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Abstract

Motivated by a Bayesian framework, we propose a new minimum aberration type criterion

for designing experiments with two- and four-level factors. The Bayesian approach helps in

overcoming the ad hoc nature of effect ordering in the existing minimum aberration type cri-

teria. Moreover, the approach is also capable of distinguishing between qualitative and quan-

titative factors. Numerous examples are given to demonstrate the advantages of the proposed

approach.
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1 Introduction

A simple way to construct fractional factorial designs with two- and four-level factors is to modify

a two-level full factorial design. However, very few studies have been carried out to understand

the optimality properties of such designs. Minimum aberration criterion (Fries & Hunter, 1980)

is the most popular criterion for selecting two-level fractional factorial designs. They are based

on the effect hierarchy principle (Wu & Hamada, 2000, §3.5) that lower order effects are more

important than higher order effects. It is not easy to apply this principle to the case of mixed

two- and four-level factors because there is no natural ordering for the effects involving the three

components of a four-level factor and the two-level factors. Wu & Zhang (1993) classified the

effects into different types, depending on the number of four-level components they contain, and
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proposed an intuitive ordering. It will be described in the next section. There is, however, no strong

justification for the effect ordering they proposed and its validity can be challenged. Moreover,

their minimum aberration criterion becomes increasingly complicated as the number of four-level

factors increases.

Another complication arises in dealing with four-level factors. Factors can be quantitative or

qualitative. The existing factorial design theory focuses on qualitative factors (Mukerjee & Wu,

2006) and very little has been done on quantitative factors (e.g., Cheng & Ye, 2004). Neither the

work of Cheng & Ye (2004) nor the work of Wu & Zhang (1993) addressed the case of four-

level quantitative factors. Moreover, there is no existing theory available to accommodate both

qualitative and quantitative factors in one design.

We propose a Bayesian approach to construct efficient mixed two-and four-level designs. Al-

though it is motivated by a Bayesian framework, the final criterion that we propose is frequentist,

in fact, very similar to minimum aberration type criterion.

2 Review of minimum aberration criterion

The simplest way to construct designs with mixed two- and four-level factors in 2t runs is to start

with a 2t full factorial design and replace its three interaction columns of the form (α, β, αβ) by

a four-level column according to the rule (−,−, +) → 0, (−, +,−) → 1, (+,−,−) → 2, and

(+, +, +) → 3. By repeating this step for m mutually exclusive sets of the form (α, β, αβ) and

additionally selecting p interaction columns, we can obtain a fraction of a 4m2p factorial in 2t runs.

Hereafter such a design is simply referred to as a (4m2p, 2t) design. This construction method is

referred to as the method of replacement (Addelman, 1962; Wu, 1989; Mukerjee & Wu, 2006).

For instance, consider an original 24 full factorial design with four independent columns 1, 2, 3,

and 4. Let A = (1, 2, 12) be a four-level column which is obtained from the three two-level

columns 1, 2, and 12 by the method of replacement. Denote a1 = 1, a2 = 2, and a3 = 12

(with a3 = a1a2). Additionally selecting four two-level columns 3, 4, 23 and 24, we can obtain a

(4124, 24) design, denoted by d1, which consists of the four-level column A and the four two-level

columns. Let B,C, D,E represent the four two-level factors. It is easy to show that this design d1

has the defining relation: I = a2BD = a2CE = BCDE. Thus, its defining contrast subgroup is
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G = {I, a2BD, a2CE, BCDE}.

All words in the defining contrast subgroup G of a general (412p, 2t) design d can be classified

into two types. One type involves only the two-level factors and is called type 0, whereas the

other type involves one component of the four-level factor A and some two-level factors and is

called type 1. Let Ai0(d) and Ai1(d) be, respectively, the number of type 0 and type 1 words

of length i in its defining contrast subgroup. The vector W1(d) = {(Ai0(d), Ai1(d))}i≥3 is the

wordlength pattern of d. Thus, the wordlength pattern of the design d1 just constructed is W1(d1) =

((0, 2), (1, 0)).

Wu & Zhang (1993) argued that a word of type 1 is less serious than a same-length word of type

0 because a less significant effect can be chosen to be part of the aliasing relations implied by the

type 1 word than that implied by the type 0 word. Therefore the minimum aberration design is ob-

tained by sequentially minimizing the wordlengths in the order: A30(d), A31(d), A40(d), A41(d) . . ..

