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Model-based Quality Improvement

• Models are used for
– Process control
– Process optimization

• Two types of models
– Statistical models
– Engineering models



Statistical Models

• Statistical models
– Developed based on data
– Linear/nonlinear regression models



Engineering Models

• Engineering models
– Developed based on engineering/physical 

laws
– Analytical and finite element models



Engineering Models Vs Statistical Models

• Statistical models
– Predictions are good closer to the data, but 

can be poor when made away from data
• Engineering models

– Physically meaningful predictions, but often 
are not accurate because of the assumptions

• Can we integrate them to produce better 
models?



Engineering - Statistical Models

• Improve engineering models using data
– More realistic predictions than engineering 

models
– Less expensive than pure statistical models 

(fewer data)



Surface Roughness Prediction in 
Micro-Turning
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Engineering model:
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Existing methods

• Mechanistic model calibration
– Estimate unknown parameters (calibration 

parameters) from data
– Box, Hunter, Hunter (1978), Kapoor et al. (1998)
– Not a general method

• Bayesian calibration
– Kennedy and O’Hagan (2001)
– Reese et al. (2004), Higdon et al. (2004), Bayarri et 

al. (2007), Qian and Wu (2008).



Bayesian Methodology

• Take engineering model as the prior mean
• Get data from the physical experiment
• Obtain posterior distribution
• Engineering-Statistical model is the 

posterior mean
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Methodology-continued

• Objective: Find  

• Engineering model:
• Calibration parameters:  
• Data:

• Output: Y
• Factors: 
• Random error:



Sequential Model Building
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Methodology-continued

• Check the usefulness of engineering 
model using graphical analysis

• If it is useful

• If MI is small, then stop. Engineering 
model is good.



Constant adjustment model

• If MI is small, then stop. CAM is good.



Functional adjustment model

• Add terms until MI is small enough.



Constant adjustment model



Posterior distribution

• constant adjustment predictor is 

• posterior distribution is 

• Prediction interval



Simplification
• least squares estimate



Empirical Bayes estimation
• Estimate hyperparameters by maximizing



Approximate frequentist procedure

• Fit the simple linear regression



Surface roughness example
• Engineering model: 

• There is a positive relation



Example-continued

• From replicates

• Engineering model is not good for 
prediction



Constant adjustment model



Functional adjustment model



Two-stage estimation

• Use the estimate of             from the 
constant adjustment model

•



Approximate frequentist procedure

• Fit a multiple linear regression
• Do a variable selection



Surface roughness example



Calibration parameters
• Liu and Melkote (2006)



New engineering model

• R(x) is calculated using a combination of analytical 
formulas and finite element simulations



Statistical adjustments

• First use least squares estimate

• MI=.209 (new engineering model is good)
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Constant adjustment model



Approximate frequentist procedure

• Fit a nonlinear regression



A Spot Welding Example
• Higdon et al. (2004) and Bayarri et al. (2007)

– Three factors: Load, Current, and Gage
– One calibration parameter





Eng. Model (Black-dashed)  : 0.69 
Joseph&Melkote (Red-solid): 0.23
Bayarri et al. (Blue-dotted)   : 0.20



Example: LAMM

Laser assisted mechanical micromachining 
(LAMM) integrates thermal softening with 
mechanical micro cutting 

Mechanical micromachiningLaser heating

= LAMM+



Objective

Find optimum processing conditions that 
minimize cutting/thrust forces and thermal 
damage.



Thermal Model

• Mapped dense mesh (25 μm x 12.5 μm x 20μm)
• An 8 noded 3-D thermal element (Solid70) is used
• Gaussian distribution of heat flux applied to a 5x5 element 

matrix which sweeps the mesh on the front face

Natural B.C. on front face

Symmetry  B.C. on bottom face

X

Z

Y



Geometric Model
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For plane strain conditions,



Shear Flow Strength
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Forces

• Cutting and thrust forces,
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Equilibrium Forces/Deflection



Force model



Force prediction

• Positive relation, but predictions are smaller than actual



Force prediction-continued

• Better than cutting force, but slightly smaller than actual



Engineering-Statistical Force Models

Plot of measured vs. predicted cutting and thrust forces



Optimization Problem
• For a given depth of cut (t), find the optimum 

levels of set depth of cut, laser power, laser 
speed, and distance from tool to minimize 
cutting/thrust forces while making sure there is 
no heat affected zone.
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Nonlinear programming
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Optimization Results

• For example, for depth of cut = 10 μm

• Set depth of cut (x1) = 12.30 μm

• Cutting speed (x2) = 10 mm/min

• Laser power (x3) = 4.5 W

• Laser location from the tool edge (x4) = 100 μm



Validation
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Conclusions

• Engineering models can be improved by 
using data

• Engineering-Statistical models perform 
better than engineering models and 
statistical models

• Need relatively less amount of data
• They use the physics of the process



Engineering knowledge

Engineering model

Engineering-Statistical
model

Process 
Optimization

Factors & Levels

Experiment

Statistical model

Optimize



Conclusions-continued

• Simple procedure
– Fit two linear/nonlinear regressions
– Do variable selection

• Easy-to-implement 
– No additional programming is required
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