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Abstract

Categorical data arise quite often in industrial experiments because of an expensive or inadequate

measurement system for obtaining continuous data. When the failure probability/defect rate

is small, experiments with categorical data provide little information regarding the effect of

factors of interests and are generally not useful for product/process optimization. We propose

an engineering-statistical framework for categorical response optimization that overcomes the

inherent problems associated with categorical data. The basic idea is to select a factor that has

a known effect on the response and use it to amplify the failure probability so as to maximize

the information in the experiment. New modeling and optimization methods are developed. It

is illustrated with two real experiments.

KEY WORDS: Accelerated Life Testing, Operating Window Method, Process Capabil-

ity, Quality Engineering, Robust Parameter Design.
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1. INTRODUCTION

It is a well known fact that continuous data contain more information than categorical data

for assessing the performance of a system. Yet in many situations, experimenters have to be

content with categorical data due to an inadequate or expensive measurement system for obtaining

continuous data. Categorical data possess several advantages. First, they are easy to measure

and record. Second, they can be easily converted into monetary units and therefore are useful

for managerial decision making and for communications among non-statisticians. But they also

introduce new challenges and complications for data analysis that are not present in continuous

data. The accumulation analysis introduced by Taguchi for categorical data was quite popular in

industries for sometime until it was proved to be faulty by Nair (1986) and Hamada and Wu (1990).

Generalized linear modeling is the most accepted and well received approach for categorical data

analysis. See, for example, McCullagh and Nelder (1989) and Wu and Hamada (2000).

Categorical data possess serious problems in terms of effect estimation and system optimization

compared to using continuous data. To illustrate this point, consider a 23−1
III experiment on an

electro-plating process with 3 control factors: temperature (x1), pH (x2), and current (x3). The

plated thickness inside 5 holes is measured and given in Table 1. Data analysis gives the fitted

model for the thickness ŷ = 71.8 + 2.2x1− 4.3x2 + 8.7x3, which can be used for optimization. Now

suppose the experimenter instead used a go/no-go measurement system designed for a specification

75 ± 25 microns. We see that all the holes conform to the specification, thus resulting in zero

defectives for the 4 runs. Based on these categorical data, we cannot estimate the effect of the

three factors and therefore the outcome of this experiment is inconclusive. Needless to say, no

sophisticated statistical analysis can rescue this experiment. This situation is a consequence of low

failure probability/defect rate for which the data provide little information. This is an inherent

problem associated with categorical data. We propose in this paper an engineering-statistical

approach to overcome it.

The basic idea is to select a factor with known effect on the failures based on physical knowledge

of the product/process. This factor can then be used to amplify (or excite) the failure probability

so as to maximize the information in the experiment. We call this factor an amplification factor

and this approach the Failure Amplification Method (FAMe).

For example, in the electro-plating process the plating time can be used as the amplification
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Table 1: Data of the electro-plating example

run x1 x2 x3 thickness under-plating good over-plating

1 − − + 86 79 86 84 78 0 5 0

2 − + − 53 51 57 64 55 0 5 0

3 + − − 66 70 69 67 76 0 5 0

4 + + + 79 87 75 74 77 0 5 0

factor. From Faraday’s law we know that the plating thickness is proportional to the plating

time. Thus, decreasing time from its current value will produce defective holes due to under-

plating (thickness < 50 microns) and increasing time will produce defective holes due to over-

plating (thickness > 100 microns). With this amplification of the defective rate, the experiment

will produce defective holes and the experimenter can hope to draw some conclusions regarding

the effects of factors of interest. This method differs from the traditional approach because of the

introduction of the amplification factor. It is a factor of no direct interest to the experimenter as its

effect on the thickness is already known. In the traditional approach this factor is not studied and

the experiment is performed by keeping it at its current value. In FAMe such a factor is identified

and varied in the experiment so as to maximize the information. The amplification factor should

have a large effect on the failures, so that other factors in the system will not be able to reverse its

effect. This will ensure that the estimated model at the amplified conditions remains the same at

the user conditions.

Failure amplification can be achieved in several ways. The amplification factor can be chosen

from the set of control factors, the set of noise factors, or other types of factors. The choice is often

determined by the ease in conducting the experiments. Depending on the type of amplification

factor, we classify FAMe into three types: (i) control factor method, (ii) complexity factor method,

and (iii) noise factor method (see Figure 1). As the name suggests, in a control factor method

we use a control factor as the amplification factor. The plating process described above is a good

example because the plating time is a control factor as it can be set at any value the manufacturer

wishes. A complexity factor is a factor that determines how complex a product is to manufacture.

Extreme settings can lead to high rejections/reworks, making the product difficult to manufacture.
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For example, hole diameter in a printed circuit board (PCB) is a complexity factor. PCBs with

small hole diameters lead to high rejections in drilling as well as in hot air leveling due to blocked

holes. The complexity factor differs from a control factor as it is specified by the customer and

hence not in the control of the manufacturer. Noise factors are factors that are not in the control

of the manufacturer/user but some of which can be systematically varied in the experiment. For

example, in drilling holes the life of the drill bit (new to worn out) is a noise factor and can be used

to amplify the failures. In the next two sections we explain the different modeling and optimization

strategies that can be adopted for the control factor and complexity factor methods. We will not

discuss the noise factor method as we have not encountered it in any real experiments, but we note

that this is a feasible option for failure amplification.
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Figure 1: Classification of FAMe

The article is organized as follows. In Section 2 modeling and optimization methods are de-

veloped for the control factor method. Connections of this approach with the operating window

method (Clausing, 1994) are established. A paper feeder experiment from Fuji-Xerox is used to

illustrate the approach. In Section 3 an experiment from PCB manufacturing is used to explain

the complexity factor method. Experimental strategies for failure amplification are discussed in

Section 4. In Section 5 the efficiency of FAMe is compared with that of traditional experiments .

Further discussions and concluding remarks are given in Section 6.

2. CONTROL FACTOR METHOD

Consider the paper feeder in a copier machine. It has two failure modes: misfeed (the feeder

fails to feed a sheet) and multifeed (the feeder feeds more than one sheet of paper). Here the stack

force can be used as an amplification factor. Since the designer can set the stack force at any
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desired value, it is a control factor. Its effect on the two failure modes is known. A low stack force

leads to misfeed, whereas a high stack force leads to multifeed.

Let M be the amplification factor, p1 the probability of failure due to failure type 1 (say

misfeed), and p2 the probability of failure due to failure type 2 (say multifeed). Assume p1 to be a

strictly decreasing function in M and p2 a strictly increasing function in M . A typical behavior is

shown in Figure 2. Note that if M does not have a conflicting effect on p1 and p2, then M could

be adjusted to a low value or a high value to eliminate both failures. Thus, to apply the control

factor method, M must have conflicting effects on at least two failure modes.
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Figure 2: Probability of failure curves against amplification factor

We will now describe an experiment carried out at Fuji-Xerox by Y. Norio and O. Akira. These

data were also analyzed by Miyakawa (1993). There were 8 control factors and one noise factor.

