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Abstract

The analysis of experiments where a large number of potential variables are exam-

ined is driven by the principles of effect sparsity, effect hierarchy, and effect heredity.

We propose an efficient variable selection strategy to specifically address the unique

challenges faced by such analysis. The proposed methods are natural extensions of

a general-purpose variable selection algorithm, LARS (Efron et al., 2004). They are

very fast to compute and can find sparse models that better satisfy the goals of exper-

iments. Simulations and real examples are used to illustrate the wide applicability of

the proposed methods.

1 Introduction

We consider the analysis of experiments where a large number of potential variables are

examined. In most practical situations, however, only a relatively small number of obser-

vations are affordable. Because of their run size economy and flexibility, fractional factorial

designs are widely used in such experiments. But the analysis of such designs is complicated

due to the aliasing of effects. The analysis is driven by the principles of effect sparsity, effect

hierarchy, and effect heredity (Wu and Hamada 2000). The effect sparsity principle states

that only a small number of effects are significant. The effect hierarchy principle states that

lower order effects are more important than higher order effects. Using this principle we

can focus on lower order effects say, main effects and two-factor interactions, assuming the
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higher order interactions to be negligible. The effect heredity principle indicates that an in-

teraction can be active only if one or both of its parent effects are also active. For example, a

two-factor interaction can be active only if one or both of the corresponding main effects are

active. These principles have proven to be effective tools in resolving the aliasing patterns.

The analysis of experiments can be formulated in the form of the general linear regression

where we have n observations on a dependent variable Y and p predictors (X1, X2, . . . , Xp),

and

Y = Xβ + ε. (1)

where ε ∼ Nn(0, σ2I) and β = (β1, β2, . . . , βp). Throughout this paper, we center each input

variable so that the observed mean is zero, and scale each predictor so that the sample

standard deviation is one.

The principle of effect sparsity can be achieved by the variable selection whose goal

is to search for the model that best describes the data generating mechanism among the

2p candidate models. However, as pointed out by Chipman, Hamada and Wu (1997), the

analysis of designed experiment poses several new challenges for variable selection. Firstly,

the number of predictors greatly exceeds the number of runs. For example, in the 12-run

Plackett-Burman design as described in Table 1, 11 main effects and 55 interactions are

to be considered. Secondly, due to the large number of potential predictors the number of

candidate models most often is rather huge, which calls for computationally efficient methods.

Thirdly, the predictors are always related due to the presence of interactions or polynomial

terms of factors. Because of this, the principle of effect heredity is required in order to

achieve a reasonable model. For example, a general purpose variable selection method may

select two-factor interactions without the corresponding main effects. Such models are hard

to interpret in practice.

Classical variable selection methods, such as Cp, AIC, and BIC, choose among possible

models using penalized sum of squares criteria, with the penalty being an increasing function

of the model dimension. These methods, however, are computationally infeasible, and their

stepwise implementation is shown to be inappropriate for analyzing the designed experiments

(Westfall, Young and Lin, 1998). A number of other variable selection methods have also

been introduced in recent years (George and McCulloch, 1993; Foster and George, 1994;

Breiman, 1995; Tibshirani, 1996; George and Foster, 2000; Fan and Li, 2001; Shen and Ye,
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2002; Efron, Johnston, Hastie and Tibshirani, 2004; and Yuan and Lin, 2004a). In particular,

the stochastic search variable selection method developed by George and McCulloch (1993)

has been adopted by Chipman, Hamada and Wu (1997) to analyze experiments with complex

aliasing patterns. As noted by Chipman, Hamada and Wu (1997), their proposal is still

computationally demanding. More recently, Li and Lin (2002) applied the variable selection

procedure of Fan and Li (2001) to analyze supersaturated designs. Despite its nice theoretical

properties, their approach does not impose heredity principle.

