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Abstract

In this article, we show that the manufacturing target for a product character-

istic affected by degradation is not the value that maximizes the quality of the

product. By sacrificing some quality at the manufacturing stage it is possible

to increase the product’s lifetime and thus reduce the quality loss over a long

period. We propose a procedure for finding the optimal manufacturing target

that maximizes both quality and reliability of the product.
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1. Introduction

Many characteristics of a product are subject to degradation. During the usage

of the product, those characteristics degrade, resulting in the deterioration of the

product’s performance. How should we set the manufacturing specifications for such

characteristics? Traditionally they have been chosen to maximize the quality of the

product. But if the characteristic is affected by degradation, then this may not be

the optimal choice with respect to the performance of the product over time. By

sacrificing the quality at the initial stage of the product’s usage, we might be able

to improve the reliability of the product and increase its failure time. Therefore, the

specifications for degrading characteristics should be chosen to maximize the quality

as well as the reliability. The idea of integrating quality and reliability into product

design is not a new concept (see, e.g., Chen, Jin, and Shi 2004; Joseph and Yu 2006),

but a formal and scientific approach for developing manufacturing specifications seems

to be lacking. In this article we attempt to develop this.

As an example consider the problem of determining the ball diameter in a roller-

ball bearing. Suppose we find the target for the diameter to maximize quality of the

bearing. Note that here quality is defined in terms of loss to society as in Taguchi

(1986) (see also Joseph 2004). If we can manufacture bearings with the target ball

diameter, then we have the best quality. Even in a hypothetical situation, where we

can achieve this with zero variation, the reliability of the bearing can be poor. This

is because, during usage, the ball will wear out, therefore deviating from the ideal
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target leading to inferior performance. It is intuitively clear that if we shift the target

for the ball diameter at the manufacturing stage to a value above the ideal value,

then the reliability can be improved.

The idea is pictorially depicted in Figure 1. Here m denotes the ideal value of

the characteristic that maximizes the quality, l and u denote the lower and upper

specification limits for the characteristic beyond which the product is considered as

failed. The Figure shows two situations. In (a), the products are manufactured

aiming at the target m, whereas in (b), the target for the manufacturing is above m.

It can be seen that after time r, the second situation produces smaller proportion of

products below l. Thus, although the quality is relatively poor at the beginning, over

time the second process has much better performance than the first process in terms

of the proportion failed.

It is clear from the example that the target for a characteristic should be chosen

based on both quality and reliability. This can be achieved by extending the con-

cept of quality loss to include reliability. To achieve this, we can define the total

loss by integrating the quality loss over time. Then we can determine the target for

manufacturing by minimizing the total loss. This is what we propose to do in this

article. Taguchi (1993, p427) has proposed some methods for determining tolerances

for deteriorating characteristics based on integrated loss functions, but has not con-

sidered the possibility of shifting the manufacturing target (see also Creveling 1997,

p241-244).

The problem of determining optimal target for the degrading characteristics re-
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Figure 1: Effect of shifting manufacturing target: (a)without shift;(b)with shift

sembles another problem studied in manufacturing and process control. In machin-

ing processes, the machined dimension can change over time due to the tool wear;

in chemical processes, concentration can decrease over time due to the depletion of

the chemical; and so on. In such cases the characteristic is set above or below the

target depending on whether the characteristic is decreasing or increasing over time

(see Drezner and Wesolowsky 1989; Jeang and Yang 1992; Makis 1996; Pakkala and

Rahim 1999; Joseph 2001). Our problem formulation differs from theirs in many

aspects and is explained in the next section.
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2. Problem Formulation

Consider a product characteristic Yt that degrades over time t. Let m be the value

of the characteristic that minimizes the quality loss and let T be the manufacturing

target for the characteristic. As discussed in the introduction T should be less than

m if Yt increases over time and more than m if Yt decreases over time. The following

Brownian motion model is widely used for modeling a degradation characteristic

(Doksum, and A. Hoyland 1992; Whitmore 1995; Joseph and Yu 2006):

Yt = T + βt + σBt + ε, (1)

where Bt is a standard Brownian motion, ε ∼ N (0, σ2
ε ), and β has some distribution

with mean β̄ and variance σ2
β. The model assumes the mean degradation path to

be linear, which may not be true for some product characteristics. However, this as-

sumption significantly simplifies the problem. If the path is nonlinear, then we assume

that there exists a transformation, so that the mean of the transformed characteristic

is approximately linear. We have used a random degradation rate β, because the

rate can vary from unit-to-unit. The variations introduced during the usage of the

product is captured by the Brownian motion Bt (see Joseph and Yu 2006). The error

term ε represents the variations in the product characteristic at the manufacturing

stage, because at t = 0, Y0 = T + ε.

