dependent measure. Aggregating
across subjects might also be a valid practice
if John and Newell (1987) did not intend to
explain individual performance. However,
aggregating over the different commands in a
system of key bindings is more problematic.

Each of the three systems of key bindings
used 12 different commands. These com-
mands yielded different values for the four
operators in John and Newell’s model. All of
these values were then aggregated to produce
four mean values for the operators for each
key binding system. The operators were then
multiplied by the weightings found in previ-
ous work (John et al., 1985) and summed to
produce the predicted times for performance.
This aggregation eliminated variance di-
rectly caused by variation in the predictor
variables of the model.

A reanalysis. Cramer's (1964) correction
equations can be applied to estimate the ef-
fects of aggregating over the values of the four
operators in John and Newell’s (1987) model.
Using Equation 1, the R? reported by John
and Newell produces C = 3.464. The value for
the right side of Equation 2, (t — 2)/(N — 2),
becomes 0.057, resulting in a C* of 0.198.
From these calculations the estimated value
of the R? for the ungrouped data is 0.17. If this
estimate of the R? of the ungrouped data is
correct, it raises serious questions about the
level of specification of their model.

Of course, the estimated value of R? (0.17)
is only an estimate. John and Newell’s (1987)
analysis may yield an R? value greater than
this estimate if performed on the unaggre-
gated data. The accuracy of Cramer’s (1964)
estimate depends on the amount of variance
removed from the model by the aggregation.
If no variance was lost (meaning that times
for all initial and concluding keystrokes
within conditions were identical when
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collapsed over subjects), then 0.776 would be
the true value of R2. If variance was elimi-
nated from the analysis, then the value of R?
on the unaggregated data would be lower.
Based on the reported data, however, we can
only conclude that the possible value of R?
ranges between 0.17 and 0.776. Given the
breadth of this range, the reader cannot make
an independent evaluation of the level of
specification of John and Newell’s model.

THE USE OF COMPOSITE VARIABLES

A second common practice in regression
analysis that can limit the amount of infor-
mation about the model being tested is the
use of composite variables or composite mod-
els. This issue has received considerable at-
tention in the areas of tests and measurement
and individual differences (e.g., Paunonen
and Gardner, 1990; Perloff and Persons,
1988). In these areas composite measures are
often used to provide a test of a single factor
or dimension. This practice is sometimes re-
ferred to as aggregation, but in this paper a
distinction is being made between aggregat-
ing over ranges of a variable or data, as out-
lined earlier, and the aggregation of multiple
predictor variables to create a single predic-
tor variable, which we will call a composite
variable.

An example of the use of a composite mea-
sure might be a variable that consists of sub-
scales or multiple measures that have been
combined to create a score of intelligence.
The problems associated with the use of com-
posite variables or a composite model (in
which all the variables are forced into the re-
gression in a block) as a single predictor stem
from the possible intercorrelations among
the constituent (subsumed) variables. In gen-
eral, subscales or multiple measures of the
same variable or factor are assumed to in-
crease the reliability of the composite vari-
able score. However, when the subscales are
not multiple measures of the same factor or
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variable, combining them into a single com-
posite measure or index may be inappropri-
ate. Although important, this specific issue
has been discussed at length elsewhere (cf.
Perloff and Persons, 1988; Rushton, Brainerd,
and Pressley, 1983) and will not be addressed
extensively here.

Composite Variables Restrict Possible
Relationships That Can Be Considered for the
Subsumed Variables

The key issue associated with using com-
posite variables is that their use restricts the
ways in which subsumed variables may be
related to one another. For example, if a test
of intelligence has eight subscales and com-
bines the subscale scores to create an index of
intelligence, it is assumed that the subscales
have correct (often equal) weightings and
that they do not interact in a way that relates
to performance. One will not know if this is
not the case unless the other possible rela-
tionships among the subsumed variables are
investigated and reported. Thus, when creat-
ing a composite variable, one has limited the
types of models that can be tested in a regres-
sion by (perhaps inadvertently) prespecifying
the relationship that exists among the sub-
sumed variables.