The lack of a fully satisfactory variable selection strategy for analyzing experiments mo-

tivates our work here. We consider the extension of an effective variable selection algorithm

LARS (least angle regression) proposed by Efron et al. (2004). The LARS is extremely fast

and is closely connected with boosting and another popular variable selection method, the

LASSO (Tibshirani, 1996). While the LARS enjoys great computational advantage and ex-

cellent predictive performance, it is devised for general-purpose variable selection and often

produces models that are hard to interpret in practice. In this paper we propose modified

LARS algorithms so that the heredity principle can be taken into account in the variable

selection. It is demonstrated that incorporating such constraints in variable selection often

leads to a model better satisfying the goals of experiment.

The rest of the paper is organized as follows. The LARS methodology is first reviewed in

the next section. In Section 3, we present different modifications to the LARS algorithm so

that the heredity principles can be taken into account. Although our main focus in this paper

is on main effects and two-factor interactions, we have also explained how the methods can

be extended to the case of more complicated situations in Section 3.3. The wide applicability

of the proposed methods is demonstrated by three examples in Section 4. We conclude with

some discussions in Section 5.

2 LARS

The LARS uses a variable selection strategy similar to the forward selection. Starting with

all coefficients equal to zero, the algorithm finds the predictor that is most correlated with

the response variable and proceeds in this direction. Instead of taking a full step towards

the projection of Y on the variable, as would be done in a forward selection, the LARS

only takes the largest step possible in this direction until some other variable has as much

3



correlation with the current residual. Then this new predictor is entered and the process is

continued. The great computational advantage of the LARS comes from the fact that the

LARS path is piecewise linear and all we need to do is to locate the change points. More

specifically, the LARS algorithm can be described as follows.

Algorithm – LARS

1. Start from β [0] = 0, k = 1 and r[0] = Y

2. Find a predictor Xj that is most correlated with r[0] and set Bk = {j}.

3. Compute the current direction γ which is a p dimensional vector with γBc

k
= 0 and

γBk
=

(

X ′
Bk

XBk

)−
X ′

Bk
r[k−1]. (2)

4. For every i /∈ Bk compute how far the algorithm will march in direction γ before Xi

has the same amount of correlation with the residual as the variables in Bk. This can

be measured by the smallest αi ∈ [0, 1] such that

|X ′
i(r

[k−1] − αiXγ)| = |X ′
B1

(r[k−1] − αiXγ)|. (3)

5. If Bk 6= {1, . . . , p}, let α = mini/∈Bk
αi ≡ αi∗ and update Bk+1 = Bk ∪ {i∗}. Otherwise,

set α = 1.

6. Update β [k] = β [k−1] + αγ, r[k] = Y − Xβ [k] and k = k + 1. Go back to step 3 until

α = 1.

Here Bk keeps track of the variables that are included in the model at the kth stage, γ

determines the direction in which the coefficient estimate will move along, and α measures

how far the algorithm will march along such direction. Note that (3) is equivalent to

X ′
i(r

[k−1] − αiXγ) = ±X ′
B1

(r[k−1] − αiXγ), (4)

which can be easily solved for α. The interested readers are referred to Efron et al. (2004)

for more details.
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3 LARS under Heredity Principles

A LARS type algorithm is driven by the measurement of “predictability”. In its original

form, “predictability” is measured by the correlation with the residual. At any point on the

solution path of the LARS, the variables selected are the ones that are most correlated with

the current residual. Define θ(r, Xi) as the angle between the two n-vectors, r and Xi. It

is clear that the squared correlation between Xi and r can be written as cos2(θ(r, Xi)) =

||X ′
ir||

2/||r||2. This is also the proportion of the total variation in r that is explained by the

regression on Xi, i.e. the R2 when r is regressed on Xi. In other words, a variable enters the

LARS path if it has the highest “predictability” on its own. Now that the heredity principles

are in place, some adjustment to the LARS algorithm is needed.