For example, consider an alternative design d2 : A, 3, 4, 23, 134. It has the wordlength pattern

W1(d2) = ((0, 1), (0, 2)) and consequently has less aberration than d1. In fact, it can be verified

that d2 has minimum aberration. The foregoing definition of minimum aberration can be extended

to more than one four-level factor. For (422p, 2t) designs, the words of the same length can be

classified into three types. Type 0 is defined as before. Type 1 involves one component of any

four-level factor and some two-level factors, while type 2 involves one component of the first

four-level factor, one component of the second four-level factor and some two-level factors. The

wordlength patterns have the nested structure of the form W2(d) = {(Ai0(d), Ai1(d), Ai2(d))}i≥3.

The minimum aberration criterion now is to sequentially minimize the wordlengths in the order:

A30(d), A31(d), A32(d), A40(d), A41(d), A42(d), . . ..

As one can easily see, Wu & Zhang’s definition of minimum aberration gets increasingly com-

plicated as the number of four-level factors increases. Moreover, there are ambiguities in their

classification and ordering of words. It is not clear if a type 1 word is really less serious than type

0. In addition, they assume that a1, a2, and a3 have the same level of seriousness, i.e., one is not

less or more serious than the other. This might be reasonable when the factor A is qualitative but

not when it is quantitative. If A is a quantitative factor, then the three components can be approx-

imately viewed as linear, quadratic, and cubic components of that factor (Wu & Hamada, 2000,

§6.4). Naturally, linear effect should get more importance than quadratic effect and so forth, which
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is not considered in Wu & Zhang’s approach. In this article, we propose a new Bayesian-inspired

minimum aberration criterion for mixed two- and four-level designs that overcomes the forgoing

limitations with the existing approach.

3 Bayesian optimal design criterion

3.1 Functionally induced priors

The key step in a Bayesian approach is to choose a meaningful prior distribution for the parameters.

Directly postulating a prior distribution for all of the parameters in the linear model can be a

daunting task. Joseph (2006) proposed a new approach, where a functional prior is postulated for

the underlying transfer function and then the prior distribution for the parameters are induced from

it. We briefly describe this approach below.

Suppose there are m four-level factors and p two-level factors. Let the output y is related

to the factors x = (x1, x2, . . . , xm+p)
′ by the model y = f(x) + e, where e ∼ N(0, σ2) is the

random error in the output. Assume a stationary Gaussian process prior for the transfer function:

f(x) ∼ GP (µ0, σ
2
0ψ), where µ0 is the mean, σ2

0 is the variance, and ψ is the correlation function.

The correlation function is defined as ψ(h) = cor{f(x), f(x + h)}. This functional prior will be

used for inducing the prior for the linear model parameters.

First, consider the case of a two-level design. Code the two levels of each factor by −1 and 1.

The model matrix corresponding to the full factorial design of p two-level factors has 2p columns.

Denote the model parameters corresponding to the 2p columns by β and approximate the transfer

function by f(x) = µ0 +u′β, where u = (u0, u1, . . . , u2p−1)
′ corresponds to the grand mean, main

effects (me), two-factor interactions (2fi), and the pth-order interaction. Then, using an isotropic

product correlation function

ψ(h) =

p∏
j=1

ψj(hj) =

p∏
j=1

ρhj , h = (h1, . . . , hp)
′,

Joseph (2006) showed that the prior distribution for β induced from the Gaussian process prior

has a multivariate normal distribution with mean 0 and variance-covariance matrix τ 2R, where

τ 2 = σ2
0/(1 + r)p, r = (1− ρ)/(1 + ρ), and R = diag(1, r, . . . , r2, . . . , rp). Thus, the linear model
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parameters are independent with variances var(β0) = τ 2, var(βme) = τ 2r, var(β2fi) = τ 2r2, etc.

Because r ∈ (0, 1), the variances decrease geometrically as the order of the effects increases, thus

satisfying the effect hierarchy principle.

Similarly, it can be shown that the prior distribution for β in a design with four-level factors is

N(0, τ 2R), where τ 2 and R take different forms depending on the coding schemes and correlation

functions. Because the choice of correlation function depends on the type of factor, viz. qualitative

or quantitative, we present these results in later sections. When both two-level and four-level

factors are present in the experiment, the prior distribution for β can be obtained by taking the

Kronecker products of the R-matrices of two-level factors and four-level factors. As shown in

Joseph & Delaney (2007), these functionally induced priors have simple forms and satisfy the

effect hierarchy principle and thus are suitable for developing an optimal design criterion.