The problem associated with using a com-
posite variable is that there might be tasks in
which the relationship among the subsumed
variables changes. For example, there could
be a task in which high performance on a sub-
scale is inversely related to performance,
whereas other subscales have a direct rela-
tionship to performance. Using the prespeci-
fied composite variable would result in a
lower overall level of association than if the
relationship among the subscales had not
been prespecified.

When one uses a composite variable or
forces a group of variables to enter into the
regression concurrently (what we are refer-
ring to as a composite model), one cannot
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determine the relative importance of the sub-
sumed variables. This reduces the amount of
information that can be gained from the re-
gression analysis.

The problems_associated with the use of
composite variables/models can be broken
into at least three broad areas. The first prob-
lem area is that researchers who test a com-
posite variable often fail to test the individual
importance of the component variables in the
model. Second, by using a composite variable
in a model, the researchers are, often un-
knowingly, prespecifying the type of relation-
ship that can exist among the variables.
Other models, with different types of rela-
tionships among the subsumed variables, are
not tested. This does not mean that one
should never use a composite model or vari-
able. There are areas in which we have strong
empirical research to support the specific set
of prespecified relationships that are formal-
ized in the composite variable. However, as
we will show, even in such cases, testing al-
ternative models could be beneficial. Finally,
researchers using composite variables or
models can analyze their data appropriately
but can fail to report all of the analyses per-
formed. This, of course, can occur with any
type of analysis, but it can be especially prob-
lematic in the use of regression. Each of these
problems will be discussed next.

Failure to Test Subsumed Variables in a
Composite Variable

An example of the use of a composite model
to predict performance is, again, found in the
work of John and Newell (1987). Their anal-
yses did not allow the reader to determine the
relative importance of the variables sub-
sumed by the composite predictor variable.
Recall that John and Newell used a single
value as their predictor variable for both the
time to the first keystroke and the predicted
time for the rest of the keystrokes for each of

HUMAN FACTORS

the three sets of key bindings. These predictor
values were based on the average number of
each of the four operators multiplied by the
value found for that operator in John and
Newell’s earlier work. One or more of the sub-
sumed operators could have provided most of
the model’s explanatory power. Fortunately,
John and Newell’s report did include infor-
mation about the mean values of the sub-
sumed variables. This information, plus
means for the three conditions, allowed us to
reanalyze their data and test the possibility
that one or more of the subsumed variables
provided most of the explanatory power of
their model.

In an attempt to test the relative impor-
tance of the subsumed variables in John and
Newell's (1987) model, we performed a re-
gression that used only two of the four oper-
ators in their model. We selected the motor
and perceptual operators because these are
easily measured variables. The weightings for
the motor operator (time to press a key) and
the perceptual operator were multiplied by
the average number of key presses and per-
ceptual operators reported for each condi-
tion. The six resulting values were then re-
gressed on the reported observed values
(using the same aggregation procedures as
used in John and Newell, 1987). This regres-
sion yielded an R? of 0.72. The regression us-
ing all four operators of the model yielded an
R? of 0.776.

This analysis suggests that the two cogni-
tive operators (mapping and retrieval) in the
model might not be needed to describe per-
formance. This has important theoretical and
practical implications for an evaluation of
the explanation of stimulus-response compat-
ibility advanced by John and Newell (1987;
John et al., 1985). If one’s purpose is to use the
model as a way to evaluate different key bind-
ing systems, should one produce more than
100 pages of production rule analyses for
three 12-command systems to increase the



AGGREGATION BIAS

amount of predicted variance from 72% to
78%? The reanalysis suggests that the cogni-
tive aspects of the model provide little ex-
planatory power. Our analysis required little
more than simply counting the number of
keystrokes for each key binding condition and
yielded an R? value almost as large as that of
John and Newell's (1987).

By using a composite variable and not re-
porting the separate effects of the subsumed
variables, John and Newell (1987) inadver-
tently restricted the amount of information
available to the reader to judge the validity of
the claims of their model. It may be that the
mapping and retrieval operators do provide a
large amount of explanatory power, but from
the analysis John and Newell presented, one
cannot make that judgment. The casual
reader might assume that all four operators
in their model are equally important in pre-
dicting performance. Qur reanalysis suggests
that their model (requiring a complex and
lengthy analysis) might provide no more ex-
planatory power than simply knowing the
number of keystrokes required and whether
or not the person looked at the screen.