We consider two versions of the heredity principle (Chipman 1996). Under strong heredity,

for a two-factor interaction effect to be active both its parent factors should be active,

whereas under weak heredity only one of its parent factors need to be active. We will now

propose modifications to the LARS algorithm so that the selected models will obey either

the strong or the weak heredity principles. This will lead to better models, provided the true

model which is unknown to the experimenter, obeys the heredity principles. Exceptions are

possible, but many empirical studies have confirmed the use of these principles. A Bayesian

justification of effect heredity can be found in Joseph (2005).

3.1 Strong Heredity Principle

We begin with the strong heredity principle. To develop the idea, consider only the main

effects and two-factor interactions for the moment. The extensions to higher order inter-

actions will be given in a later section. In this case, if an interaction is selected, so do its

corresponding main effects. To account for such dependence, in determining whether an in-

teraction should be entered, it is natural to measure the average “predictability” of all effects

that must be included. Adopting the idea of the original LARS algorithm, the predictability

of a set of variables can be measured by the squared cosine of the angle between the residual

and the linear space spanned by the set of variables. This idea can be illustrated by the

following diagram. To measure the predictability of X1, which is bivariate, we look at the

squared cosine of α1, the angle between Y ∗ and the two-dimensional linear space spanned by
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the two components of X1. This is a natural extension of the idea behind LARS. When the

predictor is one-dimensional such as X2 in the diagram, LARS looks at the squared cosine

of α2, which is the angle between two vectors, Y ∗ and X2.

Figure 1: Predictability Measure for a Set of Variables

Once the measure of predictability for a set of variables is obtained, we have to adjust

for the fact that different sets of variables have different numbers of degrees of freedom. It

is clear that the more variables a set has, the better it can explain the residual for the given

data. One way of adjusting for this is to measure the predictability per degree of freedom,

which can be defined as cos2(θ(r, XA))/nA where r is the current residual, XA is the set of

effects to be entertained, and nA is the cardinality of A. Recall that cos2(θ(r, XA)) is the

R2 when r is regressed on XA and can be computed by fitting one linear regression. Similar

idea has also been used by Yuan and Lin (2004b) in a different context. They argued that

such measure of averaged predictability can also be motivated from the classical ANOVA

analysis.

With such notion of average “predictability”, the proposed LARS type algorithm proceeds

in the following way.

Algorithm – Strong Heredity

0. Initialize Di = φ if the ith effect is a main effect. Otherwise, let Di be the set of the

main effects corresponding to the ith effect.
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1. Start from β [0] = 0, k = 1 and r[0] = Y

2. Compute the “prediction score” for each candidate variable i:

si = cos2(θ(rk−1, X{i}∪Di
))/(1 + nDi

). (5)

Denote i∗ = arg maxi si. Define the current “most predictive variable” as A1 = {i∗}

and the “active set” as B1 = A1 ∪ Di∗.

3. Compute the current direction γ which is a p dimensional vector with γBc

k
= 0 and

γBk
=

(

X ′
Bk

XBk

)−
X ′

Bk
r[k−1]. (6)

4. For every i /∈ Bk, update Di = Di ∩ Bc
k and compute how far the algorithm will march

in direction γ before Xi enters the most predictive set. This can be measured by the

smallest αi ∈ [0, 1] such that

||X ′
{i}∪Di

(r[k−1] − αiXγ)||2/(1 + nDi
) ≥ ||X ′

B1
(r[k−1] − αiXγ)||2/nB1

. (7)

5. If Bk 6= {1, . . . , p}, let α = mini/∈Bk
αi ≡ αi∗ and update Ak+1 = Ak ∪ {i∗} and Bk+1 =

Bk ∪ {i∗} ∪ Di∗. Otherwise, set α = 1.

6. Update β [k] = β [k−1] + αγ, r[k] = Y − Xβ [k] and k = k + 1. Go back to step 3 until

α = 1.