3.2 Optimal design criterion

Consider a mixed (4m2p, 2t) design d which is constructed from an original 2t full factorial design

d0. There are a total of 22m+p effects including the gross mean. Let G0 be the defining contrast sub-

group of d. It contains 2k effects including I , where k = 2m+p−t. Then the remaining 22m+p−2k

effects can be divided into 2t − 1 mutually exclusive aliasing sets, each being a coset of G0. De-

note them by G1, . . . , G2t−1 and the corresponding contrast coefficient variables by u1, . . . , u2t−1.

Reorder β = (β(0)′ , . . . , β(2t−1)′)′, where β(j) = (β
(j)
1 , . . . , β

(j)

2k )′ are the corresponding 2k effect

parameters in Gj . Here the components of β are ordered by grouping the effects belonging to the

same aliasing set.

Let Y = (y1, . . . , y2t)′ be the response values obtained from the 2t runs. We want to fit the

model

y = µ0 +
2t−1∑
j=0

u(j)′β(j) + e, (1)

where u(j) is a 2k-dimensional column vector with each element being uj and e ∼ N(0, σ2).

Assume that the e’s are independent between different runs and σ2 is known. Let Ud be the 2t ×
22m+p model matrix corresponding to β in (1) generated from design d. Note that the columns of

Ud are obtained from the uj variables, where the 2t values in each column depend on the design d.
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Thus we have the following model in matrix form:

Y |β ∼ N(µ012t + Udβ, σ2I2t),

where 12t denotes a 2t-dimensional column of 1’s and I2t denotes the identity matrix of order 2t.

Let the prior distribution of β be N(0, τ 2R), where τ 2 = var(β
(0)
1 ). Then, the posterior variance

of β is given by

var(β|Y ) = τ 2R− τ 2RU ′
d(UdRU ′

d + λI2t)−1UdR,

where λ = σ2/τ 2.

Let Ht be the t-fold Kronecker product of a Hadamard matrix of order two. Note that Ht is

simply the 2t × 2t model matrix corresponding to (u0 = 1, u1, . . . , u2t−1), i.e., the model matrix

of a full factorial design containing all the main effects and interactions of the t two-level factors.

Because the design d is constructed from a full factorial 2t design, it is obvious that Ud = Ht⊗1′
2k .

Suppose R has the completely diagonal form: R = diag(R(0), . . . , R(2t−1)), where R(j) =

diag(R
(j)
1 , . . . , R

(j)

2k ) for j = 0, 1, . . . , 2t − 1, and R
(0)
1 = 1. Since H ′

tHt = HtH
′
t = 2tI2t , we have

U ′
dHt = (H ′

t ⊗ 12k)Ht = 2tI2t ⊗ 12k . Therefore,

var(β|Y ) = τ 2R− τ 2RU ′
dHt(H

′
tUdRU ′

dHt + λH ′
tHt)

−1H ′
tUdR

= τ 2R− τ 2R(I2t ⊗ 12k)[(I2t ⊗ 1′2k)R(I2t ⊗ 12k) + λ2−tI2t ]−1(I2t ⊗ 1′2k)R

= τ 2R− τ 2diag(T0, . . . , T2t−1),

where Tj = (Vj + λ2−t)−1αjα
′
j , αj = R(j)12k = (R

(j)
1 , . . . , R

(j)

2k )′, and Vj = 1′
2kR

(j)12k =
∑2k

i=1 R
(j)
i . Thus we obtain the following conclusion, where the upper bound follows from (λ2−t +

Vj − 2R
(j)
i )2 ≥ 0.

PROPOSITION 1. If the prior variance-covariance matrix τ 2R of β is diagonal, then the

posterior variances of β’s are given by

var(β(j)
i |Y ) = τ 2R

(j)
i − τ 2(R

(j)
i )2

(
λ2−t + Vj

)−1 ≤ τ 2

4

(
λ2−t + Vj

)
, (2)

for i = 1, . . . , 2k and j = 0, 1, . . . , 2t − 1.

A good design should make the posterior variances of the parameter estimates as small as

possible. Therefore, we propose to find a design that minimizes the maximum posterior variance
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of β
(j)
i ’s. Thus, our proposed optimal design criterion is to

min
d

max
i,j

var(β(j)
i |Y ).

In the next section we show that under certain conditions a minimum aberration type design min-

imizes the maximum of the posterior variances. This is a new minimum aberration criterion and

differs from that of Wu & Zhang (1993). This criterion depends on the type of the four-level factor.

Therefore it is developed for the qualitative, quantitative, and mixed qualitative-quantitative factors

separately in the following sections.