Perhaps the best summary of our position
can be made by quoting from Robert Stern-
berg’s (1986) discussion of the use of multiple
regression:

Perhaps it is a matter of taste, but I have
never been impressed by multiple regres-
sions that contain one statistically signifi-
cant independent variable and a whole
bunch of statistically trivial independent
variables along with it. The multiple corre-
lation adds nothing to the simple correlation
except junk—and a more impressive looking
coefficient. (p. 278)

We feel that the point he makes applies to the
use of composite variables. Reports of regres-
sion analysis using composite variables or
models must also provide information that
specifies the relative contribution of each
subsumed variable.
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Presupposing Relationships among Variables
in the Model

A second drawback to the use of composite
variables or models is that it limits the ability
to test alternative models of performance. As
outlined earlier, a composite variable speci-
fies one set of relationships that may exist
among the subsumed variables. This practice
thereby eliminates from consideration other
possible combinations of the variables. It can
be especially misleading if the regression
analysis also uses data that have been aggre-
gated to the levels of the composite variable.
To demonstrate how this practice can elimi-
nate the perceived need to test other models,
we will review some motor movement re-
search related to cursor positioning with a
mouse.

Fitts’ law has served as the theoretical base
for research investigating cursor positioning
time in the area of HCI (e.g., Card, English,
and Burr, 1978; Epps, 1986; Walker and
Smelcer, 1990). According to Fitts’ law, two
independent variables—distance and target
width—can be used to describe movement
time. The variables of distance and target
width are combined into the so-called index
of difficulty, which usually takes the form of
log,(2D/W) or log,(D/W + 0.5). This index
provides a highly accurate description of the
time required to make a movement, with R?
values often above 0.90.

In HCI research, Fitts’ law has been found
to provide an adequate description of the
time required to position a cursor with a
mouse (e.g., Card et al., 1978). However, re-
cent work has suggested that other equations
may provide competing or even better de-
scriptions of cursor positioning time (e.g.,
Epps, 1986; MacKenzie, 1992; Walker, Meyer,
and Smelcer, 1993). MacKenzie’s review of
this work raises several interesting issues
about how the use of a composite variable, in
the form of the index of difficulty, might have
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hidden underlying relations among the sub-
sumed variables of distance, target width,
and target height in determining cursor posi-
tioning time. In particular, MacKenzie (1992)
reanalyzed the work reported by Card et al.
(1978) and suggested that the regression anal-
yses reported are incorrect because of the au-
thors’ failure to adjust the value of target
width when they varied approach angle.

To illustrate MacKenzie’s argument, we
will provide a brief explanation of the meth-
ods used in the work of Card et al. (1978). In
their experiment subjects were required to
more the cursor from a starting location to a
target area on the screen. The independent
variables were distance to the highlighted
text, angle of approach to the text (direction),
and width of the highlighted text. Distance
and angle of approach to the target area were
varied by manipulating the location of the
highlighted text. Target width was manipu-
lated by varying the amount of text high-
lighted. Unfortunately, when angle of ap-
proach varies, the target width (the size of the
target area as measured along the dimension
of the primary direction of motion) also var-
ies. The regression reported by Card et al.
(1978) did not take this into account and thus
used incorrect values for target width for cal-
culating the index of difficulty.

While reviewing MacKenzie’s (1992) work,
we were surprised that Card et al. (1978) had
found such a large value of R?, given that the
wrong value of width was used in the equa-
tion. We now realize that by using a compos-
ite variable (the index of difficulty) and ag-
gregating over values of width and distance
that yielded the same index of difficulty, Card
and his colleagues eliminated much of the in-
formation that could have been used to judge
the level of specification provided by Fitts’ law.