As in the LARS, we start with all coefficients being zero, then we compare the candidate

effects in terms of the average predictability (5). For main effects, the average predictability

is defined as the magnitude of the correlation between the factor and the residual. For two-

factor interactions, it is defined as the average predictability of all variables from {i} ∪ Di

since all of them have to enter the model as a group if the ith variable is selected. After the

most predictive variable is identified, we form two different sets to keep track of (a) the most

predictive variables and (b) variables that enter the model (i.e., Ak and Bk). In the case of

LARS, the two sets coincide. But in our case, the two may differ because some variables

enter the model only because its child is highly predictive. The algorithm continues along

the least square estimate with only the variables from the active set, a direction that reduces

the residual sum of squares the most. We march in this direction until another variable has

at least the same amount of predictability as the variables from the current most predictive

set.
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By the definition of γ, (7) holds when αi = 1 because its right hand side equals 0 in this

case. Therefore, αi in Step 4 is always well defined. Different from (3), finding αi amounts

to solving a quadratic equation, which can also be obtained in explicit form.

Another difference from the LARS algorithm is that the amount of progression measured

by α is now defined through an inequality (7), rather than an equality. Such modification

is necessary because Di may change in the process. The averaged predictability for the ith

effect can increase as a result of the inclusion of an element of Di. For example, consider

the case of two main effects: A, B and a two-factor interaction AB. In the beginning, the

predictability of AB is measured by sAB,1 = cos2(θ(Y, X{A,B,AB}))/3. Suppose that sAB,1 is

dominated by the predictive score of A, sA ≡ cos2(θ(Y, X{A})). Since A enters the model,

the predictability of AB should now be measured by sAB,2 = cos2(θ(Y, X{B,AB}))/2, which

might be even greater than sA. In this case, the solution to (7) is α = 0 and {AB, B} enter

the model immediately after A enters the model.

3.2 Weak Heredity Principle

Unlike the strong heredity principle, under the weak heredity principle, which main effect is

to be included so that an interaction can be entered is not pre-determined. Therefore, any

element from Di can enter the model together with the ith variable. We pick the one that

yields the highest predictive score. More specifically, the predictive score for the ith variable

is now defined as

max
j∈Di

cos2(θ(rk−1, X{i,j}))/2. (8)

Thus we have the following algorithm:

Algorithm – Weak Heredity

0. Initialize Di = φ if the ith effect is a main effect. Otherwise, let Di be the set of the

main effects corresponding to the ith effect.

1. Start from β [0] = 0, k = 1 and r[0] = Y

2. If Di = φ, define the “predictive score” of a candidate effect as si = cos2(θ(rk−1, Xi)).

If Di 6= φ, compute the “prediction scores” for each candidate effect i and each effect
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in Di:

sij = cos2(θ(rk−1, X{i,j}))/2. (9)

and define si = maxj sij. Denote i∗ = arg maxi si. Define the current “most predictive

set” as A1 = {i∗}. If Di∗ = φ, define the “active set” as B1 = A1. Otherwise, denote

j∗ = arg maxj si∗j and define B1 = {i∗, j∗}.

3. Compute the current direction γ which is a p dimensional vector with γBc

k
= 0 and

γBk
=

(

X ′
Bk

XBk

)−
X ′

Bk
r[k−1]. (10)

4. For every i /∈ Bk, update Di = Di ∩ Bc
k. Compute how far the algorithm will march in

direction γ before Xi enters the most predictive set. This can be measured by αi ∈ [0, 1]

defined as follows:

(i) If Di = φ, αi is the smallest value such that

||X ′
i(r

[k−1] − αiXγ)||2 ≥ ||X ′
B1

(r[k−1] − αiXγ)||2/nB1
. (11)

(ii) If Di 6= φ, for each j ∈ Di, define αij as the smallest value in [0, 1] such that

||X ′
{i,j}(r

[k−1] − αijXγ)||2/2 ≥ ||X ′
B1

(r[k−1] − αijXγ)||2/nB1
. (12)

and αi = minj αij.

