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ABSTRACT 

Preliminary design of a complex system often involves exploring a broad design space.  This may 

require repeated use of computationally expensive simulations.  To ease the computational burden, 

surrogate models are built to provide rapid approximations of more expensive models.  However, the 

surrogate models themselves are often expensive to build because they are based on repeated experiments 

with computationally expensive simulations.  An alternative approach is to replace the detailed simulations 

with simplified approximate simulations, thereby sacrificing accuracy for reduced computational time.  

Naturally, surrogate models built from these approximate simulations will also be imprecise.  A strategy is 

needed for improving the precision of surrogate models based on approximate simulations without 

significantly increasing computational time.  In this paper, a new approach is taken to integrate data from 

approximate and detailed simulations to build a surrogate model that describes the relationship between 

output and input parameters.  Experimental results from approximate simulations form the bulk of the data, 
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and they are used to build a model based on a Gaussian process.  The fitted model is then ‘adjusted’ by 

incorporating a small amount of data from detailed simulations to obtain a more accurate prediction model.   

      The effectiveness of this approach is demonstrated with a design example involving cellular materials 

for an electronics cooling application. The emphasis is on the method and not on the results per se. 

NOMENCLATURE 

D Fixed overall depth of heat exchanger 

H Fixed overall height of heat exchanger 

k Thermal conductivity of the solid material 

m&  Total mass flow rate of cooling fluid 

 n Number of sample points 

  na Number of sample points for approximate simulations 

  nd Number of sample points for detailed simulations 

  p Power parameters  for a correlation function 

 Q&  Total rate of steady state heat transfer 

 R  Correlation matrix 

 aR    Correlation matrix for an approximate simulation 

  δR  Correlation matrix for ( )δ x  

( ')R x,x   Correlation between points x and x '  

Tin Inlet temperature of the cooling fluid 

Twall Temperature of the heat source 

W Fixed overall width of the heat exchanger 

xi Input variable i  

  ( )y x  Output of a computer simulation at input value x   

 ( )ay x  Output of an approximate simulation at input value x  

 ( )dy x  Output of a detailed simulation at input value x  



- Page 3 -  

    δ    ( )d aρ−y x y  

β  Coefficients of mean function 

aβ  Coefficients of mean function for ( )ay x  

0δ   Constant mean function of ( )δ x  

( )ρ x  Scale adjustment term  

    iρ  Liner coefficients for ( )ρ x  

   2σ   Variance of a stationary Gaussian process 

  2
aσ   Variance of ( )ay x  

θ   Scale correlation parameters  

aθ  Scale correlation parameters of ( )ay x  

   δθ   Scale correlation parameters of ( )δ x  
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1.    FRAME OF REFERENCE  

      Preliminary design of a complex system often involves exploring a broad design space or region of 

design variable values. Many detailed analysis programs are available for use in the latter stages of design, 

but they can be extremely expensive for exploring broad regions. One solution has been to simplify the 

simulations and obtain data from more approximate simulations. For these approximate simulations, 

accuracy is sacrificed to reduce computational time.  However, when it is desirable to explore a large 

design space that includes broad ranges of design variables, repeated approximate simulations still generate 

substantial computational loads.   

Another approach is to create surrogate models to replace individual simulations. These surrogate 

models have been used widely in design.  Computer experiments in which the design variables cover a 

carefully chosen range of values are used to create the surrogate models.  Values of the design variables are 
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chosen in specific patterns called experimental designs1-2  and performance is simulated at these points.  

The responses and input values are combined statistically to create functional relationships between input 

variables and performance; these functional relationships are the surrogate models. The surrogate models 

can be used for robust design3 or linked to optimization routines, or they can serve as a bridge for 

integration across multiple functions4 or across different levels of abstraction5. 

Familiar methods for creating surrogate models include response surface modeling6 and kriging7-9  an 

example of their use in design is presented by Chen and coauthors3.  However a wide variety of techniques 

are available10. In addition to the choice of the metamodeling method, the accuracy of a surrogate model is 

determined by the experimental design used to select data points, the size of the design space or range of 

explored values of design variables, the accuracy of the simulation at each data point and the numbers of 

data points available to compute the surrogate model10.   

In the last decade, methods for improving the accuracy and computational efficiency of metamodeling 

procedures have been actively studied. One approach has been to successively reduce the design space, 

thus simultaneously reducing the extent of the approximation of the metamodels.  There are several ways 

to accomplish this, including the use of trust regions11-14, heuristics15, move limits16 and by using an 

adaptive response surface method in which the design space is systematically reduced by discarding 

regions with large objective function values at each modeling-optimization iteration17-18. Entropy 

maximization has also been studied19-20. Wang and Simpson propose an intuitive metamodeling method 

based on hierarchical fuzzy clustering which helps a designer reduce metamodels to regions of interest to a 

designer21.  

Another way of reducing the design space is by reducing its dimensionality22. Typically, the design 

space is screened to identify and remove design variables which are less important.  However, it can be 

difficult to obtain substantial reductions of dimensionality for large-scale problems23. Super-efficient 

screening methods for removing less important design variables are also available. Both group-screening24 

and sequential bifurcation25-26 must be applied cautiously for designs in which multiple responses are 

considered; screening using supersaturated statistical experimental designs is preferable for situations with 

multiple responses27-28.  
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We believe that the choice of metamodeling method must take into consideration both computational 

time and metamodel accuracy because different aspects of metamodeling may be important in different 

circumstances. Our method involves creating metamodels based on both approximate and detailed 

(accurate) simulations and thus using information that is developed necessarily when creating the 

simulations; a preliminary report of our approach has appeared29. Osio and Amon30-31 also propose a 

multistage kriging method to sequentially update and improve model accuracy. This method is compared 

with our approach in greater detail in Section 2.4. 