In order to demonstrate how aggregating
data to the levels of the composite variable
affected the outcome of the regression analy-
sis, it is important to determine the source
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of the numbers Card et al. (1978) used in
their analysis. In their study there were five
values of movement distance, four values of
target width, and three values of angle of ap-
proach. These were all within-subjects vari-
ables, yielding 60 unique Distance x Target
Width X Angle of Approach combinations for
each subject. The 12 means used in the re-
gression were based on the following types of
aggregation.

First, angle of approach was eliminated be-
cause an analysis of variance had revealed no
significant difference in positioning time at-
tributed to angle. That left 20 unique Dis-
tance X Width combinations. Of these 20 val-
ues of distance and width, some yielded
identical index of difficulty values. For exam-
ple, in a study in which movement distances
are 6 and 12 cm and target widths are 1 and
2 cm, the index of difficulty values would be
the same for movements when distance was 6
and target width was 1 and for movements
when distance was 12 and target width was 2.
In the Card et al. (1978) study mean move-
ment times used in the regression were based
on all movements with the same index of dif-
ficulty. This resulted in 12 means, one for
each level of the index of difficulty. Clearly,
some variance might have been eliminated
by this aggregation. If variance was removed,
it resulted from variation in movement dis-
tance and target width. This would inflate the
value of R?. The question remains as to how
much variance was eliminated.

Although the Card et al. (1978) data cannot
be completely reanalyzed because all of the
data points are not reported, the effects of ag-
gregation and the use of a composite variable
can be demonstrated in two ways. First, to
estimate the amount of variance that may
have been eliminated through the aggrega-
tion procedures used to reach the 12 values of
the index of difficulty, we will refer to some of
our own work on cursor positioning with a
mouse (Walker et al., 1993).
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This study investigated the time required
to position a cursor with a mouse. Four val-
ues of movement distance and four values of
target width were used as independent vari-
ables. In some cases different combinations of
distance and target width yielded the same
values for the index of difficulty, yet the po-
sitioning times for the different combinations
differed by as much as 10% of the total move-
ment time. Considerable variance could
therefore have been eliminated by the aggre-
gation procedure used by Card et al. (1978). If
the aggregation had not been performed, the
resulting lower value of R? would stimulate
a search for alternative models to explain
performance.

The use of aggregated data based on a com-
posite model also masked other possible rela-
tionships between distance and target width
that might have provided a better description
of positioning time. Although there were few
alternative models for positioning time when
Card et al. (1978) performed their experi-
ment, recent research has provided alterna-
tive models to Fitts’ law that provide better
descriptions of movement time, yielding R>
values of above 0.90 on aggregated data.
These models include power functions (Epps,
1986), distance alone (Gan and Hoffmann,
1988), or the square root of distance divided
by width (Walker et al., 1993).

Different aggregation procedures might
show an entirely different pattern of results
if applied to the data of Card et al. (1978). To
test this possibility, mean positioning time
for the five movement distances was extrap-
olated from Figure 1 in the Card et al. report.
This yielded means that are based on data
aggregated on the five values of movement
distance. The values for distance of move-
ment were then used in a regression analysis
to predict mean cursor positioning time. This
analysis yielded an R? value of 0.95. Given the
large body of evidence demonstrating that
target width plays a role in determining
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movement time, there is little chance that
this value of R? would be interpreted as prov-
ing that distance alone determines cursor po-
sitioning time with a mouse. However, it does
demonstrate that the combined use of a com-
posite variable and aggregation eliminates
variance that might be important in under-
standing the true causes of performance. This
may, in turn, lead to false confidence in the
level of specification provided by the model.
This false confidence reduces the probability
that alternative models of performance will
be investigated.

Underreporting of Regression Analyses

The final problem associated with the use
of composite variables or models in regres-
sion analysis is the failure to provide com-
plete reporting of the analyses. An example
from HCI of the use of a composite model is
the transfer analysis reported by Lee and Pol-
son (1989). The authors tested predictions
about transfer of training using tasks involv-
ing an oscilloscope, based on an analysis us-
ing Cognitive Complexity Theory (Kieras and
Polson, 1985). In this experiment subjects had
to learn and use a set of procedures. Each
procedure was analyzed to determine the
number of production rules the subject had to
know to perform the procedure. Some rules
were required by more than one procedure.