The performance of the product at any time t can be evaluated using a quality loss

function. The choice of loss function depends on the type of characteristic: smaller-

the-better (STB), larger-the-better (LTB), or nominal-the-best (NTB). In this article,
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we only consider the case of NTB characteristics. The quadratic loss function for an

NTB characteristic is given by (Taguchi 1986, Joseph 2004)

L(Yt) = K(Yt −m)2, (2)

where K is a cost coefficient that is used for converting the squared deviations into

dollar amounts per unit time. For example, suppose the target for a product dimen-

sion is m = 100 cms and a loss of $180 is incurred if a product with dimension 106

cms is used for one year. Then, K = 180/62 = 5 with units dollars per cm2 per year.

The foregoing loss can be integrated over the usage period of the product to obtain

the total quality loss. Many products have a periodic replacement policy. Let r be

the replacement period, which means that the product will be replaced after every

r units of time. In some cases, the product may fail before time r and has to be

replaced or repaired immediately. Let τ be the failure time of the product. Then the

total quality loss is given by
∫ r∧τ

0
L(Yt) dt,

where r∧ τ is used to denote the minimum of the two values. Let d be the down time

due to the failure or the replacement time and let C be the cost of replacement/repair.

C should actually be an increasing function of d, but by assuming d to be much smaller

than r we take it as a constant. The total loss is the sum of the quality loss and C

which is incurred in a time r∧ τ + d . Thus the average loss per unit time is given by

AL(T, r) = E[

∫ r∧τ
0 L(Yt) dt + C

r ∧ τ + d
]. (3)
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Our objective is to find T and r that minimizes AL(T, r).

Assume that the product meets its intended function only when Yt is within the

specification limits [l, u]. Thus, the failure time can be defined as the time at which

Yt is below l or above u. For simplicity, assume that the degradation characteristic

increases monotonically with time t. The model in (1) approximately satisfies this

assumption if the degradation rate is larger than σ. Thus τ = 0 if Y0 < l. We

have P (Y0 < l) = Φ((l − T )/σε), where Φ denotes the standard normal distribution

function. Thus, we can simplify (3) to

AL(T, r) = EE[

∫ r∧τ
0 L(Yt) dt + C

r ∧ τ + d
|ε]

=
∫ ∞

l−T
E[

∫ r∧τ
0 L(Yt) dt + C

r ∧ τ + d
|ε]φ(ε) dε + Φ(

l − T

σε

)
C

d

= Φ(
T − l

σε

)AL+(T, r) + Φ(
l − T

σε

)
C

d
,

where φ is the density function of ε and AL+(T, r) is given by

AL+(T, r) = E[

∫ r∧τ
0 L(Yt) dt + C

r ∧ τ + d
]. (4)

Here the expectation is taken over the distribution specified by the model in (1) but

truncating ε to {ε > l − T}. Note that, because we only need to consider the cases

with T < (l + u)/2, the probability of Y0 > u is negligibly small and thus truncating

ε to {ε < u− T} does not help simplify the objective function.

Before explaining how to perform optimization, we would like to point out the

differences in our problem formulation with that of the optimal process control prob-

lem. First, the model in (1) is different from the models used in process control due
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to the random degradation rate and Brownian motion term. Second, the objective

function in (3) is different from that used in process control literature, which is given

by (see Jeang and Yang 1992; Pakkala and Rahim 1999; Joseph 2001)

∫ r
0 E[L(Yt)] dt + C

r
.