In general there is a trade-off between the accuracy of a surrogate model and the resources needed to 

build it.  If surrogate models are built with a reduced number of data points, they are generally less accurate 

than models built with a larger number of data points. If detailed, computationally expensive simulations 

are replaced with approximate simulations, many more data points can be obtained.  However, a surrogate 

model built with approximate information may produce biased results. A practical, alternative strategy is to 

run a large number of approximate simulations and a smaller number of detailed simulations and then 

combine the two sets of results to produce a final surrogate model. 

In this paper, we develop a framework in which we can combine results from both detailed simulations 

and approximate simulations to create surrogate models, which are as accurate as possible, given the 

resources available.  Since the approximate simulations form the bulk of the data, they are used to build a 

model based on a Gaussian process that assumes a simple mean part with a flexible “residual” part.  The 

fitted model is then “adjusted” by incorporating information from the detailed simulations. 

In Section 2, we briefly review our approach along with the procedure of Gaussian process modeling 

that is foundational to it. As an illustration, we apply this approach for designing linear cellular alloys in 

Section 3. Discussions and possible extensions of our approach are presented in Section 4. 

 

2.   BUILDING A SURROGATE MODEL BASED ON DETAILED AND APPROXIMATE 

SIMULATIONS 

       Integration of results from detailed simulations (DS) and approximate simulations (AS) is not a 

straightforward task because the two sets of results have significantly different distributional assumptions. 

One possible way to combine the AS and DS data is to link them by a simple structure and then build a 
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prediction model for DS directly. This one-step approach has one major disadvantage. Due to the paucity 

of the DS runs, the resulting surrogate model can be very imprecise and can lead to inaccurate predictions. 

To overcome this problem and create an accurate surrogate model, we propose a novel two-step approach 

based on Gaussian process modeling. In this work, we assume that the DS produces results that are in 

agreement with the results from the true process. Thus, we neglect the error in the DS results compared to 

the true process. This is a reasonable assumption in many computer experiments including the example in 

Section 3. Thus, the objective is to create a surrogate model that can produce predictions close to the DS 

results.         

      A generic diagram is presented for the new two-stage approach in Fig. 1. Stage 1 involves designing 

and generating computer experiments for detailed and approximate simulations. Key to the approach is 

Stage 2—a novel two-step modeling strategy. This sets our method apart from existing surrogate model 

building techniques. The basic idea is to use AS results to provide a base surrogate model and adjust the 

model by DS results.  The detailed description of these two steps will be given in Sections 2.3 and 2.4, 

respectively.  Stage 3 consists of the application part of the procedure. When a final surrogate model is 

available, various further investigations, such as optimization, sensitivity analysis, and calibration can be 

performed here.  

  

Fig. 1. Diagram of the proposed approach for combining detailed and approximate data into a surrogate model 
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The modeling part of the procedure consists of the following two steps: 

 (1) Fit a Gaussian process model using only AS data. 

 (2) Adjust the fitted model in step 1 with DS data. 

         Since AS results form the bulk of the data, AS results can be used to fit a smooth response surface in 

the first step.  In the second step, this fitted surface is adjusted by DS data, so that the resulting model is 

close to DS data. The detailed description of these two steps is given in Sections 2.3 and 2.4, respectively.  

 

2.1 Gaussian Process Modeling 

    Gaussian process modeling provides the mathematical foundation for much of the work presented here. 

Therefore, we start with the rationale for using Gaussian Process modeling and a description of the relevant 

statistics. The computer experiments considered in this paper are deterministic; there is no random error 

associated with them, that is, repeated simulations with identical starting points will yield identical results.  

Due to this deterministic nature, the predicted value from a good surrogate model should equal the actual 

observed value from simulation, i.e., it should be an interpolator to connect all observed data points. This 

makes modeling computer experiments different from modeling physical experiments, where random noise 

is present. Traditional modeling methods used to analyze physical experiments, e.g., linear regression and 

response surface modeling (RSM) often cannot interpolate the observed data unless a model with very high 

order terms is used. Therefore, they cannot handle the analysis of computer experiments and new methods 

are needed. In addition to the interpolating property, finding a good surrogate model for complex computer 

code requires the following: (1) the surrogate model should provide an accurate approximation to the 

underlying complex pattern of the response, e.g., local increasing and decreasing trends, (2) the 

computational time required to construct the surrogate model must be low compared to the computational 

time required to generate data with simulations. 

A surrogate model built by Gaussian process modeling satisfies all the above requirements. In 

addition, this type of model also enables us to provide an error bound for the predicted output at a new 

input value. Several groups have noticed and used these attractive features10, 32-35 in various applications. 
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In a computer experiment, we apply Gaussian process modeling by assuming that the data consist of n 

vectors of input variable values denoted by 1( , , )t t t
d=X x xL  for d covariates and the corresponding 

response values 1( , , )t
ny y=y L . The Gaussian process model assumes the following structure: 
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where fh( ) are pre-specified functions of x, βh’s are unknown coefficients and ε(x) is assumed to be a 

realization of a stationary Gaussian process. 

Often a very simple parametric form of ( )hf ⋅  is assumed.  If ( )h jf x=x  (and 2
jx  respectively), 

hβ represents the linear main effect of 2
jx (and quadratic main effect of jx respectively). 

The specification of ( )ε x  is critical here. Unlike in linear regression, the iε ’s in Eq. (1) are assumed 

to be correlated. Any lack of fit in the mean part will be absorbed into ( )ε x  as “residual”. This “residual” 

term can be very non-linear and complex indeed. Moreover, as two points ix and jx get closer together, 

( )iε x and ( )jε x must also become closer. Thus, the iε ’s must be positively correlated. In addition, if ( )y x  

is continuous in x , so is ( )ε x .  