Their levels are shown in Table 2. The control array (i.e., array for the control factors) is obtained

by modifying the OA(18, 21 × 37) in Table 5, by coding level 3 as level 1 in column x4 (so that x4

can be used for the two-level factor “center roll”). The data on misfeed and multifeed are given in

Table 3. The data give the number of misfeeds and multifeeds out of 5 sheets at different stack force

levels. For example, in run 1 at the first noise level, there are 5 misfeeds at M = 20, 5 misfeeds at

M = 40, 1 misfeed at M = 42.5, and so on. The stack force, which is the amplification factor, is
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Table 2: Factors and levels for the paper feeder experiment

Control factors Notation Levels

1 2 3

Feed belt material x1 Type A Type B -

Speed x2 288 mm/s 240 mm/s 192 mm/s

Drop height x3 3 mm 2 mm 1 mm

Center roll x4 Absent Present -

Belt width x5 10 mm 20 mm 30 mm

Tray guidance angle x6 0 14 28

Tip angle x7 0 3.5 7

Turf x8 None 1 sheet 2 sheets

Noise factor

Stack quantity N High Low -

varied sequentially to produce about 50% of failures, which is about 2 or 3 failures. The objective of

this experiment is to find control factor settings to minimize both misfeeds and multifeeds. We will

come back to the analysis of this experiment in Section 2.4 after developing the necessary modeling

and optimization methods.

We will use a latent variable approach to model the failure probabilities p1 and p2. In this

approach the failures can be thought of as extremities of certain (unobserved) functional charac-

teristics. We only observe categorical data on failures because of the inability to measure these

functional characteristics. Sometimes it is also difficult to identify the right functional characteris-

tics corresponding to the failure modes under study. This suggests that we can treat the functional

characteristics as latent variables and infer about their properties indirectly from the categorical

data. Two situations are considered in the following subsections: two latent variables or a single

latent variable generating the two failures.

2.1 Double Latent Variable Modeling

Let Y1 and Y2 be the two latent variables corresponding to the two failure modes. Suppose the
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Table 3: Data from the paper feeder experiment

misfeed multifeed
Run N1 N2 N1 N2

1 20 40 42.5 45 50 60 20 30 40 50 60 70 80 82.5 85 90 120 160 60 62.5 65 70 80 90
5 5 1 0 0 0 5 0 0 0 0 0 0 2 2 2 2 2 0 1 1 3 2 3

2 0 10 15 20 30 40 0 10 15 20 40 60 30 35 40 50 60 30 40 60 70 75 80
5 3 0 0 0 0 5 3 0 0 0 0 0 1 3 3 3 0 1 1 1 2 2

3 0 10 15 20 25 0 10 15 20 30 40 20 25 30 40 20 30 35 40 0
5 5 1 1 0 5 3 2 0 0 0 0 2 2 2 0 1 1 3 3

4 20 25 30 40 60 0 20 25 30 40 50 60 65 70 80 40 50 55 60
5 3 1 0 0 5 5 1 0 0 0 1 2 2 2 0 0 2 2

5 20 25 30 40 50 20 25 30 40 50 30 40 45 50 60 40 50 55 60
4 1 0 0 0 4 1 0 0 0 0 1 3 3 3 0 0 2 2

6 10 15 20 30 40 10 15 20 30 40 30 40 45 50 30 40 50 55 60
4 2 1 0 0 3 0 0 0 0 0 1 2 3 0 1 2 2 3

7 10 20 30 35 40 10 20 25 30 40 20 30 35 40 50 20 30 40 60 70 80
5 4 2 1 0 5 3 0 0 0 0 1 2 2 3 0 1 1 1 2 2

8 15 20 30 35 40 20 30 35 40 60 70 70 80 100 110 120 60 70 75 80 100
3 2 2 3 0 5 2 4 1 1 0 0 1 1 2 2 0 1 2 2 2

9 10 15 20 30 40 10 15 20 25 30 40 40 60 65 70 80 40 50 55 60 70
5 4 1 0 0 5 5 5 4 0 0 0 1 1 2 3 0 0 1 2 3

10 0 5 10 15 20 0 5 10 15 20 5 10 15 20 30 0 5 15 20 30
5 1 0 0 0 5 0 0 0 0 0 1 1 3 3 0 1 0 2 2

11 0 5 10 15 20 0 5 10 15 20 5 10 15 20 30 0 5 10 15 20 30
5 2 0 0 0 5 1 0 0 0 0 1 1 4 3 0 1 1 0 2 2

12 0 10 15 20 0 10 15 20 30 40 50 55 60 40 45 50
5 4 0 0 5 4 0 0 0 1 1 2 5 0 0 1

13 0 10 15 20 0 10 15 20 30 40 80 85 90 100 55 60
5 5 1 0 5 4 2 0 0 1 1 4 3 2 0 2

14 10 20 25 30 35 40 10 20 25 30 35 40 20 30 35 40 45 20 25 30 35 40 50
5 3 2 2 0 0 5 4 0 0 0 0 0 0 0 2 2 0 0 1 1 4 3

15 0 5 10 15 0 5 10 15 20 20 30 35 40 50 10 15 20 30
1 0 0 0 4 0 0 0 0 0 1 3 2 4 0 1 4 4

16 5 10 20 30 35 5 10 20 30 40 20 30 35 40 50 60 30 40 50 55 60
5 1 0 0 0 5 1 0 0 0 0 1 0 2 3 5 0 1 1 2 2

17 10 20 30 40 45 50 10 20 25 30 40 80 90 95 100 100 105 110
5 4 5 2 0 0 5 3 0 0 0 0 1 1 1 0 1 1

18 10 15 20 30 10 20 30 35 40 60 65 70 80 90 120 60 70 75 80 90
5 5 1 0 5 5 5 0 0 0 1 2 2 2 3 0 1 2 2 3
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failures are generated by the following mechanism:

if Y1 < T1 then failure type 1; if Y2 > T2 then failure type 2. (1)

Assume Y1, Y2, and M to be nonnegative variables taking values in [0,∞). Let X be the set of

control factors and Z the set of noise factors. Consider the following models:

Y1 = β1(X,Z)M and Y2 = β2(X,Z)M. (2)

We will see that the above models together with the failure generating mechanism in (1) produce

the probability of failure curves as shown in Figure 2.

Partition the set of noise factors as Z = {N,U}, where N is the set of observed (or known)

noise factors which can be systematically varied in the experiment, and U the set of unobserved (or

unknown) noise factors. Let µi(X,N) = EU [log βi(X,Z)|N] and σ2
i (X,N) = V arU [log βi(X,Z)|N].

Assuming a normal distribution for log Yi for given N, we have

log Yi|N ∼ N(µi(X,N) + log M, σ2
i (X,N)), (3)

for i = 1, 2. We also assume Y1 and Y2 are independent for given N.

From (1) we see that Y1 is a larger-the-better characteristic and Y2 a smaller-the-better char-

acteristic. A loss function that can be used to evaluate the system based on the values of Y1 and

Y2 is

L =
c1

Y1
+ c2Y2. (4)

For a discussion and justification of this class of quality loss functions, see Joseph (2003). The

expected loss is

E(L|N) = c1E(
1
Y1
|N) + c2E(Y2|N)

= c1E(e− log Y1 |N) + c2E(elog Y2 |N)

= c1e
−µ1(X,N)−log M+σ2

1(X,N)/2 + c2e
µ2(X,N)+log M+σ2

2(X,N)/2.