The experimenters manipulated the order
in which subjects learned the different proce-
dures. Thus the number of new rules to be
learned for a given procedure varied depend-
ing on the procedures already learned. The
authors manipulated the total number of
rules required for a task as well as the num-
ber of new rules required (rules that had not
been learned from a previous procedure).
They predicted that the number of rules and
the number of new rules would predict learn-
ing time for a procedure.

To test this, Lee and Polson used a model
with three predictor variables. The first was
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each subject’s mean performance time across
all procedures, which was used to control for
subject differences. The second variable was
the total number of rules required to perform
the procedure. The third variable in the re-
gression was the number of new rules re-
quired to perform the procedure. These three
variables were used to predict individual per-
formance time for procedures.

No bias occurred in this analysis, which
can be attributed to variable aggregation.
The authors clearly identified the variables
used, and they provided the number of obser-
vations used in the regression. However, they
reported only that the “above regression
model accounted for 77% of the variance of
the 343 individual training times” (Lee and
Polson, 1989, p. 119). They did not report the
relative contributions of the three predictor
variables in the regression, though they did
report the weighting for number of rules. This
raises the issue of the relative importance of
the three variables in the amount of variance
explained. This is troubling because subject
differences, as represented by subjects’
means in their regression analysis, could ac-
count for a large percentage of the explained
variance. Lee and Polson did provide further
information to help readers assess the rela-
tive importance of the three variables, but we
found it difficult to make a determination of
the relative importance of the variables in
their model. This problem could have been
eliminated had the authors provided simple
and partial correlation coefficients for each of
the variables or a full stepwise regression ta-
ble. Either would have allowed readers to
judge the contributions of each variable.

Researchers must remember, when using a
regression analysis with a composite variable
or a composite model, that the purpose of
their analysis is to maximize the information
provided to the scientific community. Com-
posite variables might be appropriate when
there is a large body of research to support
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the specific relationship embodied in the
composite model. However, as the discussion
of Card et al.’s (1978) work has shown, even in
cases in which a strong reason exists to pre-
suppose a particular relationship among the
subsumed variables, the use of a composite
variable still reduces the amount of informa-
tion that might be provided by the regression
analysis. Furthermore, when one aggregates
the data to fit levels of the composite vari-
able, one inflates the R? by eliminating vari-
ance that should be included in the regression
and thereby discourages investigation of al-
ternative models of performance.

CONCLUSIONS AND
RECOMMENDATIONS

The purpose of this paper was to highlight
practices in the use and reporting of regres-
sion analysis that reduce the amount of infor-
mation conveyed. We have argued that aggre-
gation of data and the aggregation of
variables into composite variables and mod-
els can bias the outcome of the regression
analysis and reduce the amount of informa-
tion made available. Both practices may,
however, have appropriate uses. The chal-
lenge is to determine when these practices
are appropriate.

We believe that the confusion about how to
use and report regression analyses stems
from two sources. First, there is no clearly
established reporting procedure for the use of
regression, as there is for other statistical
techniques (e.g., analysis of variance). Rough
guidelines exist but are usually not specific.
Second, regression analysis is a more flexible
statistical technique, as compared with anal-
ysis of variance, allowing for multiple ana-
lytic approaches to a set of data. Therefore no
simple, algorithmic rules can define how all
regression analyses should best be performed
or reported.

To guide our recommendations we would
like to return to Mulaik’s (1991) suggestion
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that factor analysis and, in our opinion, re-
gression analysis are best viewed as a set of
practices, not as an algorithm. The goal of
regression analysis should not be to find an
answer but, rather, to maximize the amount
of information made available. We hope that
we have demonstrated that both aggregation
and forcing variables into composite models
without testing or reporting the contribution
of individual variables are information-
reducing techniques.