     The dependence of )(⋅ε over different x values is determined by specifying the following correlation 

structure: 

 
2cov( ( , )) ( ,

( , ) exp[ ( , )].

),i j i j

i j i j

R

R d

ε σ=

= −

x x x x

x x x x
            (2) 

 

       The correlation function ( ),i jR x x in Eq. (2) is a function of the “distance” between ix  and jx .  If the 

“distance” is measured as a Euclidean distance, there will be a tendency to give the same weight to all 



- Page 9 -  

variables and therefore the Euclidean distance cannot be used to distinguish different factor effects. To 

overcome this, the following flexible “weighted’’ distance function is adopted: 

 
1

( , ) | | ,h

d

h

p
i j h ih jhd θ

=

= −∑x x x x      (3) 

where 1( , , )dθ θ=θ L and 1( ), , dp p=p L in Eq. (3) are scale and power parameters, respectively. There 

are several possible choices for the correlation functions33 but the structure of Eq. (3) allows each input 

dimension to have its own scale and power parameters. Varying their values will change the relative 

importance of factor effects on the response and this specification will also simplify the calculation of 

model parameters.  The Gaussian correlation is for the case ph = 2 and its associated processes are infinitely 

differentiable in the mean square sense33. If ph = 1, the associated processes become the Ornstein-

Uhlenbeck process. Typically, ph is restricted in the interval [1, 2]. Moreover, in this interval, as ph becomes 

larger, the sample paths of processes become smoother. The Gaussian correlation fixes ph at 2 and this 

simplification reduces the complication of calculating estimates for correlation parameters.  As a result, the 

Gaussian correlation is often adopted in the modeling34-35.  In the example given in Section 3, we will 

follow this convention. 

The unknown parameters that need to be estimated for the model are θ, p and 2σ . The maximum 

likelihood method has been adopted in many cases34-35. The log-likelihood, up to an additive constant, is:  

 

   
1

2
2 ,

1 ( ) ( )
[ ln ln | | ]

2 2

t
n σ

σ

−− −
− + −

y Fβ R y Fβ
R        (4) 

             

 where R is the ( )n n× matrix with entries ( , )i jR x x  for i, j = 1,…,n, which depend on θ and p, F is the 

( 1)n d× +  matrix of regressors having (i,j)th element ( 1) ( )j if − x for ( )1 , 1 1 ,i n j d≤ ≤ ≤ ≤ +  and β  is a 

( 1) 1d + ×  vector of unknown regression coefficients.      

Given the values of θ  and p, the maximum likelihood estimate (MLE) of β and 2σ can be computed 

easily:  
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 β̂   = (Ft  R-1  F)-1   Ft R-1 y ,            (5)   
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y Fβ R y Fβ
    .          (6) 

 
            Substituting β̂  and 2σ̂  into Eq. (4), we obtain a simplified form:                         

                     2
,

1
ˆ( ln( ) ln | |)

2
n σ− + R  (7) 

where 2σ̂ and R are both functions of θ, p and the data. The maximization of Eq. (7) is an optimization 

problem in the space of θ and p and there may possibly be multiple local maxima. In the example in 

Section 3, we use the optim function36 to estimate θ (with p set at 2). The optim function is based on a 

limited memory algorithm for bounded constrained optimization37. We verified empirically that this optim 

function produces almost the same results as the powerful optimization function fmincon in Matlab using 

the Sequential Quadratic Programming (SQP) algorithm.  

        The best linear unbiased predictor (BLUP)33 is adopted to predict ( *)y x  at an untried *x , 

 1
*

ˆ ˆˆˆˆ( *) ( ),ty −= + −x f β rR y Fβ         (8) 

 

where r̂  is the vector of correlations between ε(x*) and (ε(x1),…,ε(xn)), and (f=*f x*) is the (d + 1)x1 

vector of regressors at x*.  Moreover, it can be shown that ˆ ( )iy x equals iy . Thus, the BLUP smoothly 

interpolates all the observed data points. In addition to this interpolating property, it has been well 

demonstrated that the BLUP can approximate fairly complex functions33.  

 

2.2 Modeling the Approximate Simulation Data 

       Using the Gaussian process modeling described in Section 2.1, we now develop an approach for 

building surrogate model. We first build a surrogate model based on the approximate simulations only.  
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This model will be further refined later. Usually only a constant term (i.e. 0iµ β= in Eq. (1)) is used in the 

main part of the Gaussian process model35. However, in some circumstances it is reasonable to assume that 

the factors considered in the experiment have linear effects on the output38-39. By following this 

convention, we choose the model below for the output of the approximate simulation ay , 

                 
1

0 ( )( )
d

h
a a ah h ay xβ β ε

=

= + +∑ xx  (9) 

where 
1

0

d

h
a ah hxβ β

=

+ ∑  is the linear mean part and ( )aε x  is the residual part that is assumed to be a 

stationary Gaussian process with mean zero, variance 2
aσ  and correlation parameters aθ . Because a large 

number of AS runs are available, ( aβ , aθ , 2
aσ ) can usually be estimated accurately. The BLUP for ( *)ay x  

at an untried *x  is  

 1ˆ ˆˆˆˆ ( * ) ( ),t
a a a a a a a ay −= + −x f β r R y F β       (10) 

where af , âr , ˆ
aR and ˆ

aF are defined as in Section 2.2. Throughout the remaining part of this paper, we 

shall refer to the model in Eq. (10) as the base surrogate model. 

 

2.3 Adjustment Based on Detailed Simulation Data 

      Because AS and DS are generated based on distinct assumptions, their values can be quite different. 