The above result is exact under the normal distribution assumption and can be shown to be a

second order approximation with other distributions. By taking expectations with respect to N,

EL = EN [E(L|N)]

=
c1

M
EN (e−µ1(X,N)+σ2

1(X,N)/2) + c2MEN (eµ2(X,N)+σ2
2(X,N)/2).
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Because the amplification factor M is a control factor, we can set it at any value we wish. Obviously

we should choose a value that minimizes the expected loss. Equating the first derivative of EL

with respect to M to zero, we get

M∗ =

{
c1EN (e−µ1(X,N)+σ2

1(X,N)/2)
c2EN (eµ2(X,N)+σ2

2(X,N)/2)

}1/2

. (5)

Because EL is strictly convex in M > 0, M∗ minimizes EL. At this optimal setting for M , the

expected loss is

EL∗ = 2
{
c1c2EN (e−µ1(X,N)+σ2

1(X,N)/2)EN (eµ2(X,N)+σ2
2(X,N)/2)

}1/2
. (6)

Letting D be the feasible region for X, our objective is to find an X ∈ D to minimize the expected

loss. Because EL∗ is evaluated at the optimum setting M∗ of M , it can be viewed as a performance

measure independent of adjustment (PerMIA) with M being the adjustment parameter. For details

on PerMIA, see Leon, Shoemaker, and Kacker (1987) and Leon and Wu (1992).

To give a nice interpretation of the performance measure to be discussed later, we need the

following re-parameterization. From (1) and (3) we have

p1(X,N,M) = P (Y1 < T1|N) = Φ
(

log T1 − µ1(X,N)− log M

σ1(X,N)

)
(7)

and

p2(X,N,M) = P (Y2 > T2|N) = Φ
(

µ2(X,N) + log M − log T2

σ2(X,N)

)
, (8)

where Φ is the standard normal distribution function. Note that p1 is strictly decreasing in M and

p2 is strictly increasing in M .

Let l and u be the lower and upper threshold values of M that produce 50% failures for failure

type 1 and failure type 2 respectively (see Figure 2). These are known as the median lethal dose

(LD50) in bioassays. Thus,

p1(X,N, l) = 0.5 and p2(X,N, u) = 0.5. (9)

The threshold could be defined with respect to other failure probabilities, but in this case 50% is

the most convenient one. From (7) and (8) we get

µ1(X,N) = log T1 − log l(X,N) and µ2(X,N) = log T2 − log u(X,N).
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Then (7) and (8) become

p1(X,N, M) = Φ
(

log{l(X,N)/M}
σ1(X,N)

)
and p2(X,N,M) = Φ

(
log{M/u(X,N)}

σ2(X,N)

)
, (10)

and (6) becomes

EL∗ = 2

{
c1c2T2

T1
EN (l(X,N)eσ2

1(X,N)/2)EN (
eσ2

2(X,N)/2)
u(X,N)

)

}1/2

.

Because c1, c2, T1, and T2 are given constants, an equivalent performance measure to minimize is

PM(X) = EN (l(X,N)eσ2
1(X,N)/2)EN (

eσ2
2(X,N)/2

u(X,N)
). (11)

Based on the theory of PerMIA (see references given above), we can employ the following two-step

optimization procedure.

1. Find X∗ ∈ D to minimize PM(X) in (11).

2. Set M =
{

c1EN (l(X∗,N)eσ2
1(X∗,N)/2)

c2T1T2EN (e
σ2
2
(X∗,N)/2

/u(X∗,N))

}1/2

.

(12)

Note that we do not need c1, c2, T1, and T2 to find X∗. But for the adjustment step we need to

know the ratio (c1/T1)/(c2T2). This ratio can be taken as 1 if we assume the loss due to failure

type 1 is equal to the loss due to failure type 2.

The two-step procedure can only be implemented with the input of the experimental data. This

brings us to the issue of estimation. Because Y1 and Y2 are unobserved, the parameters cannot be

estimated from (3). They must be estimated indirectly from the failure data such as that given in

Table 3. The sole purpose of the failure amplification was to improve the estimation by increasing

the information in the data. Let y1 and y2 be the number of failures observed in a sample of size r

for failure type 1 and 2, respectively. We have yi ∼ binomial(r, pi), i = 1, 2. The equations in (10)

can be written as

Φ−1(p1) = a1(X,N) + b1(X,N) log M and Φ−1(p2) = a2(X,N) + b2(X,N) log M, (13)

where

l(X,N) = exp(−a1(X,N)
b1(X,N)

), σ1(X,N) = − 1
b1(X,N)

,

u(X,N) = exp(−a2(X,N)
b2(X,N)

), σ2(X,N) =
1

b2(X,N)
. (14)
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Then express the functions a1, a2, b1, and b2 as linear models in X and N. They can be estimated by

doing two separate probit regression as defined by (13) using the complete data in the experiment.

After obtaining the fitted values for a1, a2, b1, and b2, the functions l, u, σ1, and σ2 can be obtained

from (14). The two-step procedure in (12) can now be implemented to find the optimal settings of

the factors. This approach is known as response modeling in the robust parameter design literature.

Another approach is the performance measure modeling. In this approach the performance measure

is estimated for each control run and then modeled with respect to the control factors. This can

be done as follows. Assume that the experimental design is a cross array. Consider a run defined

by the control setting Xi and noise setting Nj . Now fit two separate probit regressions to estimate

a1, a2, b1, and b2 by using only the data in this run. To emphasize the difference from response

modeling, we will denote â1(Xi,Nj) by â1ij , b̂1(Xi,Nj) by b̂1ij and so on. Then the PM in (11)

can be estimated as

ˆPM i =
1
J

J∑

j=1

l̂ije
σ̂2
1ij/2 1

J

J∑

j=1

eσ̂2
2ij/2

ûij
,

where l̂ij , ûij , σ̂1ij , σ̂2ij are obtained from (14). Now we can fit log ˆPM in terms of X using least

squares and perform the optimization. Although response modeling has a stronger statistical jus-

tification, performance measure modeling is popular among practitioners because of its simplicity.

For details on both approaches, See Wu and Hamada (2000, Chapter 10).

2.2 A Special Case: Operating Window Method

We can consider a more general loss function than (4), say

L =
c1

Y γ1
1

+ c2Y
γ2
2 , (15)

where γ1 and γ2 are some positive constants. Then derivations similar to those for (11) give the

PerMIA

PMγ1,γ2(X) = E
1/γ1

N (lγ1(X,N)eγ2
1σ2

1(X,N)/2)E1/γ2

N (
eγ2

2σ2
2(X,N)/2

uγ2(X,N)
). (16)

Consider now a special case with σ1(X,N) = σ2(X,N) = 0. As σ1 and σ2 approach zero, p1

and p2 become step functions given by p1(X,N,M) = Φ0(l(X,N) − M) and p2(X,N,M) =

Φ0(M − u(X,N)), where

Φ0(x) =





0 , x < 0

1/2 , x = 0

1 , x > 0

(17)
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For l(X,N) < u(X,N), both p1(X,N,M) and p2(X,N,M) are 0 for M ∈ (l, u). Thus, (l, u)

represents a window with no failures, which is known as the operating window (Clausing, 1994).