Similar objective function is also used in the literature on maintenance policies (see

Chen and Jin 2006). The objective function that we have proposed is more realistic

to the present problem and is more challenging to solve. Interestingly our formulation

can be applied to a slightly different control problem. If the quality characteristic is

measured on-line, then the adjustment can be made when Yt reaches u, which makes

the replacement cycle random similar to our case.

3. Optimization

Because τ is random, the expectation in (4) cannot be taken inside the integral

and thus the objective function cannot be simplified. This makes the optimization

difficult. Here we propose a simple algorithm using stochastic optimization methods.

The problem can be solved using the Sample Average Approximation method

(SAA) (see, e.g., Ruszczynski and Shapiro 2003). To do this, generate N Monte

Carlo samples. Suppose that NT of the samples satisfy the condition ε > l−T . Then

approximate (4) by

ÂL+(T, r) =
1

NT

NT∑

i=1

∫ r∧τi
0 L(yi,t)dt + C

r ∧ τi + d
. (5)
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Thus the average loss can be approximated by

ÂL(T, r) = Φ(
T − l

σε

)ÂL+(T, r) + Φ(
l − T

σε

)
C

d
. (6)

This can be minimized with respect to T and r. For T > l, we have NT

N
→ Φ(T−l

σε
) >

1/2 as N →∞. Hence, when N is large, the solution will be close to the solution of

the original problem.

The minimization of (6) is still complicated; here we propose a simple algorithm.

First we explain the details of the Monte Carlo simulations and the evaluation of

ÂL+(T, r) in (5). Choose some time points with equally spaced intervals as tj = jh

for j = 0, 1, 2, · · ·. Generate yij by

yij = T + βitj + σBij + εi,

where (Bi1, Bi2, ...) is drawn from N (0,Σ) with Σ = (σst) and σst = h min(s, t);

βi is sampled independently from N (β̄, σ2
β); and εi is sampled independently from

N (0, σ2
ε ). Note that sampling from N (0,Σ) can be done by multiplying a sample

from a standard normal distribution by the square root of Σ. Recall that for each T ,

we only use the samples with εi > l − T .

The next step is to find the failure time. Because Y0 > l and Yt is increasing, an

approximate estimate of the failure time from the simulated data is given by

tni
= min

j
{tj : yij > u}. (7)

As can be seen in Figure 2, this is an overestimate of the failure time. Interpolating
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Figure 2: The estimation of failure time.

with the time point tni−1, we can obtain a better estimate. We obtain

τi = tni
− h

yi,ni
− u

yi,ni
− yi,ni−1

,

provided yi,ni
> yi,ni−1.

Suppose that r ∧ τi = τi. Let Ii =
∫ τi
0 L(Yi,t)dt. For the interval [tj, tj+1], j =

0, ..., ni − 2, the integral can be approximated by

h

2
(L(yij) + L(yi,j+1))

and for the interval [tni−1, τi], the integral can be approximated by

(τi − tni−1)

2
(L(yi,ni−1) + L(u)).
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Thus Ii can be approximated by

Ii =
h

2

ni−2∑

j=0

(L(yij) + L(yi,j+1)) +
(τi − tni−1)

2
(L(yi,ni−1) + L(u)).

When r ∧ τi = r, the integral can be computed in the same way with some minor

modifications. First, tni
in (7) should be defined as

tni
= min

j
{tj : tj > r}.

The integrals over the interval [tj, tj+1], j = 0, ..., ni − 2, are approximated as before.

However, for the interval [tni−1, r], the integral is approximated by

(r − tni−1)

2
(L(yi,ni−1) + L(ŷi,r)),

where

ŷi,r = yi,ni−1 +
r − tni−1

h
(yi,ni

− yi,ni−1).

Then Ii is given by

Ii =
h

2

ni−2∑

j=0

(L(yij) + L(yi,j+1)) +
(r − tni−1)

2
(L(yi,ni−1) + L(ŷi,r)).

Thus we obtain

ÂL+(T, r) =
1

NT

NT∑

i=1

Ii + C

r ∧ τi + d
,

and

ÂL(T, r) = Φ(
T − l

σε

)
1

NT

NT∑

i=1

Ii + C

r ∧ τi + d
+ Φ(

l − T

σε

)
C

d
. (8)

This is a function of T and r and can be minimized using a standard optimization

package. We note that the Monte Carlo simulations are done only once, which makes
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the SAA algorithm run fast. Most optimization algorithms require a starting point.