This is the case in the example analyzed in Section 3.  The same input values are used for some of the AS 

and DS, these data can be used to adjust the base surrogate model. Suppose dn AS runs share the same 

input values as dn   DS runs, a very simple adjustment can be done by using a location-scale adjustment, 

i.e., 

                  ( ) ( ) , 1, , .d i a i dy y i nρ δ= + =x x L           (11)                        

         However, some cases may also exhibit a non-linear discrepancy between AS and DS. As an extension 

of the above procedure, a more sophisticated adjustment can be obtained by making the following two 
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changes in Eq. (11): (a) substitute the constant ρ  with a linear regression function ( )ρ x , (b) replace the 

constantδ  by a Gaussian process ( )δ x . These modifications lead to the following model: 

            

 ( ) ( ) ( ) ( ), 1, , ,d i i a i i dy y i nρ δ= + =x x x x L      (12) 

where  

                
1

0( )
d

j
i j ijxρ ρ ρ

=

= + ∑x       (13)  

is the linear regression function and ( )δ x is assumed to be a stationary Gaussian process with mean 0δ , 

variance 2
δσ  and correlation parameters δθ .  

      An assumption is made here to simplify the modeling and the adjustment procedure. We will treat 

( )a iy x  value from step 1 as fixed.  Thus, with the Gaussian process assumption of ( )δ x , the distribution 

of 1( ( ), , ( ))
d

t
d d d ny y=y x xL is normal and the log likelihood of dy , up to an additive constant, can be 

written as  

 

 
1

2
2

( ) ( )1
[ ln ln |

2 2
]

t
d d d d

dn δ
δ δ

δ

σ
σ

−− −
+ −−

y F α R y F α
R | ,  (14) 

where dF  is the regression matrix 
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and ( )0 0 1, , , ,
t

dα δ ρ ρ ρ= L   is the collection of unknown parameters associated with the mean part in 

Eq. (12). The estimates α̂ and ˆ
δθ can be obtained by maximizing the function in Eq. (14).  The 

optimization procedure is very similar to the one described in Section 2.1, so its details are omitted.  

         For given values of ˆiρ ’s ( 0, , )i d= L , we can compute the values of 1( ( ), , ( ))
dnδ δ=δ x xL  by 

using  

            ˆ( ) ( ) ( ) ( ), 1, ,i d i i a i dy y i nδ ρ= − =x x x x L ,  (15) 
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where   

 
1

0ˆ ˆ ˆ( *) *
d

j
j jxρ ρ ρ

=

= + ∑x     (16) 

is the fitted regression function for the scale adjustment. 

          At an untried point *x , a BLUP predictor can be constructed as  

   1
0 0

ˆ ˆ ˆˆˆ( *) ( )δ δ δδ δ δ−= + −x r R δ F ,  (17) 

where δ̂r and ˆ
δR  are defined in Section 2.2, and 0δ̂  is obtained previously as part of α̂ . The predictor 

ˆ( *)δ x  in Eq. (17)  is used  as a building block to establish the final surrogate model.  

 

 

 

2.4 Building and Evaluating the Final Surrogate Model 

      Based on the base surrogate model in Eq. (10) and the adjustments results in Eqs. (16) and (17), a 

simple plug-in method is used to establish the final surrogate model for an untried *x , 

 ),(ˆ)(ˆ)(ˆ)(ˆ **** xxxx δρ += ad yy   (18)                  

where ˆ ( *)ρ x  is the fitted scale adjustment term in Eq. (16), ˆ ( *)ay x  is the predicted value from the base 

surrogate model in Eq. (10), and ˆ( *)δ x is the fitted location adjustment term in Eq. (17). As mentioned in 

Section 2.1, the prediction based on the base surrogate model is not very accurate. Because we have 

adjusted this model using detailed simulation data, the prediction from Eq. (18) be close to the detailed 

simulations in general. Moreover, the final surrogate model, ˆ ( )dy ⋅  in Eq. (18) smoothly interpolates all the 

observed the detailed simulation data; this is desirable. 

Osio and Amon30 and Pacheco, Amon and Finger31 have proposed another Bayesian approach to 

integrate detailed and approximate simulation data for engineering design. Their methodology consists of 

two steps: (i) a Gaussian process is used to specify the prior knowledge about the approximate simulation, 

from which a posterior process about the approximate simulation is obtained (using a standard Bayesian 

argument); (ii) use the posterior process obtained in (i) as the prior knowledge for the detailed simulation to 
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obtain a posterior process for the detailed simulation. The mean of the posterior process obtained in (ii) is 

used as a surrogate model for the detailed simulation. The limitations of this methodology and differences 

from ours are highlighted below. First, their Bayesian updating starts with the same distribution. Thus the 

posterior mean for the current stage and the posterior mean for the previous stage have the same 

expectation (see Eq. (11) of Pacheco et al.31). This does not reflect the common observation that the 

detailed simulation data can be closer to the true values than the approximate simulation data. To 

accommodate this, our approach provides a location-scale adjustment of the approximate simulation values 

in Eqs. (11)-(13).  A pictorial illustration of the adjustment as applied to real data will be presented in the 

next Section. Second, their approach always produces a smaller posterior variance for the detailed 

simulations than for the approximate simulations. While this may be observed in some situations, it has no 

general physical or mathematical justification. Because both approximate and detailed simulations are 

deterministic, their uncertainties (as rendered by the Bayesian priors) can be more realistically modeled in 

terms of their distances from the true values. This is why we propose the use of the location-scale 

adjustment. Finally, their approach requires the specification of a prior for the mean of the approximate. 

How can such a prior be chosen realistically? The use of a fully Bayesian approach (as described by Currin 

and coauthors40) can solve this problem but the computational price will be prohibitive for engineering 

problems. To be fair, our approach also needs to specify the values of some process parameters, e.g., the 

choice of the correlation structure in Eq. (2) with ph =2.  However, our procedure only requires using the 

maximum likelihood method to estimate k scale parameters for a Gaussian process. This can be computed 

quickly by using efficient optimization tools such as the optim function in R36. 