The performance measure in this case becomes

PMγ1,γ2(X) = E
1/γ1

N (lγ1(X,N))E1/γ2

N (
1

uγ2(X,N)
). (18)

A small value of l and a large value of u lead to a small value of PMγ1,γ2(X). Thus, minimizing

PMγ1,γ2(X) is roughly equivalent to maximizing the size of the operating window. The operating

window signal-to-noise ratio (Taguchi, 1993 and Joseph and Wu, 2002) is given by

SN = − log


 1

J

J∑

j=1

l2j
1
J

J∑

j=1

1
u2

j


 , (19)

where the summation is taken over different noise levels (j = 1, 2, · · · , J). It is the sample analog of

−2 log PM2,2. Thus, the operating window signal-to-noise ratio is a special case of the performance

measure in (16). Therefore, the operating window (OW) method can be viewed as a special case

of the failure amplification method (see Figure 1).

The signal-to-noise ratio can be used for optimization in more general cases, when σ1(X,N)

and σ2(X,N) are independent of X and N . This generalization will allow some failures in (l, u).

The interpretation of the operating window can still be retained by modifying the definition of

the operating window by defining it with respect to a threshold failure rate. See Clausing (1994)

and Joseph and Wu (2002) for details. If the dependency of the σ’s on X is ignored, the best

settings can be missed, thus resulting in a large loss. In the performance measure (11), in addition

to minimizing l and maximizing u, as is done using the SN ratio, one also minimizes σ1 and σ2.

The proposed data analysis is also different from the existing practice. Because the Clausing-

Taguchi approach to analysis only uses the values of lj and uj in (19), most of the case studies

reported in the literature give only the values of l and u and not the complete data as in Table

3. The complete data are usually discarded after obtaining l and u in some manner. This practice

should be discouraged because it throws away valuable information in the original data and makes it

impossible to estimate σ1 and σ2. Furthermore, if the investigator decides to use a different method

of modeling and analysis , he/she will need to have access to the complete data.

Although in theory σ1 and σ2 can be modeled as functions of X and N, in practice it is very

difficult to obtain good estimates unless there is a huge amount of data. See Nair (1986) and
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Hamada and Wu (1990) for discussions about the difficulties associated with estimating dispersion

effects from categorical data. With the paucity of data we may assume σ1 and σ2 to be constants

and therefore in practice the operating window method becomes an important special case of FAMe.

2.3 Single Latent Variable Modeling

The plating process described in the introduction is a good example for single latent variable

modeling. We may view the plating thickness as the underlying latent variable for the two failures:

under-plating and over-plating. A major distinguishing feature of the single latent variable modeling

is that the two failure modes cannot happen together. Such is allowed in the double latent variable

modeling. Let Y be the single latent variable having a failure generating mechanism:

if Y < T1 then failure type 1; if Y > T2 then failure type 2.

Suppose Y and M are related by Y = β(X,Z)M. Using arguments similar to those made in Section

2.1, assume

log Y |N ∼ N(µ(X,N) + log M, σ2(X,N)).

Reparameterize T1 and T2 in terms of T and ∆ by using log T1 = log T −∆ and log T2 = log T +∆,

where T can be interpreted as the target for Y . Also let θ(X,N) = µ(X,N) − log T . Then the

failure probabilities can be obtained as

p1(X,N,M) = P (Y < T1|N) = Φ(−∆ + θ(X,N) + log M

σ(X,N)
) (20)

and

p2(X,N,M) = P (Y > T2|N) = Φ(
−∆ + θ(X,N) + log M

σ(X,N)
). (21)

The loss function can be taken as

L = c

(
T

Y
+

Y

T

)
,

which is a special case of (4) with Y1 = Y2 (see Joseph (2003) for details). Using derivations similar

to those in Section 2.1, the optimum setting for M is

M∗ =

{
EN (e−θ(X,N)+σ2(X,N)/2)
EN (eθ(X,N)+σ2(X,N)/2)

}1/2

, (22)

and the PerMIA is

PM(X) = EN (e−θ(X,N)+σ2(X,N)/2)EN (eθ(X,N)+σ2(X,N)/2). (23)
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We can also use a quadratic loss function in log Y , i.e. L = c(log Y − log T )2. Then we obtain

M∗ = e−EN (θ(X,N)) (24)

and the PerMIA is

PM(X) = V arN (θ(X,N)) + EN (σ2(X,N)), (25)

which are much simpler to work with than (22) and (23).

Here log u(X,N) − log l(X,N) = 2∆ is a constant, where l and u are defined in (9) and are

solved from (20) and (21). Therefore, in the single latent variable modeling we do not have the

interpretation of an operating window as in the double latent variable approach.

Under the single latent variable setting, the data on failures follow a multinomial distribution.

The estimation of the performance measure can be done by using the response modeling or the

performance measure modeling, similar to that in Section 2.1 except that the parameters are to be

estimated by maximizing the multinomial log-likelihood:

∑
{ y1 log Φ(−∆ + θ(X,N) + log M

σ(X,N)
) + y2 log Φ(

−∆ + θ(X,N) + log M

σ(X,N)
)

+ (r − y1 − y2) log(1− Φ(−∆ + θ(X,N) + log M

σ(X,N)
)− Φ(

−∆ + θ(X,N) + log M

σ(X,N)
))},

where the summation is over the complete data in the experiment.

2.4 Probability of Failure Modeling

Although the latent variables are unobserved, some knowledge about them is essential to choos-

ing a meaningful loss function that evaluates the performance of the system. An alternative ap-

proach is to define the loss in terms of the probability of failures. In this approach (Joseph and

Wu, 2002), the loss function is defined as

L = c1
p1

1− p1
+ c2

p2

1− p2
. (26)

Underlying this choice is the double latent variable assumption. If a single latent variable is more

appropriate, then a loss function such as L = (c1p1 + c2p2)/(1 − p1 − p2) may be considered. If

the experimenter is uncertain about the underlying latent variable structure, then the loss function

can be taken as L = c1p1 + c2p2. Joseph and Wu (2002) postulated models for p1 and p2 as

p1 =
1

1 +
(

M
l

)α1
and p2 =

1
1 +

(
u
M

)α2
, (27)
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where α1 and α2 are some positive constants. This can be obtained based on the latent variable

modeling described in Section 2.1, but with a logistic distribution instead of a normal distribution.

Assume

log Yi|N ∼ logistic(µi(X,N) + log M, σ2
i ) (28)

for i = 1, 2. Here σ1 and σ2 are assumed to be independent of X and N. Then under the failure

generating mechanism given in (1), we get the models in (27), where

α1 =
√

3
πσ1

, l(X,N) = T1e
−µ1(X,N), α2 =

√
3

πσ2
, and u(X,N) = T2e

−µ2(X,N).

Using the loss function in (26), we can derive the PerMIA as

PM = E
1/α1

N (lα1(X,N))E1/α2

N (1/uα2(X,N)). (29)

Minimizing the PM in (11) is equivalent to minimizing EN (l(X,N))EN (1/u(X,N)), which does

not depend on σ1 and σ2, whereas the PM in (29) depend on them. This difference is mainly due

to the difference in the loss functions. Fortunately the PM in (29) is not very sensitive to σ1 and

σ2 and therefore the conclusions from the two approaches are expected to be close.