4 Qualitative four-level factors

For a qualitative four-level factor, it is reasonable to assume equal correlation between any two

levels. Thus, we choose ψj(hj) = ρ if hj 6= 0 and 1 otherwise. Furthermore, we use the following

coding for the four-level factor:



−1 1 −1

−1 −1 1

1 −1 −1

1 1 1




.

This coding makes it easier to relate and trace each component of four-level factors to a factorial

effect in the original two-level design from which the mixed (4m2p, 2t) design is generated (see Wu

& Hamada, 2000, §6.3). The coding for the two-level factor is taken as (−1, 1) and the correlation

between the two levels is taken as ρ. Note that we assume the same correlation between the two

levels of a two-level factor and between any two levels of a four-level factor. In reality, they could

be different, but there is no way to know about it before conducting the experiment. Therefore, a

priori we assume them to be the same.

Using the above correlation functions and coding schemes, it can be shown from Joseph &

Delaney (2007) that the R matrix is diagonal with entries R
(j)
i = rz1

1 rz2
2 , where

r1 =
1− ρ

1 + ρ
and r2 =

1− ρ

1 + 3ρ
,
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and z1 and z2 are the numbers of two-level factors and main effect components of four-level factors

included in the effect β
(j)
i .

Note that the prior variance of the main effect of a two-level factor is proportional to r1 and

that of a four-level factor component is proportional to r2, with a common proportionality constant

τ 2. Since r1 > r2 for all ρ ∈ (0, 1), it is shown that the main effect of a two-level factor is more

important than the components of a four-level factor. This justifies the intuitive explanation given

by Wu & Zhang (1993) that a type 0 word should be considered more serious than type 1 word.

However, Wu & Zhang could not quantify their level of seriousness or importance. Here, we have

a quantification and therefore will be able to derive optimal design criteria in a less ambiguous

way.

Our objective is to find a design that minimizes the maximum posterior variance of β
(j)
i ’s. The

posterior variance of β
(j)
i depends on ρ, which is unknown to the investigator before conducting

the experiment. Therefore, it will be good if we can find a design that is uniformly optimum

for all ρ ∈ (0, 1). This is not always possible. In such cases, we choose the optimum design

corresponding to the larger values of ρ, thereby preferring designs that work better for smooth

functions.

Since the defining contrast subgroup G0 contains the identity I , a word of length 0, while all

other aliasing effect sets Gj do not, V0 → 1 and Vj → 0 for all j 6= 0 as ρ → 1. This means that

for any design d, there exists a value ρ′d ∈ (0, 1) such that maxj≥0 Vj = V0 for all ρ ∈ (ρ′d, 1]. Thus

from (2) when ρ > ρ′d, var(β(j)
i |Y ) ≤ τ 2R

(j)
i − τ 2(R

(j)
i )2 (λ2−t + V0)

−1 for all i and j, and the

equality holds at least for j = 0. Also, R
(0)
1 = 1 and R

(j)
i → 0 for all other i and j as ρ → 1. Thus,

for any design d, there exists a value ρd ∈ (0, 1) such that maxi,j var(β(j)
i |Y ) = var(β(0)

1 |Y ) =

τ 2 − τ 2/(λ2−t + V0) for ρ > ρd. Furthermore, there exist a finite number of designs of a given

size. Thus, letting ρ0 = maxd ρd, we obtain the following conclusion.

PROPOSITION 2. There exists a value ρ0 ∈ (0, 1) such that for all ρ ∈ (ρ0, 1], a design that

minimizes V0 minimizes the maximum posterior variance of the parameters.

Thus, our objective is to find a mixed (4m2p, 2t) design that minimizes V0 =
∑2k

i=1 R
(0)
i . Noting

that G0 represents the defining contrast subgroup, we obtain

V0 =

p∑
z1=0

m∑
z2=0

rz1
1 rz2

2 Nz1,z2 ,
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Figure 1: (a) The plot of r1 and r2 against ρ. (b) The plot of the approximation r2 ≈ r1.5
1 (dashed).

where Nz1,z2 is the number of words containing z1 two-level factors and z2 main effect components

of four-level factors in its defining contrast subgroup. In Wu & Zhang’s notation, Ai,j = Ni−j,j

with N0,0 = 1.