5. Denote i∗ = arg mini αi and update Ak+1 = Ak ∪{i∗}. If Di∗ = φ, set Bk+1 = Bk ∪{i∗}.

Otherwise, define j∗ = arg minj αi∗j and update Bk+1 = Bk ∪ {i∗, j∗}.

6. Denote α = mini/∈Bk
αi and update β [k] = β [k−1] + αγ, r[k] = Y − Xβ [k] and k = k + 1.

Go back to step 3 until α = 1.

Not every variable in Di enters the model together with the ith variable under the weak

heredity principle. Only the variable that yields the high predictability score together the

ith variable enter the active set Bk. The algorithm proceeds in the same fashion as the one

under the strong heredity principle.

3.3 Beyond Two-factor Interactions

In an abstract level, we can represent the heredity principles by sets {Di : i = 1, . . . , p}

where Di contains a set of variables. In order that the ith variable can be considered for
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inclusion, all elements of Di must be included under strong heredity principle, and at least one

element of Di should be included under weak heredity principle. It is worth pointing out that

our definition of strong and weak heredity principles is more general than their traditional

version. For example, Nelder (1998) mentioned a heredity principle that requires certain

main effect to be included so that an interaction is to be considered. Such a partial heredity

principle can be induced by the strong heredity principle with the choices of DAB = {A}

or DAB = {B}. In our previous discussion, we have focused on dealing with two-factor

interactions. More generally, both algorithms work for the case where Dj = φ if j ∈ Di for

any i. If this is not the case, for example in the case when the three-factor interaction is also

entertained, modifications to the above algorithms are necessary.

It is helpful to think of the dependence structure described by the D′s as a directed graph

where all p variables are the nodes and an edge from i to j is present if and only if j ∈ Di.

To handle the strong heredity principle, we first re-evaluate the dependence set D′s so that

Di contains all nodes that can be reached from the ith node. This is can be done efficiently

using for example the breadth first algorithm (Cormen, Leiserson, Rivest and Rivest, 1990).

After this step, the LARS algorithm with the strong heredity principle presented before can

be applied.

The situation for the weak heredity principle is more complicated since we need to first

figure out which variables are to be included together with the ith variable. We first deter-

mine which nodes are terminal nodes, i.e. the nodes whose dependence set is empty. Then

the candidate variable sets to be considered for the ith factor to be included can be described

by all the possible paths from it to any of the terminal nodes. This can be efficiently done

using the depth first algorithm (Cormen et al., 1990). Denote {P1, . . . , Pk} the collection

of such paths. We compare these paths again using the averaged predictive scores when all

nodes on the path are included. The factors on the path whose averaged predictive score is

the highest will enter the model and these factors will be eliminated from the dependence

sets of the remaining factors. The process then continues as the weak heredity principle

algorithm presented in Section 3.2.

10



4 Examples

In this section, we demonstrate the proposed variable selection strategy using three examples.

The first one uses a 12-run two-level nonregular design, the second one uses a 16-run two-

level regular design, and the third one uses an 18-run nonregular mixed-level design. These

examples are selected to show the wide applicability of our procedure.

Example 1 This is a simulated example proposed by Hamada and Wu (1992). Eleven two-

level factors and their second order interactions are considered. The design is given in Table

1. The response is simulated according to the following linear model:

Y = A + 2AB + 2AC + ε (13)

where ε ∼ N (0, 0.252).

Run A B C D E F G H I J K

1 + + − + + + − − − + −

2 + − + + + − − − + − +

3 − + + + − − − + − + +

4 + + + − − − + − + + −

5 + + − − − + − + + − +

6 + − − − + − + + − + +

7 − − − + − + + − + + +

8 − − + − + + − + + + −

9 − + − + + − + + + − −

10 + − + + − + + + − − −

11 − + + − + + + − − − +

12 − − − − − − − − − − −

Table 1: 12-run Plackett-Burman Design for Example 1

There are a total of 66 candidate variables (11 main effects and 55 two-factor interactions).