2.5 The Paper Feeder Experiment

As the roller in the paper feeder rotates, it develops a friction force over the surface of the top

paper. At the same time a friction force is created between the top paper and the one below it,

opposing the movement of the top paper. Thus, the driving force on the top paper is the difference

between these two friction forces. Clearly the driving force (Y1) can be taken as the latent variable

behind the misfeed. If the driving force is small, the feeder cannot feed the paper and therefore

results in misfeed. The friction force between the two papers (Y2) can be taken as the latent variable

underlying the multifeed. When this friction force is large, the feeder tends to feed the second paper

as well, thus causing multifeed. Thus, a simple model for the paper feeder can be written as

if Y1 < T1 then misfeed; if Y1 > T1 and Y2 > T2 then multifeed. (30)

Note that if the driving force is not large enough to feed the top paper, then even if Y2 is large,

multifeed cannot happen. Thus, in this case, although a double latent variable approach seems

plausible, both failure modes cannot happen together.

With the above latent variables, the models in (2) can be justified using Coloumb’s law of

friction, because the friction forces are proportional to the normal force. A quick look at the data
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in Table 3 will reveal that the probability of both misfeed and multifeed happening at the same

level of M is very small. Thus,

p2(X,N, M) = P (Y1 > T1, Y2 > T2|N) = P (Y2 > T2|N)−P (Y1 ≤ T1, Y2 > T2|N) ≈ P (Y2 > T2|N).

This implies that the failures in the paper feeder can be approximated by the models used in Section

2.1.

We only consider the response modeling approach. As recommended in Wu and Hamada (2000),

the two degrees of freedom for 3-level factors are split into linear and quadratic components with

contrasts xl = (−1, 0, 1) and xq = (1,−2, 1) respectively. The 2-level factors x1, x4 and the noise

factor N are coded as xl, Nl = (−1, 1). Fitting two separate probit regressions in (13) and using

the AIC (Akaike Information Criterion) for variable selection, we get

â1(X,N) = 7.84 + 1.07x2l − 1.62x6l − .93x1l + .72x7q − 1.17x5l − .56x2lx6l,

−.90x1lx6l + 1.13x4lx6l − .18x2qx7q,

b̂1(X,N) = −3.08,

â2(X,N) = −6.25− 1.73x2l − 1.36x3l + .72x6l − .14x2lx8q − .19x2qx3l − .48x4lx6l,

b̂2(X,N) = 1.46 + .33x2l + .32x3l.

In the model selection only those models that satisfy the effect heredity principles (Wu and Hamada,

2000, Section 3.5) are considered. In the misfeed data, a few of the stack force levels are 0, which

are increased to one fourth of the next lowest level of M , to avoid −∞ values. Note that the noise

factor does not appear in the models, implying this particular noise factor was not a good choice

for the experiment. The PM in (11) simplifies to

log ˆPM = −(log û− log l̂) +
σ2

1 + σ2
2

2
= â2/b̂2 − â1/b̂1 + .5/b̂2

1 + .5/b̂2
2.

Noting that x1, x4, and x8 are qualitative and the others are quantitative, we choose the experi-

mental region D = {X|x1, x4 = 1, 2;x8 = 1, 2, 3; 1 ≤ x2, x3, x5, x6, x7 ≤ 3}. Minimizing log ˆPM

with the control factors restricted to be in D, we get X∗ = (2, 2.22, 1, 2, 3, 3, 2, 1). At this optimal

setting M should be adjusted to
√

lu exp((σ2
1 − σ2

2)/4) = 12.
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Table 4: Factors and levels for the PCB experiment

Control factors Notation Levels

1 2 3

Preheat x1 No Yes -

Surface preparation x2 Scrub Pumice Chemical

Lamination speed x3 1.2 mpm 1.5 mpm 1.8 mpm

Lamination pressure x4 20 psi 40 psi 60 psi

Lamination temperature x5 95 0C 105 0C 115 0C

Exposure energy x6(m) 14 17 20

Developer speed x7 3 fpm 4 fpm 5 fpm

ORP x8 500 530 560

3. COMPLEXITY FACTOR METHOD

We will describe the complexity factor method by using an experiment reported by Maruthi

and Joseph (1999) on the inner layer manufacturing process of PCBs. Two types of defects are

encountered in the circuits: shorts and opens. The defect rate is very small, less than 3%. But

the defect rate can shoot up due to some special causes in the process, particularly during the

production of fine line circuits. Therefore it is important to improve the process capability so that

even under the influence of special causes the defect rate will not go very high. Eight control factors

were selected from different subprocesses of the process and are given in Table 4.

Because the defect rate is small, a very large sample size will be needed to find some shorts

and opens unless some failure amplification is applied. To use the control factor method, the

exposure energy (x6) would probably the best choice for the amplification factor. A low energy

during exposure means that the dry film photo-resist over the circuitry portion will be under-

polymerized, which will be washed off during developing. This will lead to open circuits in the

etching process. A high energy during exposure will polymerize the non-circuitry portions of the

dry film photoresist and will not be removed during developing. This will then act as etch-resistant,

leading to shorts in the circuits. But using exposure energy as an amplification factor is not very

easy. The measurements of shorts and opens take more than one hour per panel. Thus a sequential
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experiment will not be feasible because it will greatly prolong the experimentation time and will

severely disrupt production. Also, the material cost in the experiment will be very high, because

one panel need to be processed for each level of the exposure energy.

The complexity factor method is an ideal choice for this experiment. A small line width for

the conductor will increase the chance of opens and a small spacing between the conductors will

increase the chance of shorts. The line width and spacing can be taken as the complexity factors

as they determine the complexity of PCB manufacturing. The company was engaged in producing

PCBs with line width/spacing greater than or equal to 5 mil. For the purpose of amplification,

it was decided to add 3 mil and 4 mil line width/spacing to the circuits. A special test pattern

was designed for the experiment with line width and spacing varying from 3 to 7 mils with an

increment of 1 mil. The test pattern has 80 pairs of conductors. Thus, data for all line widths and

spacings can be obtained by using only one panel. See Maruthi and Joseph (1999) for more details

of this experiment. Note that the objective of this experiment was not to estimate the defect rate

as a function of line width and spacing. They are varied in the experiment only to amplify (i.e.,

generate) failures so that the effects of the factors can be estimated more precisely. Therefore the

purpose of amplification is to increase the information in the experiment for studying the factor

effects. The data based on an OA(18, 21 × 37) are given in Table 5. A quick glance at the data

conveys the importance of failure amplification for this experiment. Very few shorts and opens

were observed under 5-7 mils. If the experiment were run with only 5-7 mils, it would have been

impossible to get meaningful estimates of the effects of interest. Because of failure amplification

there is enough variation in the data, so that we can get good estimates of the effects and draw

conclusions about their optimal settings.

Let M1 be the line width, M2 the spacing, and X the set of control factors. We will treat the ex-

posure energy (x6) as an adjustment factor and will denote it by m. So X = {x1, x2, x3, x4, x5, x7, x8}.
Note that the exposure energy could have been used as an amplification factor, but in this experi-

ment it was not because it would then result in increased experimentation cost as described in the

previous paragraphs. Also note that there are no observed noise factors in this experiment. As

in the paper feeder problem, we may use a latent variable approach to model shorts and opens.