We can further simplify the foregoing objective function. It can be shown numerically that

r2 ' r
3/2
1 (see Figure 1). This suggests that a word containing three two-level factors has the

same seriousness as a word containing two four-level components. For example, a1b1 has the same

seriousness as CDE. Under the above approximation, the objective function reduces to

V0 '
p∑

z1=0

m∑
z2=0

r
(2z1+3z2)/2
1 Nz1,z2 .

Since 0 < r1 < 1, V0 can be minimized by assigning unimportant (higher order) effects to the

defining contrast subgroup. Thus, a design that minimizes V0 tends to have fewer number of

words Nz1,z2 with smaller values 2z1 + 3z2. This motivates us to define the following wordlength

pattern for qualitative factor designs. They are the coefficients of r
z/2
1 ’s with z equal to 6, 7, 8, . . ..

Note that only words of length three or more are considered. A mixed (4m2p, 2t) design is called

optimal if it sequentially minimizes the wordlength pattern. This is the proposed Bayesian-inspired

minimum aberration design. In fact, the following can be proved, which is similar to the result in

Joseph (2006) for two-level designs.

PROPOSITION 3. There exists a value ρ0 ∈ (0, 1) such that a Bayesian-inspired minimum
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aberration design minimizes V0 for all ρ ∈ (ρ0, 1].

By putting Propositions 2 and 3 together, we find that the Bayesian-inspired minimum aber-

ration design is a minimax design, which minimizes the maximum posterior variance of all the

parameters.

For a mixed (4m2p, 2t) design d with m ≤ 3, the proposed wordlength pattern is given as the

following sequence:

W13(d) = (N30, N21, N12 + N40, N03 + N31, N22 + N50, N13 + N41, . . .).

In particular, for a mixed (412p, 2t) design d with one qualitative four-level factor, the wordlength

pattern is reduced to

W11(d) = (N30, N21, N40, N31, N50, N41, . . .),

which is exactly the same as the wordlength pattern in Wu & Zhang (1993). This is a surprising

and unexpected result. However, the similarity with Wu & Zhang’s approach is only for the case of

one four-level factor. The Bayesian-inspired minimum aberration criterion is different for two or

more four-level factors and the difference sharpens as the number of four-level factors increases.

For example, for a mixed (422p, 2t) design d with two qualitative four-level factors, the wordlength

pattern is reduced to

W12(d) = (N30, N21, N12 + N40, N31, N22 + N50, N41, . . .),

which is different from that of Wu & Zhang (1993). Note that, for two four-level factors, Wu &

Zhang’s approach requires the classification of words into three categories: type 0, type 1, and

type 2, whereas our approach does not. The proposed approach is thus simpler than that of Wu &

Zhang when there are more than one four-level factor.

Example 1. Consider the following two (4225, 25) designs for qualitative factors. The five

independent columns are denoted by 1, 2, 3, 4, 5 and all other columns are represented by their

products. A = (a1, a2, a3) = (1, 2, 12) and B = (b1, b2, b3) = (3, 4, 34) represent the two four-

level factors. Their generators are:

d3 : A,B, 5, 6 = 124, 7 = 234, 8 = 245, 9 = 1345;

d4 : A,B, 5, 6 = 14, 7 = 235, 8 = 1245, 9 = 1345.
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According to the Wu & Zhang’s wordlength pattern,

W2(d3) = ((0, 0, 2), (0, 4, 4), (0, 2, 2), (0, 0, 1)) and

W2(d4) = ((0, 0, 1), (1, 4, 6), (0, 0, 2), (0, 0, 0), (0, 0, 1)).

Since W2(d4) < W2(d3), d4 is better than d3. But based on the proposed wordlength pattern,

W12(d3) = (0, 0, 2, 4, 4, 2, 2, 0, 1) and

W12(d4) = (0, 0, 2, 4, 6, 0, 2, 0, 0, 0, 1),

and consequently d3 is slightly better than d4 owing to W12(d3) < W12(d4).

In fact, designs d3 and d4 have the following defining relations with words of length 3 and 4:

d3 : I = a3b26 = a2b37 = a1568 = b1578 = a3579 = b3689

= a2b258 = a1b359 = a1b167 = a3b189;

d4 : I = a1b26 = 5789 = a2568 = a2679 = b1678 = b1569

= a2b157 = a2b189 = a3b258 = a3b279 = a1b359 = a1b378.

Note that d4 has one less word of the type a2b37 than d4 and thus d3 is considered better by Wu &

Zhang. But d4 has a word 5789 which has the same seriousness as that of a2b37, which is ignored

by Wu & Zhang.