A good starting point for the above problem can be obtained as follows.

Consider the following modified objective function

AL(T, λ) = E[

∫ λ
0 L(Yt) dt + C

λ + d
], (9)

where λ is a constant (not random). This expression can be simplified. From the

Brownian motion model in (1), we have

E(Yt) = T + β̄t

and

var(Yt) = σ2
βt2 + σ2t + σ2

ε .

Thus, using the quadratic loss function in (2), we obtain

E[L(Yt)] = K[(T + β̄t−m)2 + σ2
βt2 + σ2t + σ2

ε ].

Let ∆ = T −m. Then from (9) and assuming λ À d, we obtain

AL(T, λ) ≈ K[(β̄2 + σ2
β)

λ2

3
+ (2β̄∆ + σ2)

λ

2
+ ∆2 + σ2

ε ] +
C

λ
.

Differentiating AL(T, λ) with respect to T and λ, and equating to 0, we obtain the

following two equations

∆ = − β̄λ

2
(10)

and

2

3
(β̄2 + σ2

β)λ3 + (β̄∆ +
σ2

2
)λ2 =

C

K
. (11)
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Substituting (10) in (11), we obtain

(β̄2 + 4σ2
β)

λ3

6
+ σ2λ2

2
=

C

K
. (12)

This cubic polynomial can be easily solved to find the optimal value of λ. In most

practical cases, the first term dominates the second term and thus an approximate

solution is given by

λ̃ ≈
{

6C

K(β̄2 + 4σ2
β)

}1/3

.

We can see that λ̃ decreases with (i) decrease in the replacement cost, (ii) increase

in the quality loss coefficient, and (iii) increase in the mean and variability of the

degradation rate. It is also easy to see that the actual solution to (12) decreases with

increase in σ2. These results agree with intuition. The optimal solution λ̃ can be

substituted into (10) to obtain the optimal solution of ∆. We can see that it is half

of the change in the mean value of the characteristic during the replacement cycle,

which is expected because of the symmetric loss function. The optimal manufacturing

target is then given as T̃ = m− β̄λ̃/2.

We can use λ̃ and T̃ as starting values of r and T in the optimization procedure.

However the following improvements are suggested. The original objective function

contains the term Φ((l − T )/σε)C/d, which can be large if T is close to or below l.

To ensure the probability of this to be small (say, less than 2.5%), we let T > l +2σε.

Thus we take the starting value of T to be

T (0) = max{T̃ , l + 2σε}.
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If T (0) = l + 2σε, then we reduce r by (l + 2σε − T̃ )/β̄. Thus take the starting value

of r to be

r(0) = min{λ̃, λ̃− (l + 2σε − T̃ )/β̄}.

We also note that in some special cases the optimization can be greatly simplified.

If we know that we are going to do a periodic replacement, then τ from the objective

function in (3) can be removed and can be easily optimized as done for (9). Similarly

if we know that we are going to replace the product only after it fails, then r from

(3) can be removed and thus (8) needs to be optimized only with respect to T . These

cases arise quite naturally in practical applications. For example, we may wish to

replace the brake pad in an automobile periodically, because if it fails, it can damage

the disk brake rotor and other components of the braking system which can be very

costly, whereas in the case of a vacuum cleaner, we may wish to replace the belt only

when it breaks. These two cases arise when the ratio of the cost of replacement to the

cost of quality (C/K) is low or high. They can be identified using the solutions to the

modified problem in (9). After time λ̃, the mean and variance of the characteristic

are β̄λ̃ and σ2
βλ̃2 + σ2λ̃ + σ2

ε respectively. Thus if

m + β̄λ̃/2 + 2(σ2
βλ̃2 + σ2λ̃ + σ2

ε )
1/2 < u, (13)

then with high probability (≈ 97.5%) the product will be replaced before it fails.