But because many subprocesses from inner layer manufacturing are involved in this experiment,

it is difficult to find a meaningful latent variable. Therefore we opt to use the probability of
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Table 5: OA(18, 21 × 37) and data from the PCB experiment

Opens Shorts

Run x1 x2 x3 x4 x5 x6 x7 x8 3 4 5 6 7 3 4 5 6 7

1 1 1 1 1 1 1 1 1 33 7 4 0 1 1 0 0 0 0

2 1 1 2 2 2 2 2 2 7 9 1 0 0 4 1 0 0 0

3 1 1 3 3 3 3 3 3 14 3 1 0 0 19 2 0 0 0

4 1 2 1 1 2 2 3 3 2 0 2 0 0 9 0 0 0 0

5 1 2 2 2 3 3 1 1 7 1 2 1 0 22 1 1 1 0

6 1 2 3 3 1 1 2 2 78 30 7 1 1 8 0 0 0 0

7 1 3 1 2 1 3 2 3 9 1 3 0 0 19 1 0 0 0

8 1 3 2 3 2 1 3 1 7 0 1 0 1 4 0 1 0 0

9 1 3 3 1 3 2 1 2 4 3 0 0 0 7 0 0 0 0

10 2 1 1 3 3 2 2 1 6 0 0 0 0 22 1 0 0 1

11 2 1 2 1 1 3 3 2 13 2 0 0 0 34 2 2 0 0

12 2 1 3 2 2 1 1 3 34 5 0 1 3 13 4 1 0 0

13 2 2 1 2 3 1 3 2 8 3 0 0 0 7 0 1 0 0

14 2 2 2 3 1 2 1 3 25 8 0 2 1 25 1 0 0 0

15 2 2 3 1 2 3 2 1 7 0 0 0 0 41 1 0 0 1

16 2 3 1 3 2 3 1 2 10 6 0 0 0 45 9 5 0 1

17 2 3 2 1 3 1 2 3 8 0 0 0 0 3 0 0 0 0

18 2 3 3 2 1 2 3 1 12 2 0 0 1 7 2 0 0 0
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failure modeling approach for this experiment. The shorts/opens are measured by passing cur-

rent between/through each pair of conductors. This gives rise to 80 opportunities for shorts and

160 opportunities for opens under each line width/spacing per run. (Recall there are in total

80 pairs of conductors.) Thus, the data on opens follow a binomial(160, p1(X,m, M1)) and the

data on shorts follow a binomial(80, p2(X,m, M2)). In one particular conductor there could be

many opens. Because of the nature of measurement, we do not get to observe the number of

opens in a conductor. The data would have been more informative had we counted the number

of opens/shorts. We can assume that the number of opens in a conductor and the number of

shorts between a pair of conductors to follow Poisson distributions with means λ1(X,m, M1) and

λ2(X,m,M2), respectively. Then we have the relations p1(X,m, M1) = 1 − exp(−λ1(X,m, M1))

and p2(X,m, M2) = 1− exp(−λ2(X,m, M2)). We assume the following models,

λ1(X,m, M1) =
λ1(X)

Mα1
1 mγ1

and λ2(X,m, M2) =
λ2(X)mγ2

Mα2
2

,

where α1, α2, γ1, and γ2 are some positive constants. Then

log log
1

1− p1
= log λ1(X)− γ1 log m− α1 log M1 (31)

and

log log
1

1− p2
= log λ2(X) + γ2 log m− α2 log M2. (32)

This suggests that we can estimate the parameters by fitting two separate binomial GLMs (Gener-

alized Linear Models) with a complementary log-log link function (McCullagh and Nelder, 1989).

The loss is proportional to the number of defects. So we can take the loss function to be

L = c1λ1(X, m,M1) + c2λ2(X, m,M2).

Because M1 and M2 are not in the control of the manufacturer, we will try to find an X to minimize

the expected loss taken over the distributions of M1 and M2. Thus, the expected loss is

EL = c1Eλ1(X, m,M1) + c2Eλ2(X,m, M2)

= c1
λ1(X)
mγ1

E

(
1

Mα1
1

)
+ c2λ2(X)mγ2E

(
1

Mα2
2

)
.

We can set m to minimize EL. This gives

m∗ =
{

γ1c1E(1/Mα1
1 )λ1(X)

γ2c2E(1/Mα2
2 )λ2(X)

}1/(γ1+γ2)

. (33)
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As in the previous sections, the PerMIA can be obtained by evaluating the expected loss at m = m∗.

Minimizing this PerMIA is equivalent to minimizing

PM(X) =
1
γ1

log λ1(X) +
1
γ2

log λ2(X). (34)

By fitting a GLM with a complementary log-log link function and using forward variable selection

based on AIC, from (31) and (32), we get the following models

log λ̂1 = 10.72− .73x5l − .33x2l − .27x1lx5q,

log λ̂2 = −6.66 + .48x1l + .20x4l − .15x1lx5q,

γ̂1 = 2.768, α̂1 = 5.06, γ̂2 = 4.70, and α̂2 = 7.664.

Substituting in (34) and minimizing we get x∗1 = 1, x∗2 = 3, x∗4 = 1, and x∗5 = 2.34. The other

variables can be retained at the current levels. With c1 = c2 and a uniform distribution for line

width and spacing over 5, 6, and 7, we get m∗ = 15.7. Note that the optimization is carried out at

the user conditions and not at the amplified conditions. The amplification is applied only for the

purpose of estimation and not for optimization. Also X∗ does not depend on the distribution of

line width and spacing. Therefore only the setting of m needs to be changed if there is a change

in the distribution of line width and spacing. This is one of the advantage of using PerMIA for

optimization.

The major difference between the complexity factor method and the control factor method is

that we need to take expectations with respect to the complexity factor in the optimization. The

optimization in the noise factor method will be similar to that of the complexity factor method,

because we should average the loss over the noise factor. Yet the two approaches are different

because the variations in the complexity factor are specified by the customer whereas the variations

in the noise factor are not. There can be other methods of failure amplification. For example, if the

measurements are based on a go/no-go gauge, then the specifications can be tightened to produce

more failures. We can treat the tolerance as a complexity factor and classify this method under

the complexity factor method.

4. STRATEGIES FOR AMPLIFICATION

In applying FAMe, a practitioner will be faced with two important questions. How much failure

amplification should be applied? And how to achieve the specified amplification? We address these
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questions in this section. First we will present some results from optimal design theory that will

give some guidelines about optimal amplification. Then we will discuss two design strategies to

achieve it.

4.1 Optimal Amplification

Consider the following model

p = Φ
(

log{M/u}
σ

)
(35)

as in (10). Suppose σ is known and we want to estimate u. At the current value of M in the

process, the failure probability is very small. Therefore we will change M so as to improve the

estimation of u. The Fisher information of η = (log M − log u)/σ is

I(η) =
φ2(η)

Φ(η)[1− Φ(η)]
, (36)

where φ is the standard normal density function. From maximum likelihood theory we know that

V ar(û) ≈ σ2u2/I(η). Thus maximizing I(η) will minimize the variance of the estimate û of u.