5 Quantitative four-level factors

For a quantitative four-level factor, the correlation should decrease as the distance between the

levels increase. The following Gaussian correlation function is very popular: ψj(hj) = ρh2
j , 0 <

ρ < 1. In general, for a quantitative factor, the usual orthogonal-polynomial coding can be used.

However, particularly in the case of four-level factors, the coding used in the previous section is

more appropriate. Interestingly, the three components (α, αβ, β) can be approximately viewed as

the linear, quadratic, and cubic components of the factor (Wu & Hamada, 2000, §6.4). Therefore,

for a quantitative factor we denote the three components by (al, aq, ac) instead of (a1, a2, a3).

For a two-level factor we use the same (−1, 1) coding. We assume that the correlation between

the two levels is ρ, which is the same as the correlation between two adjacent levels of a four-level
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factor. This assumption needs some clarification. It implies that a priori the impact of changing a

level to its adjacent level has the same effect on the response for all factors, irrespective of whether

it has two levels or four levels. Such an assumption is meaningful when a four-level factor can

be assumed to explore a wider region than a two-level factor and that the four levels are equally

spaced. On the other hand, if the four-level factor is considered for exploring the same region as a

two-level factor, then it must be that this factor is more important than a two-level factor; otherwise

there is no need to choose four levels for that factor. It is again reasonable to choose the same ρ

between any two adjacent levels of a four-level factor and the two levels of a two-level factor.

Using the results in Joseph & Delaney (2007), it can be shown that the R matrix is approxi-

mately diagonal with elements R
(j)
i = rz1

1 rzl
l r

zq
q rzc

c , where

rl =
2 + ρ− 2ρ4 − ρ9

2 + 3ρ + 2ρ4 + ρ9
, rq =

2− ρ− 2ρ4 + ρ9

2 + 3ρ + 2ρ4 + ρ9
, rc =

2− 3ρ + 2ρ4 − ρ9

2 + 3ρ + 2ρ4 + ρ9
,

and z1, zl, zq and zc are, respectively, the numbers of two-level factors, linear, quadratic and cubic

main effect components of four-level factors included in the effect β
(j)
i . It can be shown numer-

ically that rl > rq > rc for all ρ ∈ (0, 1), which agrees with the intuition that a linear effect is

more important than a quadratic effect and a quadratic effect is more important than a cubic effect.

Moreover, r1 ≈ rq. Thus, the main effect of a two-level factor has approximately the same impor-

tance as that of the quadratic effect of a four-level factor. This result is not intuitive and could not

have been obtained in the traditional framework.

Furthermore, we can relate the importance of each effect through approximation. We obtain

rl ≈ r
1/2
1 , rq ≈ r1, and rc ≈ r

3/2
1 (see Figure 2). This approximation also shows the very intuitive

result that rq ≈ r2
l and rc ≈ r3

l . We also checked these results by changing the Gaussian correlation

function to the general exponential correlation function ψj(hj) = ρhα
j . Although the results are

affected by changing α, the foregoing approximations are quite reasonable when α ∈ [1, 2].

Let Nz1,zl,zq ,zc be the number of words containing z1 two-level factors, zl linear main effect

components, zq quadratic main effect components and zc cubic main effect components of four-

level factors in the defining contrast subgroup. In Wu & Zhang’s notation, Ai,j =
∑

zl+zq+zc=j Ni−j,zl,zq ,zc
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Figure 2: (a) The plot of r1, rl, rq, and rc against ρ. (b) The plot of the approximation rl ≈ r.5
1 and

rc ≈ r1.5
1 (dashed).

with N0,0,0,0 = 1. Then

V0 =

p∑
z1=0

m∑
zl+zq+zc=0

rz1
1 rzl

l rzq
q rzc

c Nz1,zl,zq ,zc

'
p∑

z1=0

m∑
zl+zq+zc=0

r
[zl+2(z1+zq)+3zc]/2
1 Nz1,zl,zq ,zc .

As in §4, for large enough ρ, the maximum posterior variance of the β
(j)
i ’s is τ 2− τ 2/(λ2−t + V0),

which can be minimized by minimizing V0. This can be achieved by assigning fewer number of

words with smaller values of zl + 2(z1 + zq) + 3zc to the defining contrast subgroup. Thus, we can

define the following wordlength pattern for quantitative factor designs, which are the coefficients

of r
z/2
1 ’s with the positive integer z starting from 3. A mixed (4m2p, 2t) design is called Bayesian-

inspired minimum aberration design if it sequentially minimizes the wordlength pattern. Again

this design is quite different from Wu & Zhang’s design, because their minimum aberration design

makes sense only for qualitative factors.