 To illustrate our approach, in the next section we consider the design of a linear cellular material, 

which is used to dissipate heat from a microprocessor.  

 

3. DESIGNING LINEAR CELLULAR MATERIALS WITH THE SURROGATE MODEL 

BUILDING APPROACH 

 

      Consider the design of a heat exchanger for a representative electronic cooling application.  As 

illustrated in Fig. 2, the device is used to dissipate heat generated by a heat source such as a 
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microprocessor.  The mechanism for heat dissipation is forced convection via air with entry temperature, 

Tin, in degrees Kelvin and total mass flow rate, m& , measured in kilograms per second.  Steady state, 

incompressible laminar flow is assumed.  The device is assumed to have fixed overall width (W), depth 

(D), and height (H) of 9, 25, and 17.4 millimeters, respectively.  It is insulated on the left, right, and bottom 

sides and is subjected to a heat source at constant temperature, Ts, in degrees Kelvin on the top face.   
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Fig. 2 Compact, forced convection heat exchanger with graded rectangular linear cellular alloys 

 

The device is comprised of linear cellular material—ordered, metallic cellular material with extended 

prismatic cells.  These materials can be produced with nearly arbitrary two-dimensional topologies, 

metallic base materials, and wall thicknesses as small as 50 microns via a thermo-chemical extrusion 

fabrication process developed at Georgia Tech41.  Prismatic cellular materials have a combination of 

properties that make them especially suitable for many multifunctional applications, including actively 

cooled, lightweight structures4, 42-44.  Although cell topology and dimensions can be varied, the prismatic 

cellular material is composed exclusively of rectangular cells for this example.  There are four columns of 

cells with interior cell widths of 2 mm, and three rows of cells with interior cell heights of 10, 5, and 2 mm 

for the uppermost, middle, and lower rows of cells, respectively. The solid material in the walls of the 

prismatic cellular material is assumed to have thermal conductivity, k, in Watts per meter-Kelvin. 

The design objective is to maximize the total rate of steady state heat transfer achieved by the device. 

Some of the factors affecting this objective include the topology and dimensions of the cells and cell walls, 
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the flow rate and temperature of the incoming air, the temperature of the heat source, and the thermal 

conductivity of the solid material in the walls of the device.  In other design activities, we have adjusted the 

dimensions of the device4;  here, we intend to explore the heat transfer rate as a function of the mass flow 

rate of entry air, m& , the temperature of entry air, inT , the temperature of the heat source, wallT , and the solid 

material thermal conductivity, k.   

To analyze the impact of these factors on heat transfer rates, we use two types of simulations—

computationally expensive FLUENT finite element simulations and relatively fast but more approximate 

finite difference simulations.  Details of the two approaches are available in the literature, but it is 

important to highlight the costs and benefits of the two approaches in terms of accuracy and computational 

time.  FLUENT is a commercial software package for analyzing fluid flow and heat transfer problems with 

a computational fluid dynamics (CFD) solver45. The finite difference approach is an approximate numerical 

technique for solving two- or three-dimensional heat transfer problems46.  Both the finite difference method 

and FLUENT simulations have been used to simulate the thermal behavior of prismatic cellular 

materials4,47.  For examples similar to the present one, each FLUENT simulation requires two to three 

orders of magnitude more computing time than the corresponding finite difference simulation.  For 

example, the first data point in Table 2 requires 1.75 hours and approximately 2 seconds of computing time 

for the FLUENT and finite difference simulations, respectively, on a 2.0 GHz Pentium 4 PC with 1 GB of 

RAM. However, the FLUENT simulations are more accurate than the finite difference simulations by 10 to 

15% or more.   

Our objective is to build a surrogate model that can be used in the design process and represents the 

functional relationship between design factors and the total rate of steady state heat transfer.  To build the 

surrogate model, we utilize results from both FLUENT and finite difference simulations. A large number of 

data points are generated using the finite difference simulation with fewer data points obtained from the 

FLUENT simulation. We show that even a limited amount of data from FLUENT simulations can be used 

to improve the accuracy of surrogate models based on approximate finite difference models alone.  This is 

demonstrated in the following subsections.      
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3.2 Generating Design Points for Detailed and Approximated Simulations 

        An orthogonal array-based Latin Hypercube design33 with a run size of 64 data points is used to 

determine the appropriate set of approximate (finite difference) simulations. The assumed ranges of design 

variables are shown in Table 1. The Latin Hypercube design has good space-filling properties.  This can be 

seen in Fig. 3 in which the four-variable design is projected onto spaces of two variables. For each pair of 

variables the data points are uniformly distributed in each of the 64 reference square bins.  Also, if we 

divided each bin in Fig. 3 into 8 equally spaced new bins with smaller size (64 new bins in each 

dimension), we find that each individual variable in each dimension has a nearly uniform distribution in 

these 64 bins. Among these 64 approximate simulation experiments, results for detailed simulations are 

generated for 22 of them. Sixteen of the twenty-two experiments are identified using a simulated annealing 

algorithm and a minimax distance criterion33.  The remaining six detailed simulation experiments were 

chosen with a roughly uniform distribution in the portion of the design space in which the value of air flow 

rate, m& , of entry air is small.  Background information suggests that there may be a special relationship 

between the detailed (FLUENT) results, yd, and the approximate (finite difference) results, ya, in this 

subregion.. The six additional points are added to explore this relationship.  The sample data and 

corresponding response values are listed in Table 2.  In this table, the results for the 64 approximate 

experiments are shown in the ya column, and the 22 detailed simulation experiments are listed in the yd 

column.  It is clear from Table 1 that the four input variables have very different scales. These variables are 

standardized (subtracting their means and multiplying by the reciprocal of their standard deviations) before 

the analysis.  