Figure 2 compares the solution paths obtained by the new methods and the LARS algorithm.

The trace of the estimated regression coefficients for the first few steps are plotted. Here

the weak heredity version of the new method is able to pick up the right effects in only
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two steps, while the LARS could not identify the main effect of A until the eighth step. In

this example, the strong heredity did not work, which should be expected because the true

model does not contain the main effects of B and C. In practice, we will not know which

version of the heredity principle to be used. Therefore we should run both of them. It will

be easy to select the right one by looking at the solution paths. In this example, comparing

the solution paths generated by the strong and weak heredity versions of the algorithm, we

can immediately understand that we should be using the weak heredity version. We also

note that one of the ordinary forward selection methods proposed in Hamada and Wu (1992)

could not identify any of the important effects. This clearly shows the advantages of the

proposed procedure.
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Figure 2: Solution Paths of the New Method and the LARS for the Simulated Experiment

Example 2 Consider a 29−5 experiment reported by Raghavarao and Altan (2003). The

design and data are given in Table 2.

The results of the analysis are plotted in Figure 3. The variables selected in the first five

steps are given in Table 4. We see that LARS identifies AH, J, E, G, and CH as significant. In

a 29−5 design, the variables are either orthogonal or completely aliased with others. Ignoring

three and higher order interactions, we can obtain the following aliasing relationships for the
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above five effects:

AH = EJ = DG = BG

J = −CF

E = −BC

G = −FH = −AB

CH = GJ = DE

Thus the effect AH could actually be EJ or DG or BG. Anyone of these effects can produce

the same fit. Therefore it is unclear which one to choose. LARS selected AH because

it appears before EJ, DG, and BG in the list of variables (they are listed in alphabetical

ordering). Hence the above selection is inconclusive. Same is the case with the selection

of J, E, G, and CH. In the literature, follow-up experiments are usually recommended for

dealiasing the effects (see Meyer, Steinberg, and Box 1996). On the other hand Wu and

Hamada (2000) suggested that by applying effect hierarchy and effect heredity principles

some of the effects can be dealiased. Our procedures incorporate both these principles and

therefore the confusion due to the aliasing will be less. As given in Table 4, the first five

effects identified by strong heredity are J, E, EJ, G, and GJ. Note that this is the only set of

effects from the five aliasing relationships that satisfy strong heredity. Thus our procedure

has no ambiguity in selecting the effects. The final model from our procedure seems to be

more meaningful and interpretable. By applying the weak heredity algorithm we obtained

the same effects except the last one. Instead of GJ it identifies DE. But note that these

two effects are completely aliased. Weak heredity cannot break it, because one of the parent

effects from both of these interactions are significant. In such a situation we recommend using

strong heredity. Although DE can be significant under weak heredity, GJ is more likely to

be significant because both of its parent effects G and J are significant. Interestingly, the

heuristic analysis in Raghavarao and Altan (2003) also identified the same five effects J, E,

EJ, G, and GJ as significant.

Example 3 The blood glucose experiment is studied by Hamada and Wu (1992) among

many others. It has one two-level factor and seven three-level factors. The experimental

design is the mixed-level orthogonal array OA(18, 2137). The design and the response are

given in Table 3.
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Run A B C D E F G H J Y

1 − − − − − − − − − 136.475

2 + + − + + − − − − 147.775

3 + − − + − − + + − 142.425

4 + − + + + − + + + 141.800

5 + + + + − − − − + 136.675

6 − + − − + − + + − 150.725

7 − + + − − − + + + 142.800

8 − − + − + − − − + 135.825

9 + + + − − + − + − 143.476

10 − + − + + + + − + 145.150

11 + − + − + + + − − 142.600

12 − − − + − + − + + 139.375

13 + + − − + + − + + 139.650

14 + − − − − + + − + 144.775

15 − − + + + + − + − 148.275

16 − + + + − + + − − 141.075

Table 2: The 29−5 Design and Data for Example 3

Each three level factor is divided into linear and quadratic effects using the orthogonal

polynomial coding (Wu and Hamada 2000). Thus there are a total of 15 main effects and

96 two-factor interactions. We treat both the linear and quadratic effects as independent

main effects. This will make the application of heredity principle very simple. For example,

the two-factor interaction B2C2 is entertained if either B2 or C2 is in the model (under

weak heredity). For a more advanced treatment of heredity principle with polynomial and

interaction terms see Chipman (1996).