For a mixed (4m2p, 2t) design d with m ≤ 3, the proposed wordlength pattern is given in detail

13



as the following sequence:

W23(d) = (N0300, N1200 + N0210, N1300 + N2100 + N1110 + N0120 + N0201,

N2200 + N1210 + N3000 + N2010 + N1020 + N0030 + N1101 + N0111,

N2300 + N3100 + N2110 + N1120 + N1201 + N2001 + N1011 + N0021 + N0102, . . .).

Example 2. Consider the following two (4225, 25) designs. Here, the five independent columns

are also denoted by 1, 2, 3, 4, 5 and all other columns are represented by their products. A =

(al, ac, aq) = (1, 2, 12) and B = (bl, bc, bq) = (3, 4, 34) represent the two sets of linear, cubic and

quadratic main effect components of the two four-level quantitative factors. Their generators are:

d4 : A,B, 5, 6 = 14, 7 = 235, 8 = 1245, 9 = 1345;

d5 : A,B, 5, 6 = 24, 7 = 235, 8 = 145, 9 = 12345.

If A and B are considered as two qualitative factors, then it can be verified that the two designs

have the same wordlength pattern of Wu & Zhang (1993), i.e.,

W2(d4) = W2(d5) = ((0, 0, 1), (1, 4, 6), (0, 0, 2), (0, 0, 0), (0, 0, 1)).

On the other hand, according to the proposed wordlength pattern,

W23(d4) = (0, 0, 0, 0, 1, 4, 3, 4, 2, 0, 0, 0, 1) and

W23(d5) = (0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 1).

So it is obvious that d5 is much better than d4 for quantitative factors owing to W23(d5) < W23(d4).

It can be shown that both d4 and d5 have only one three-letter word: albc6 and acbc6, respec-

tively. Clearly the first one is a more serious aliasing, because the linear effect of A is much more

important than its cubic effect. But this is not recognized in Wu & Zhang’s approach, whereas our

approach gives more importance to linear effects than cubic effects and declares the first aliasing as

more serious and thus, selects d5 as a better design. This confirms our intuition of what constitutes

good designs for quantitative factors.

6 Mixed qualitative and quantitative four-level factors

Standard mathematical tools (Mukerjee & Wu, 2006) used for factorial designs, such as group

theory and coding theory, treat all the factors as qualitative. Recently, Cheng & Ye (2004) used
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algebraic geometry methods to deal with quantitative factors. However, they did not consider the

case of mixed qualitative and quantitative factors. Interestingly, this poses no challenge in our

Bayesian framework.

Let there be m1 qualitative four-level factors and m2 quantitative four-level factors. Then,

for factorial experiments based on a mixed (4m1+m22p, 2t) design, the R matrix is approximately

diagonal with elements R
(j)
i = rz1

1 rz2
2 rzl

l r
zq
q rzc

c with the same notation as before. For a mixed

(4m1+m22p, 2t) design d, let Nz1,z2,zl,zq ,zc be the number of words containing z1 two-level factors,

z2 main effect components of m1 qualitative four-level factors, and zl linear main effect compo-

nents, zq quadratic main effect components and zc cubic main effect components of m2 quan-

titative four-level factors in its defining contrast subgroup. In Wu & Zhang’s notation, Ai,j =
∑

z2+zl+zq+zc=j Ni−j,z2,zl,zq ,zc with N0,0,0,0,0 = 1. Then

V0 =

p∑
z1=0

m1∑
z2=0

m2∑
zl+zq+zc=0

rz1
1 rz2

2 rzl
l rzq

q rzc
c Nz1,zl,zq ,zc

'
p∑

z1=0

m1∑
z2=0

m2∑
zl+zq+zc=0

r
[zl+2(z1+zq)+3(z2+zc)]/2
1 Nz1,z2,zl,zq ,zc .

Thus, we define the wordlength pattern for mixed qualitative and quantitative designs as the co-

efficients of r
z/2
1 ’s with the positive integer z starting from 3. A mixed (4m1+m22p, 2t) design is

called a Bayesian-inspired minimum aberration design if it sequentially minimizes the correspond-

ing wordlength pattern. As an example, for a mixed (41+12p, 2t) design d, the wordlength pattern

is the following sequence corresponding to the coefficients of r
z/2
1 ’s with z starting from 5:

W31(d) = (N20100, N30000 + N20010 + N11100, N30100 + N21000 + N20001 + N11010,

N40000 + N30010 + N21100 + N11001, N40100 + N31000 + N30001 + N21010, . . .).