 

Table 1. Assumed ranges for design variables values 
 

 Design Variables 
 m& (kg/s) inT (K) k (W/mK) 

 
wallT (K) 

 
Lower 
Bound 

0.00055 270.00 202.4 330 

Upper 
Bound 

0.001 303.15 360.0 400 
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Fig. 3. 64 points of an orthogonal array-based Latin Hypercube sample.  In each plot, there is one point in each of 
the square bins bounded by dashed lines. 
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Table 2. Sample data for approximate and detailed simulations 

 Design variables Responses 

 1 2 3 4 5 6

Run m& (kg/s) inT (K) k (W/mK) wallT (K) ay  dy  

1 0.000552 293.53 318.63 388.29 25.61 23.54
2 0.000557 290.18 298.27 377.49 23.24
3 0.000566 285.77 266.71 367.27 21.23 20.15
4 0.000578 302.17 358.13 343.72 11.44 10.17
5 0.000580 272.26 211.71 333.65 15.03 15.29
6 0.000589 278.16 225.78 351.83 18.55 18.39
7 0.000594 279.54 258.51 360.13 20.74 20.52
8 0.000603 296.75 323.15 399.45 28.40
9 0.000612 280.83 291.53 394.72 30.22 30.12
10 0.000615 300.28 270.74 335.79 9.53
11 0.000626 284.89 350.46 352.29 18.13 18.17
12 0.000627 287.60 243.96 382.54 25.02 24.68
13 0.000639 270.45 241.21 341.81 17.92 19.05
14 0.000643 276.17 216.99 371.60 24.20 24.96
15 0.000652 298.04 303.96 361.58 17.47 16.95
16 0.000657 294.24 330.63 375.53 22.48 22.3
17 0.000669 296.33 343.16 385.81 25.07
18 0.000670 303.07 321.41 370.48 18.93
19 0.000683 287.05 227.31 358.24 18.61
20 0.000689 272.70 260.91 355.37 21.31
21 0.000694 278.35 212.79 376.24 25.11
22 0.000698 277.52 299.39 338.40 16.02
23 0.000711 292.26 273.31 392.54 27.47
24 0.000714 283.08 306.69 344.34 16.43
25 0.000722 276.53 353.75 374.41 26.50
26 0.000730 285.51 217.74 383.92 25.88
27 0.000738 295.01 295.02 347.22 14.37
28 0.000741 270.95 275.19 356.87 22.36
29 0.000751 287.99 326.02 354.08 18.17 19.57
30 0.000757 300.64 235.03 391.68 14.37
31 0.000763 292.82 254.84 373.38 21.96 23.33
32 0.000772 278.93 301.75 331.55 14.02
33 0.000782 299.86 317.84 348.41 13.68
34 0.000786 275.51 247.29 340.19 16.82
35 0.000791 271.64 284.88 365.09 25.06
36 0.000800 291.42 341.48 358.59 18.83
37 0.000803 281.47 232.64 389.46 28.69
38 0.000814 286.39 339.92 332.40 12.68 14.36
39 0.000823 288.53 207.55 393.49 27.96
40 0.000828 297.33 280.13 379.86 23.17
41 0.000836 289.62 347.65 335.44 12.79
42 0.000842 294.39 203.45 346.05 13.75 15.12
43 0.000851 273.71 315.27 381.14 29.08 34.8
44 0.000857 282.12 262.30 350.10 18.25 21.31
45 0.000865 274.35 335.16 362.30 23.89
46 0.000870 295.76 237.65 366.25 19.36
47 0.000874 282.50 253.25 396.36 30.90 36.11
48 0.000882 299.22 288.45 385.07 24.45 27.36
49 0.000891 273.43 336.04 386.95 31.05
50 0.000901 302.02 249.57 382.33 22.64
51 0.000903 284.25 290.90 364.99 22.22 25.37
52 0.000911 280.17 355.34 370.03 25.03
53 0.000920 276.89 310.73 397.78 33.27
54 0.000929 298.65 205.40 349.02 13.67
55 0.000934 288.86 265.53 339.54 13.89
56 0.000943 292.77 231.01 330.19 10.16
57 0.000947 283.62 222.95 378.66 25.48
58 0.000956 290.33 312.97 368.96 22.22
59 0.000964 271.23 348.00 398.52 35.05
60 0.000968 297.80 244.50 337.41 10.99
61 0.000979 291.21 283.10 353.60 17.45
62 0.000985 301.50 220.37 363.20 17.14
63 0.000987 281.11 329.45 342.32 16.95
64 0.000996 275.01 278.27 390.35 31.35
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3.3 Building a Base Surrogate Model 

     The first step is to build a surrogate model using the approximate simulation results only. Based on 

background knowledge of the physics of this problem, we know that a linear relationship may exist in this 

case between the response and the four factors.  As a result, a linear structure is included when modeling 

the mean part of the Gaussian process in Eq. (9). As described in Section 2, the maximum likelihood 

method is used for estimation. Because 2ˆaσ  = 3.352 is quite small, we have a good fit.  Table 3 lists the 

linear main effects ˆ
aiβ  for i = 1,…,4 (corresponding to m& , Tin, k, and Twall, respectively) and the p-values 

for the t-test for i = 1,…,4.  The linear main effects for inT and wallT  are relatively large, -2.77 and 5.450, 

respectively and their p-values are quite small, 1.59e-08 and 1.543e-22, respectively; therefore inT and 

wallT  are the two most significant factors.  2
ˆ
aβ and 4

ˆ
aβ have different signs, this implies that inT and wallT  

have opposite effects on the response. This agrees with the known physics of the problem, i.e., a decrease 

in inT  or an increase in wallT  causes an increase in the total rate of steady state heat transfer.   As shown in 

Table 3, the p-values for 1
ˆ
aβ  and 3

ˆ
aβ are quite large. Therefore, m& and k do not have significant linear 

main effects on the response in this region of the design space.   