Similarly, if

m + β̄λ̃/2− 2(σ2
βλ̃2 + σ2λ̃ + σ2

ε )
1/2 > u, (14)

then with high probability the product will be replaced only after it fails.
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4. An example

Consider an example adapted from Taguchi, Chowdhury, and Wu (2005, p208-

210) with some minor modifications. The mean wear rate per year (β̄), the standard

deviation of random error (σε), and the price of three materials (C) are given in Table

1. The objective is to select the material and its manufacturing target to maximize

both quality and reliability. It is given that if the dimension changes by 6%, there will

be a problem in the market, resulting in a loss of $180. Thus we have l = −6, u = 6,

and K = 180/62 = 5.

First assume that σ = σβ = 0 and d = .01. We chose h = 1 and sampled

N = 1, 500 values of εi’s from N (0, σ2
ε ). We implemented the optimization using the

nlmin function in S-plus. Note that the random values are generated only once and

used in every iteration of the optimization algorithm. This reduces the total time

needed for optimization.

The optimal solutions (T ∗, r∗) are given in Table 1. We can see that material 2 is

the best in terms of minimizing the average loss. For this material, the manufacturing

target is shifted by −0.857% and the product is replaced every 28.6 years. In all the

three cases (13) is satisfied and thus the product is replaced periodically before it fails.

For comparison, we also computed the optimal solutions if no shift were applied at

the manufacturing stage. The results are again given in Table 1. We can see that the

average loss is much higher than that with shift. Note that shifting the manufacturing

target does not cause any additional expense. This clearly shows the advantage of
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the proposed strategy.

Table 1: Material characteristics and optimal solutions

With shift Without shift
Material β̄(%) σε(%) C($) T ∗ r∗ AL∗ T r∗ AL∗

1 0.15 1.20 36 −0.931 12.42 11.535 0 7.82 14.079
2 0.06 0.45 70 −0.857 28.57 4.685 0 18.00 6.842
3 0.05 0.15 126 −0.981 39.25 4.926 0 24.72 7.753

Now we study the effect of σ and σβ. Note that in real applications, σ and σβ

can be estimated from degradation data (Joseph and Yu 2006). Table 2 shows the

results for material 2 with different values of σ and σβ. We can see that the average

loss increases with increase in the two values. However, the effect of σ is negligibly

small and thus the model in (1) could be simplified by ignoring the Brownian motion

term. To see the effect of C/K, we increased it from the current value of 70/5 = 14.

The results are given in Table 3 for the case σβ = σ = 0 (for calculating AL∗, we took

K = 5). Note that when C/K = 10, 000, the condition in (14) is satisfied and thus a

product is replaced only after it fails. This is expected because when the replacement

cost is high compared to the quality loss, it is better to use the product as long as

possible.

Table 2: Effect of σ and σβ (material 2)

σ σβ T ∗ r∗ AL∗

0.00 0.00 -0.857 28.57 4.685
0.00 0.01 -0.828 27.58 4.817
0.01 0.00 -0.856 28.54 4.693
0.01 0.01 -0.827 27.56 4.824
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Table 3: Effect of C/K (material 2)

C/K T ∗ r∗ AL∗

14 -0.857 28.57 4.685
100 -1.651 55.03 14.638

1,000 -3.557 118.56 64.265
10,000 -3.800 – 356.055

4. Conclusions

The manufacturing target for a quality characteristic is usually determined as the

value that minimizes the quality loss. However, when the characteristic is subjected to

degradation, it is better to shift the manufacturing target depending on the direction

of degradation. This approach increases the reliability of the product at the expense

of some quality at the initial stages of its life-cycle. The optimal shift is determined

by minimizing the integrated quality loss over the product’s life cycle.

We have used a quadratic function for the quality loss, which may not be ap-

propriate for all cases. For example, increasing the ball diameter in a roller bearing

maybe more serious than decreasing the ball diameter. In such cases, asymmetric loss

functions should be used (see, e.g., Taguchi 1986; Joseph 2004). A main difficulty in

the practical implementation of the approach is in obtaining the cost coefficients C

and K. Fortunately, the solutions are not highly sensitive to these coefficients and

thus approximate estimates are enough to get reasonable solutions.
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