The value of M that maximizes I(η) is M∗ = u. This means that we should adjust M to the

LD50 point to maximize the information in the experiment. Unfortunately we do not know u (if

we knew u, there would be no need to collect data to estimate it!) and therefore this result is not

practical. But it suggests the experimenter that the failure rate should be amplified to about 50%.

The optimality of the LD50 point also holds true for the logit link. For the complementary log-log

link, because of the skewness, the optimal amplification is about 80%. See Wu (1988) for details

on optimal designs with binary data.

If the scale parameter σ is unknown in (35), then we need to use more than one point for M to

estimate both u and σ. We can use D- or A-optimality or some other optimal design criterion to

select the points. Sitter and Wu (1993) show that a 2-point design is optimal for both probit and

logit links. According to D-optimality the optimal amplifications are 13% and 87% for the probit

link and 18% and 82% for the logit link.

4.2 Fixed Design

Let D(a) denote the design for factors a. In a fixed design approach we first select a design for

the control and noise factors, D(X,N). See Wu and Hamada (2000) for the choice of D(X,N).

This design will be crossed with the design for the amplification factor. This can be denoted as

D(X,N) ⊗ D(M), which means all the runs in D(M) will be repeated at every run of D(X,N).

22



The D(M) is a set of points {M1,M2, · · · ,Mn}. Optimal design theory tells us that M should be

set at the LD50 point (for the probit/logit link with known scale parameter). But the LD50 point

is a function of both X and N and is unknown.

We now describe the construction of a fixed design that can increase the information in the

experiment compared to conducting all the experiments at the current value of M = M0. Consider

the model p(X,N,M) = Φ( log{M/u(X,N)}
σ ) with σ > 0 known. Suppose p(X,N, M0) ≤ α < 0.5 for

all the runs in D(X,N). Let M0 = M0 exp(−2σΦ−1(α)). Then choose n points from (M0,M
0) as

D(M). If there is no prior knowledge about σ, then the experimenter should try to guess an M0

satisfying p(X,N,M0) ≤ 1− α for all the runs in D(X,N).

The PCB experiment is an example of a fixed design. For the opens, D(M1) = {3, 4, 5, 6, 7}.
Only 3 and 4 mil line widths were used for amplification. From the data in Table 5 it is clear that

using 6 and 7 mils did not produce many failures and therefore they were a complete waste. More

samples of 3 and 4 mils could have been used instead, which would have increased the information

in the experiment.

4.3 Sequential Design

In a sequential design D(M) is different for each run in D(X,N) and the points in D(M)

are chosen sequentially. At each run, the value of Mk+1 is determined based on the data from

the previous k design points. There are many sequential methods available in the literature for

optimally choosing Mk+1. The best method for our problem depends on the modeling assumptions.

For example, consider the model in (35). If we are not interested in modeling the scale parameter

σ as a function of X and N, then the stochastic approximation method for estimating LD50 given

in Wu (1985) will be a good choice. This method produces a sequence of design points for M that

will converge to the LD50. It is well known that stochastic approximation methods do not provide

enough information about σ for precise estimation. Therefore if we are interested in modeling σ

also as a function of X and N, then sequential methods (e.g., McLeish and Tosh (1990) and Neyer

(1994)) that spread out the design points will be more appropriate.

We now describe Wu’s sequential procedure as applied to our problem. Suppose we are at the

nth run of D(X,N) and kth run of D(M). Assume that σ is a constant. Let yij be the observed

number of failures from a sample of size r when M = Mij . Then the MLE’s for u1, · · · , un, and σ
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can be obtained by maximizing the log-likelihood

n∑

i=1

k∑

j=1

{
yij log Φ(

log{Mij/ui}
σ

) + (r − yij) log[1− Φ(
log{Mij/ui}

σ
)]

}
.

This can be easily done using probit regression. The sequential design is then to set Mn,k+1 at the

MLE of un.

The paper feeder experiment discussed in Section 2 is an example of a sequential design. The

experimenter actually used a trial and error approach to find the LD50 point for each run. This

search could have been improved by using the sequential procedures discussed in this section.

5. COMPARISON WITH TRADITIONAL EXPERIMENTS

In this section we will compare the efficiency of FAMe with the traditional way of conducting

experiments with categorical data. Because the amplification factor is not of primary interest to

the experimenter, the amplification factor is kept at its current setting (say M0) in the traditional

approach. In FAMe this factor is varied to amplify the failures. Fixed design and sequential design

can be adopted for amplification. Intuitively, sequential designs are better than fixed designs. In

sequential designs the optimal amplification can be achieved for every run, whereas in fixed designs

the amount of amplification varies from run to run and can result in a loss of information. As we

have seen, about 50% amplification will maximize the information in the experiment. So if we test

r samples at the LD50 point, the variance of the estimate will be smaller than that of testing r

samples at M0. But in practice we do not know the LD50 point. We need to spend some resources

to search and estimate the LD50 point. Is this still an efficient approach compared to spending all

the resources at M0 ? The following result provides some insight on this question.

Proposition 1 Let p(X,N,M) = Φ( log{M/u(X,N)}
σ ), where σ is known. Suppose there exists an

α ∈ (0, .5) and an a ∈ (0,∞) such that p(X,N, M0) ≤ α and u(X,N) ≤ a for all the runs

in D(X,N). Then we can find a fixed design that performs better than the traditional design.

Moreover there exists a sequential design that performs better than the fixed design.

The proof of this proposition is given in the Appendix. Note that, for σ > 0 the proof holds

only asymptotically. The result for σ = 0 is stronger. In this case the traditional design does

not provide any information about u. For both fixed designs and sequential designs the posterior
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variance of u goes to 0 as n →∞. Moreover the efficiency of the sequential design compared to the

fixed design goes to ∞ as n →∞, implying the superior performance of sequential designs. Thus,

based on the above proposition we can conclude that FAMe is more efficient than the traditional

approach.

6. FURTHER DISCUSSIONS AND CONCLUDING REMARKS

The failure amplification method (FAMe) was originally motivated by our attempt to under-

stand, justify and extend the operating window (OW) method. The OW method was proposed by

Don Clausing at Xerox and developed by Taguchi and his Japanese colleagues at Fuji-Xerox. It has

been used in some industrial sectors and case studies can be found in the applied literature. Joseph

and Wu (2002) appear to be the first to study its properties analytically and develop a systematic

approach to the choice of a performance measure, modeling, analysis, and system optimization.

We realized that the core idea behind the OW method is failure amplification which led to this

work. Because failure amplification can be achieved in many different ways, the application areas

are considerably expanded and the OW method becomes a special case of FAMe. As noted near

the end of Section 2.2, the proposed approach to modeling and analysis utilizes the complete data.

It fully exploits the information in the data and thus is an improvement over the existing OW

approach.

FAMe was developed in this paper as a general approach to experimentation and information

extraction. In experiments with an imprecise measurement system (or due to the very nature of

the system) categorical data are often collected. They are cheaper or easier to measure but contain

less information than continuous data. In extreme situations they provide little or no information

for the investigators to estimate the factor effects. To ameliorate this shortcoming, an amplification

factor can be used to extract more information by generating different numbers of failures with

experiments run at various settings of the amplification factor. A major assumption in FAMe

is that the optimum setting arrived at in the amplified conditions will remain the same in the

current conditions. It is encapsulated in the models employed in this paper. Note that in many

applications this is a reasonable assumption. Two versions of the FAMe are studied in the paper:

the control factor method and the complexity factor method. Distinctions between the two versions

are discussed and illustrated with real examples.