Recommendations for the Use of Aggregation

When deciding whether or not to aggre-
gate, remember that aggregation always re-
duces variance. One must decide if the vari-
ance being eliminated should be explained by
the performance model under investigation.
We believe that aggregation might be appro-
priate over repeated observations of the same
conditions. This practice primarily elimi-
nates variance resulting from error and learn-
ing effects, which can reasonably be elimi-
nated from consideration if one is interested
only in asymptotic performance. However,
even in such cases, aggregation over trials
also eliminates variance that could be related
to learning or skill acquisition, or the inter-
action of learning and the other variables,
and therefore must be used with caution.

The common practice of aggregation over
subjects is more problematic. Our initial po-
sition was that this practice is never appro-
priate. However, there might be exceptions in
cases in which researchers are comparing
their value of R* with that of other research-
ers who used aggregated data, or if the goal is
only to describe average performance. Re-
search in the area of motor movement has
frequently used data aggregated over sub-
jects. The practice is now so widely accepted
that if one were to try to publish a study to-
day that investigated Fitts’ law and reported
an R? value of 0.62 between the index of dif-
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ficulty and movement time obtained through
analysis of unaggregated data, most research-
ers would interpret the unusually low R?
value as evidence that Fitts’ law did not apply
to the task, or that the researcher had made
an error. Yet it seems that this use of aggre-
gation over subjects is based more on tradi-
tion than on sound research practice.

There are two primary arguments against
aggregation even when it is the norm. First,
individual subject differences often account
for more than 50% of the variance in perfor-
mance in many tasks (Egan, 1988). The most
appropriate analysis of these data would
therefore not aggregate over subjects. Infor-
mation about individual differences must be
available in order to build a valid descriptive
model of performance. Second, the effects of
individual differences can be partialled out
without eliminating information as aggrega-
tion would do, either by coding subjects as a
dummy variable in the regression analysis or
by using the scaling criterion method sug-
gested by Pedhazur (1982), in which each sub-
ject’s mean is used as a variable in the regres-
sion (see Lee and Polson, 1989). Finally,
separate regression analyses can be per-
formed for aggregated and unaggregated
data (as done by Bovair, Kieras, and Polson,
1990). Each of these techniques (and others,
such as Z-transformations) allows evalua-
tions of the power of the model both with and
without the variance resulting from individ-
ual differences.

Finally, under no circumstances should one
aggregate to ranges of the predictor variables
in the model. This practice always eliminates
variance that the model claims is directly re-
lated to performance, which reduces the
amount of information available to evaluate
a model. As we have demonstrated, aggrega-
tion to levels of the predictor variable inflates
the value of R? and leads to incorrect infer-
ences about the level of specification of the
model].
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Recommendations for the Use of Composite
Models and Variables

Our recommendations about the use of
composite variables or models are more gen-
eral than those for aggregation of data. The
major point is that testing a single composite
model or variable with regression should not
exclude the consideration of other models, no
matter what the value of R?. This is obvious.
What may be less obvious is the need to pro-
vide as much information as possible about
the relative contributions of the variables in
the model and the ways these variables might
interact to produce performance. This infor-
mation is needed not only to judge the model
being tested but also to build and test future
models.

Information from regression analyses using
composite variables or models can be maxi-
mized in several ways. One can use stepwise
multiple regression and present information
about F-to-enter and F-to-remove values, par-
tial correlation coefficients, and the order in
which the variables entered the equation.
This has the advantage of testing multiple
models, not merely the model proposed by
the researchers. It also increases the amount
of information available to future researchers
in the area.

The use of stepwise regression is not with-
out its drawbacks, however (see Huberty,
1989, for a review). Reports of stepwise re-
gressions often fail to include enough infor-
mation to judge the relative importance of
individual varijables in the analysis (e.g., test-
ing alternative orderings for entering vari-
ables into the equation). Also, the use of a
stepwise technique does not guarantee that
the best possible model has been created.

Our recommendation is that when using a
composite variable or a composite model in a
regression, the set of correlations between
each subsumed variable and the performance
variables should be reported in addition to
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the specific test of the model proposed by the
researchers. This approach provides a maxi-
mum amount of information so that other re-
searchers can use the analysis to confirm or
disconfirm alternative models. It also avoids
the drawbacks of stepwise regression. The
space required in publication is more than
compensated for by the additional informa-
tion made available.
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