7 Tables of Bayesian-inspired minimum aberration designs

Without loss of generality, for qualitative factors we generally use A = (a1, a2, a3) = (1, 2, 12) and

B = (b1, b2, b3) = (3, 4, 34) as the three contrast components of the first two four-level factors. But

the third four-level factor is determined based on the rule of less aliasing among the three four-level

factors. Then for (4m2p, 2t) designs, we choose the third factor as C = (c1, c2, c3) = (1234, 14, 23)
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in 16 runs, (5, 24, 245) in 32 runs and (5, 6, 56) in 64 runs. For quantitative factors we choose the

same sets of three columns as before, but the three columns represent the linear, cubic and quadratic

effect components of the four-level factors. That is, A = (al, ac, aq) = (1, 2, 12), B = (bl, bc, bq) =

(3, 4, 34) and C = (cl, cc, cq) = (1234, 14, 23) in 16 runs, (5, 24, 245) in 32 runs and (5, 6, 56) in

64 runs. For mixed qualitative and quantitative (41+12p, 2t) designs, we use A = (a1, a2, a3) =

(1, 2, 12) as the qualitative four-level factor and B = (bl, bc, bq) = (3, 4, 34) as the quantitative

four-level factor.

Since the wordlength pattern W11 with one four-level factor coincides with the wordlength pat-

tern W1 of Wu & Zhang (1993), the optimal designs are consequently the same. By computer

search, it is found that for two qualitative four-level factors, almost all the designs in Wu & Zhang

(1993) are Bayesian-inspired minimum aberration designs, with the only exception given in Exam-

ple 1. The Bayesian-inspired minimum aberration designs with three qualitative four-level factors

are different from those of Wu & Zhang (1993) and are given in Table 1. The Bayesian-inspired

minimum aberration designs for the case of quantitative four-level factors and mixed qualitative

and quantitative four-level factors are given respectively in Tables 2 and 3. They are quite different

from the minimum aberration designs of Wu & Zhang (1993). To save space, we list only the

design generators of the two-level factors. The remaining two-level factors are assigned to the

independent two-level columns not used by the four-level factors.

Table 1: Two-level generators of BIMA 432p−k designs with qualitative four-level factors

k 16 runs 32 runs 64 runs

1 24 12345 246

2 24 134 1234 1235 245 1236

3 13 24 134 1235 145 345 245 236 1346

4 13 123 134 234 1234 1235 145 2345 235 1245 146 2346

5 13 123 24 134 234 124 234 235 145 12345

6 124 134 234 235 145 12345
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Table 2: Two-level generators of BIMA 4m2p−k designs with quantitative four-level factors

k m = 1 m = 2 m = 3

16 runs

1 234 24 24

2 23 134 23 124 24 134

3 23 24 134 23 14 234 123 24 134

4 23 24 134 1234 23 14 124 234 13 123 24 134

5 13 23 24 134 1234 23 14 24 124 234 13 123 24 134 234

6 13 23 14 24 134 1234 23 123 14 24 124 234

7 13 23 14 24 134 234 1234 23 123 14 124 134 234 1234

8 13 23 123 14 24 124 34 234 23 123 14 24 124 134 234 1234

32 runs

1 2345 245 12345

2 245 1345 235 145 1234 1235

3 235 245 1345 235 145 12345 23 1234 1345

4 234 235 245 1345 24 235 145 12345 23 1234 1235 145

5 23 134 135 245 12345 14 234 235 1245 1345 23 124 25 1345 12345

6 23 24 134 135 1245 2345 124 234 135 1235 245 1345 23 14 124 1235 45 12345

64 runs

1 23456 2456 246

2 1345 2346 245 13456 24 236

3 234 1235 2456 245 1246 2356 24 236 146

4 234 235 1236 2456 245 1246 256 3456 245 236 146 12456

Table 3: Two-level generators of BIMA 41+12p−k designs for mixed
qualitative and quantitative four-level factors

k 16 runs 32 runs 64 runs

1 24 245 2456

2 14 234 145 12345 12356 13456

3 14 124 234 235 145 12345 12346 12356 1456

4 23 14 124 234 24 235 145 12345 235 246 156 123456

5 23 123 134 234 1234 14 234 235 1245 1345

6 13 23 123 134 234 1234 14 24 1234 25 135 1235

7 13 23 123 14 134 234 1234

8 13 23 123 14 124 134 234 1234
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