Table 3. Results for aβ̂  

 

     The maximum likelihood estimators for the correlation parameters ˆ
aθ are (1.1780, 0.904, 0.300, 0.01). 

These values are quite different from each other; therefore different factors affect the correlation of two 

close point in different scales.   Among them, the correlation parameters for m&  and inT  are relatively high.  

The responses of two points, even if there is a small distance between them in the m& -dimension or the inT -

dimension, may still have a low correlation.  Note that m&  does not have a significant linear main effect but 

 
0

ˆ
aβ  

1aβ̂  2aβ̂  3aβ̂  4aβ̂  
Values 20.606 0.409 -2.77 0.673 5.450 

P-values  0.449 1.59e-08 0.106 1.543e-22 
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has a large value for its correlation parameter. This implies that the relationship between m&  and the 

response is nonlinear. This observation may aid our understanding of its physical relationship.  

The basic surrogate model is consistent with our background knowledge of the physics of the problem.    

In general, one would expect the mass flowrate, m& , the temperature of the heat source, wallT , and the 

thermal conductivity of the material, k, to have positive linear main effects on the total rate of steady state 

heat transfer; on the other hand, inT  should have a negative linear main effect.  The signs of the linear main 

effects in Table 3 correspond to our expectations.  Also, one would expect the temperatures, inT and wallT , 

to have more significant linear main effects on the response than the mass flowrate, m& , or the thermal 

conductivity, k—two factors that have much more complex relationships with the response via the 

Reynold’s number and the temperature gradients throughout the structure, respectively.  Their linear main 

effects are dominated in this region of the design space by the strong linear relationship between the 

temperatures and the response.  However, we might expect them to have significant nonlinear relationships 

with the response, and we observe this for the mass flowrate, m& . 

 

3.4 Using Detailed Simulation Data to Adjust the Base Surrogate Model  

      Both dy and ay are generated for 22 factor level combinations. Fig. 4 presents a plot of dy vs. ay  for 

these 44 experiments. It is clear that the detailed simulation and the approximate simulation values are 

quite different. Some detailed simulation values are higher than approximate simulation values, while some 

are lower.  This demonstrates the need for modeling ( )ρ x as a function of x in Eq. (13).  
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Fig. 4 dy vs. ay  for the same design values, where the straight line is d ay y=  

 

       Next we use the more reliable detailed simulation output, ( )d iy x , to adjust the fitted model of ( )a iy x , 

as described in Section 2.4.  Overall, we have a good fit for the adjusted model as 2ˆδσ  has a small value of 

0.00515.  For the scale adjustment term ρ(x) the parameter estimates are 0 1 2 3 4ˆ ˆ ˆ ˆ ˆ( , , , , )ρ ρ ρ ρ ρ =  (1.130, 

0.090, -0.032, 0.004, -0.012). Among these estimates, the coefficients for m& and inT are relatively large 

with significant p-values of 2.165e-23 and 3.839e-13. For the location adjustment term ( )δ x , the results 

are 0
ˆ 0.690δ = − with the p-value 0.0102 and ˆ

δθ = (0.173, 0.176, 0.01, 3.66). In Fig. 5, plots of δ̂  vs. 

different pairs of variables are plotted.  In each plot, a 40*40 equally-spaced grid is chosen for the two 

variables used for plotting and the values of the other two remaining variables are fixed at their mean 

values.   
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              Finally, for a new input *x  we can create the final surrogate model: 

          ),(ˆ)(ˆ)(ˆ)(ˆ **** xxxx δρ += ad yy     (19) 

where 1 2 3 4ˆ ( *) 1.130 0.090 * 0.032 * 0.004 * 0.012 * .x x x xρ = + − + −x  ˆ ( )ay ⋅ is the BULP of ( )ay ⋅ as 

described  in Eq. (10) and ˆ( )δ ⋅  is the  BLUP  of ( )δ ⋅  in Eq. (17) . 

  

3.5 Validation of the Final Surrogate Model 

        In order to test and validate the method, 14 additional experiments are performed. In order to test the 

prediction performance of the final surrogate model in a larger space, some of these validation experiments 

are selected beyond the original ranges shown in Table 1. For each experimental point, both detailed and 

approximate simulations are performed.  Table 4 lists the factor levels for these experiments, the ya and yd 

values, the predicted ˆdy  obtained using Eq. (18) and the predicted ˆay  obtained using Eq. (10). 

Table 4.  Additional simulations for validation 

  Run  m& (kg/s) inT (K) k (W/mK) wallT (K) dy    ˆdy ˆay ay  

1 0.00050 293.15 362.73 393.15 25.82 23.85 26.96 27.24 
2 0.00055 315 310 365 7.48 10.31 12.44 7.02 
3 0.00056 277.01 354.98 374 19.77 26.02 26.38 25.53 
4 0.00062 275 225 340 18.78 16.64 16.14 16.40 
5 0.00068 313.28 259.12 350 4.55 6.44 7.32 10.23 
6 0.00070 288.15 300 400 34.45 31.93 30.97 30.90 
7 0.00078 292.73 267.84 369 21.97 23.70 22.01 20.92 
8 0.00080 303.15 250 350 14.83 6.34 6.45 13.08 
9 0.00085 270 325 385 32.85 37.88 31.34 31.14 
10 0.00085 301.31 317.85 341 11.92 12.99 11.94 11.30 
11 0.00091 248.87 206.74 398 47.05 51.77 39.63 36.56 
12 0.00094 271.32 362.73 400 42.93 44.97 35.63 35.53 
13 0.00095 280 270 330 17.41 16.82 13.51 13.54 
14 0.00100 293.15 202.4 373.15 22.89 25.74 21.1 21.60 

                   

       Root-mean-square-errors (RMSE) are computed to assess prediction performance. Here we present 

three different comparisons.  The first is a comparison between predictions with the final surrogate model 

in Eq. (16) and detailed simulation data. The second is a comparison between predictions using the base 

surrogate model in Eq. (10) and the detailed simulation data, and the third is a comparison between 

approximate and detailed simulation data.   
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      The proposed method provides a significant improvement in terms of prediction accuracy. The RMSE 

between ˆdy  and dy  is 3.795, which is 14% smaller than the RMSE (4.430) between ay  and dy , and 17% 

smaller than the RMSE (4.595) between ˆay  and dy given in Table 2. The difference between these 

RMSE’s is statistically significant. Fig. 5 shows the nonlinear nature of the location adjustment in our 

procedure. The flexible scale-location adjustment is capable of refining the base surrogate model and 

obtaining a more accurate surrogate model. 