The approach of failure amplification is akin to the accelerated life testing (ALT) in reliability
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studies (Meeker and Escobar, 1998) but there are some differences. An obvious one is that ALT is

used to study reliabilty and FAMe to improve quality. The response in ALT is life time, whereas in

FAMe it is categorical (type of failure or no failure). FAMe deals with only sudden failures and not

the degradation failures as in ALT. In ALT the acceleration is applied to reduce the testing time

by accelerating the degradation of the system, whereas in FAMe it is used to reduce the sample

size by amplifying the probability of sudden failure. The literature on ALT focuses on estimating

and demonstrating reliability at user conditions through extrapolation of the acceleration factor,

whereas the FAMe is developed for system optimization and therefore the details differ completely

from the ALT. Further research can benefit from recognizing the connections with the ALT approach

and using its vast literature on modeling and extrapolation.

Some simplifying assumptions are made in the models in order to derive tractable results and

procedures. For example, the models in (2) and a similar one in Section 2.3 assume linearity

through the origin. More general models can be considered in future research, but the identifia-

bility and estimability of parameters are a major concern. The loss functions are chosen primarily

to facilitate the derivations of tractable results. Other loss functions can be used. Comparisons

between traditional design, fixed design, and sequential design are made under a set of rather re-

strictive conditions. More realistic conditions should be considered. The design strategies discussed

in Section 4 are to be applied for each failure mode separately, which may not be optimal when

we consider all the failure modes together. Optimal design strategies with multiple failure modes

is an interesting topic for future research.
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APPENDIX: PROOF OF PROPOSITION 1

We consider two cases. The notation X,N is omitted in the proof for simplicity.

Case (i): σ > 0.

In a fixed design (F.D.) D(M) = {M1, · · · ,Mn} with r samples tested at each level of M . In

the traditional design (T.D.) all the nr samples are tested at the current value of the amplification
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factor, M0. Then, under the T.D.,

√
nrI(η0)(ûn − u) ⇒ N(0, σ2u2),

where η0 = log{M0/u}/σ and I(η) is given in (36).

Let M0 = M0 exp(−2σΦ−1(α)), so that p(M0) ≤ 1−α. For a fixed design and M0 < Mi < M0

for all i, we have under the F.D.,
√√√√r

n∑

i=1

I(ηi)(ûn − u) ⇒ N(0, σ2u2),

where ηi = log{Mi/u}/σ. Because p(M) is strictly increasing in M , we have p(M0) < p(Mi) <

1−p(M0) for all i = 1, · · · , n. Because I(η) is a unimodal and symmetric function of η, I(ηi) > I(η0)

for all i = 1, · · · , n. Thus, the asymptotic relative efficiency (ARE) of the fixed design with respect

to the traditional design is

ARE(F.D., T.D.) = lim
n→∞

V ar(ûn)T.D.

V ar(ûn)F.D.
= lim

n→∞

∑n
i=1 I(ηi)
nI(η0)

> 1.

Now consider a sequential design (S.D.). Let M1 be the midpoint of (M0,M
0) and Mk+1 = ûk,

where ûk is the MLE of u after k experiments. Then, based on the asymptotic results of Ying and

Wu (1997),

√
nr2/π(ûn − u) ⇒ N(0, σ2u2).

The maximum value of I(η) is 2/π. Thus

ARE(S.D., F.D.) = lim
n→∞

V ar(ûn)F.D.

V ar(ûn)S.D.
= lim

n→∞
n2/π∑n
i=1 I(ηi)

> 1.

Case (ii) σ = 0.

Here p(M) = Φ0(M − u), with Φ0 defined in (17). In this case a unique MLE does not

exist. Therefore we will use a Bayesian formulation of the problem. Assume u follows a uniform

distribution U(0, a). p(M0) ≤ α < 0.5 implies M0 < u and p(M0) = 0. So we could as well take the

prior distribution of u to be U(M0, a). Without loss of generality, assume r = 1. Then the number

of failures yi|u ∼ Bernoulli(p(M)). Then at M = M0, y = (y1, · · · , yn) = (0, · · · , 0). Thus,

f(u|y) ∝ f(y|u)f(u) = (Φ0(u−M0))
n 1(M0,a)(u) = 1(M0,a)(u),
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which is same as the prior distribution. In other words no information is gained by doing exper-

iments at M0. The best estimate of u is E(u|y) = (M0 + a)/2 and the posterior variance of u in

the traditional design is

V ar(u|y)T.D. =
(a−M0)2

12
.

For a fixed design, one sample is tested at n levels of M . Let Mi = M0 + (a−M0)i/(n + 1) for

i = 1, · · · , n. Let Mn+1 = a. Then y can take n+1 possible values, yk = (y1, · · · , yk, yk+1, · · · , yn) =

(0, · · · , 0, 1, · · · , 1), k = 0, 1, 2, · · · , n. Then

f(u|y = yk) ∝ f(yk|u)f(u)

= Φ0(u−M1) · · ·Φ0(u−Mk)Φ0(Mk+1 − u) · · ·Φ0(Mn − u)1(M0,a)(u)

= Φ0(u−Mk)Φ0(Mk+1 − u)1(M0,a)(u),

which is 1 if u ∈ (Mk,Mk+1), 1/2 if u = Mk or Mk+1, and 0 otherwise. Thus, the posterior distri-

bution of u differs from U(Mk,Mk+1) with measure 0. Denote this distribution by Ũ(Mk,Mk+1).

Because Mk+1 −Mk = (a−M0)/(n + 1) for all k, the posterior variance of u does not depend on

y and is given by

V ar(u|y)F.D. =
(a−M0)2

12(n + 1)2
.

Because equal spacing minimizes the maximum length of the intervals, the above fixed design

minimizes the maximum posterior variance over all possible fixed designs.

For a sequential design, let M1 = (M0 + a)/2 and Mk+1 = ûk, where ûk is the posterior mean

of u after k experiments. After observing y1,

f(u|M1, y1) ∝ f(y1|u,M1)f(u|M1) = (Φ0(M1 − u))y1 (Φ0(u−M1))
1−y1 1(M0,a)(u).

Thus, the posterior distribution of u is Ũ(M1, a) if y1 = 0 and Ũ(M0,M1) if y1 = 1. So M2 =

(M1 + a)/2 if y1 = 0 and M2 = (M0 + M1)/2 if y1 = 1. Note that the interval (M0, a) is halved

after observing y1. Now observe y2 at M = M2. Proceeding similarly, after n steps the posterior

distribution of u is Ũ(Mk,Mn) for k = 0, 1, · · · , n−1, n+1, depending on y. Each interval (Mk,Mn)

or (Mn,Mk) has a length of (a−M0)/2n, which does not depend on y. Thus the posterior variance

of u is

V ar(u|M1, · · · ,Mn,y)S.D. =
(a−M0)2

12× 22n
.

Thus, we have
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V ar(u|M1, · · · , Mn,y)S.D. < V ar(u|y)F.D. < V ar(u|y)T.D., for all n > 1.

♦
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