Figure 4 gives the solution paths of the LARS and the two proposed methods. The plot

indicates that the weak heredity principle is more likely to be true and the corresponding

result is also in accordance with the previous analysis (Hamada and Wu, 1992; Chipman,

Hamada, and Wu, 1997), whereas LARS identifies a model that does not satisfy any of the

heredity principle (see Table 4).
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Run A G B C D E F H Y

1 1 1 1 1 1 1 1 1 97.94

2 1 1 2 2 2 2 2 2 83.40

3 1 1 3 3 3 3 3 3 95.88

4 1 2 1 1 2 2 3 3 88.86

5 1 2 2 2 3 3 1 1 106.58

6 1 2 3 3 1 1 2 2 89.57

7 1 3 1 2 1 3 2 3 91.98

8 1 3 2 3 2 1 3 1 98.41

9 1 3 3 1 3 2 1 2 87.56

10 2 1 1 3 3 2 2 1 88.11

11 2 1 2 1 1 3 3 2 83.81

12 2 1 3 2 2 1 1 3 98.27

13 2 2 1 2 3 1 3 2 115.52

14 2 2 2 3 1 2 1 3 94.89

15 2 2 3 1 2 3 2 1 94.70

16 2 3 1 3 2 3 1 2 121.62

17 2 3 2 1 3 1 2 3 93.86

18 2 3 3 2 1 2 3 1 96.10

Table 3: OA(18, 2137) and data from the Blood Glucose Experiment

5 Discussion

Because of the large number of candidate variables, it is imperative to use an efficient vari-

able selection algorithm for the analysis of experiments. The LARS algorithm is a good

choice. But since the variables in experiments are related due to the presence of polynomial

and interaction terms, the ordinary application of LARS may lead to models that are not

interpretable. To overcome this problem we have proposed a novel extension of the LARS

algorithm that incorporates the effect heredity principles. Two versions of the algorithm,

viz. weak and strong heredity, are presented. The proposed algorithms are computation-

ally efficient and are shown to be able to select models better satisfying the goals of the
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Simulated Factorial Blood Glucose

Step LARS Strong Weak LARS Strong Weak LARS Strong Weak

1 AC F, G, FG A, AC AH J J, EJ B2H2 E2 B2, B2H2

2 AB D AB J E, EJ E BH2 B2, H2, B2H2 B, BH2

3 HK J E E G G GC2 C, F2, CF2 F2, CF2

4 EI A, C, AC H G GJ DE CF2 B, BH2 G, GD

5 DH B, AB G, GJ CH H H B E2F2 GC2

Table 4: Variables Selected at the First Five Steps

experiment.

We have demonstrated the advantages of the new algorithm by analyzing a wide range of

experimental designs. In some cases the weak heredity version performed better, whereas in

some other cases the strong heredity version performed better. In practice, we do not know

which version to use. Therefore our recommendation is to apply both and select the best

one based on the solution paths generated by them.

The analysis of the 29−5 fractional factorial design reiterated the importance of using

heredity principle in the analysis of experiments. The ordinary LARS algorithm produced

a set of aliased effects which could not be distinguished. On the other hand, the proposed

approach could identify a unique model. Ambiguities are possible with the application of

our algorithm, but the chances are much less. At last, we want to point out that although

we have focused on the analysis of designed experiments, the techniques developed here can

also be applied to the general linear regression variable selection problems.
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