        At this point, it is important to determine whether the improvement in prediction accuracy realized 

with the proposed method justifies the computational expense of building the final surrogate model.  

Whereas the RMSE of the base surrogate model, ˆay , is 17% larger than the RMSE of the final surrogate 

model, ˆdy , the cost of building the base surrogate model is essentially negligible compared with the cost 

of building the final surrogate model, requiring minutes versus days of computing time to obtain the 

approximate and detailed experimental data reported in Table 2.  Based on this comparison, a designer may 

conclude that the improvement in prediction accuracy is not sufficient to justify the increased 

computational expense of the proposed method.  However, the comparison is misleading.  In typical 
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engineering applications, a designer would not rely exclusively on data from an uncalibrated approximate 

model.  Because the accuracy of an approximate model is not known a priori in an engineering application, 

data from detailed simulations or physical experiments are typically conducted throughout the region of 

interest for validation and calibration.  If a number of detailed experiments are conducted anyway, the 

proposed method is both effective and efficient.  By gathering only a few additional detailed simulation 

data points (beyond the number typically required for validating the approximate model) and by 

strategically choosing their locations, it is possible to assess the accuracy of an approximate model and 

reduce its predication error using the proposed method.   

 
3.6 Maximize the Total Rate of Steady State Heat Transfer 

        Note that one of the design objectives is to maximize the total heat transfer rate.  The ranges of design 

variables are listed in Table 1.  Table 5 contains the maximization results of ˆ ( )dy x  over the ranges. All the 

optimal values of four design variables are attained at the boundaries of the ranges. These results are not 

surprising.  For this problem we know that as m& increases, inT decreases, k  increases, or wallT increases, 

the heat transfer rate increases.  The maximum value of ˆ ( )dy x , 46.93 is larger than the dy values given in 

Tables 2 and 4, except for run 11 in Table 4. This can be explained by noting that the design values for this 

run are outside the ranges defined in Table 1.   

 

Table 5. Maximizing ˆ ( )dy x  over the acceptable ranges  
 

m& (kg/s) inT (K) k (W/mK) 
 

wallT (K) 
 

ˆ ( )dy x  

0.001 270.00 360.0 400 
 

46.93 

           

 

4 Closure    

             In summary, we have presented an approach for building surrogate models based on data from both 

detailed and approximate simulations.  From a design perspective, surrogate models reduce the 

computational cost of exploring large regions of the design space by replacing detailed simulations.  
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However, there is still substantial computational cost involved in using detailed simulations to generate 

data from which surrogate models can be built.  Using the approach presented in this paper, it is possible to 

build accurate surrogate models by supplementing relatively few data points from computationally 

expensive detailed simulations with abundant data from inexpensive but less accurate approximate 

simulations. Thus, it is possible to explore a design space with surrogate models that are nearly as accurate 

but much less computationally expensive than similar surrogate models based exclusively on detailed 

simulations. 

As illustrated with the heat exchanger design example, surrogate models based on approximate and 

detailed simulations are more accurate than surrogate models based on approximate simulations alone for 

predicting responses in design regions of interest. Furthermore, the computational effort required to 

construct a final surrogate model is limited compared with the cost of using detailed simulations 

exclusively to support the design process. In addition, surrogate models can be adaptively modified when 

new simulation results are available. The updating of surrogate models only involves refitting the model 

with old and new data, which requires negligible computational cost. 

Another computational advantage of the proposed method is that it does not suffer from the “curse of 

dimensionality;” therefore, it can be scaled easily to problems with large numbers of design variables.  

Since only linear terms and constant terms are assumed in modeling the mean part of the process and the 

dependence among different design points is represented by a correlation function, the number of required 

design points increases linearly with the number of variables. As a result, for the proposed method the 

designer does not need to restrict the number of design variables as severely.   

       In the proposed approach, the final surrogate model interpolates the observed detailed simulation data. 

This feature is desirable for modeling data from computer experiments, but it implies that the fit of the 

model is relatively sensitive to individual observations. In some applications, the data may be noisy and 

include outliers, in contrast to the deterministic, noise-free results encountered for the example problem. If 

outliers exist in the data, it is important to detect them and remove them from the data set. A simple cross 

validation procedure can be used to check for outliers. The basic idea is to remove one observation, say (xi, 
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yi), and use the remaining data y-i to predict it.  The quantity 
( )i

i i

i

y y
l

s x
−

−

−
=  may be used to check for 

outliers, where ( )is x− is the residual for y-i 48. The larger |li| is, the more likely (xi, yi) is an outlier.  

      This approach is broadly applicable to examples and phenomena from structural, electrical, financial, 

and other domains.  The primary assumptions are that multiple models or data sources are available and 

that one model or data source is generally more accurate than the other(s).  The method is presented 

currently to integrate simulation models at only two levels, namely, detailed and approximate. Work is in 

progress to extend the method for more than two levels of models or data sources. The models may 

correspond to different physics-based models or approximations of a problem (e.g., Euler Equations vs. 

Navier-Stokes, etc.).  
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