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SUMMARY

It is well known that Robbins-Monro procedure does not perform well in the estimation

of extreme quantiles. This is because the procedure is implemented using some asymptotic

results, which are not suitable to deal with binary data. Here we propose a modification

of Robbins-Monro procedure and derive the optimal procedure for binary data under some

reasonable approximations. The improvement obtained by using the optimal procedure for

the estimation of extreme quantiles is substantial.

Some key words : Quantile estimation; Sequential designs; Stochastic approximation.
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1. INTRODUCTION

In many applications, interest centers around finding the threshold of a variable that will

cause certain amount of successes (or failures) in the output. For examples, an explosive

designer will be interested to find the level of shock necessary to make 99.99% of the explosives

to fire (Neyer, 1994), a quality engineer will be interested to find the level of the stack force

necessary to make 0.1% of multifeeds in the paper feeder of a copier machine (Joseph and Wu,

2002), and so on. The problem can be formally stated as follows. Let Y be a binary response

with probability of success M(x), where x is the variable whose threshold is of interest. The

objective is to find the value of x = θ that will make the probability of success equal to α, i.e.

M(θ) = α. Usually M(x) is a distribution function obtained by assuming some distribution

for a latent variable underlying the binary response. Therefore θ can be regarded as the

α-quantile of this distribution. The problem is that the function M(x) is unknown to the

experimenter. However, the experimenter can observe Y at different values of x in order

to find θ. The objective is to devise an experimental strategy that will help to estimate

θ with minimum number of observations and with great accuracy. The experiment can be

performed by using a sequential design in which the values of x’s are chosen sequentially

which are allowed to depend on the already observed data.

One sequential design strategy known as stochastic approximation is to choose x1, x2, · · ·

such that xn → θ in probability. Robbins and Monro (1951) proposed the following sequential

procedure:

xn+1 = xn − an(yn − α), (1)
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where yn is the binary response observed at xn and {an} is a pre-specified sequence of positive

constants. Robbins and Monro showed that if an satisfies the conditions

∞∑

n=1

an = ∞, and
∞∑

n=1

a2
n < ∞, (2)

then xn →p θ. Robbins and Monro did not explain how to choose the sequence {an} opti-

mally. They recommended the simple choice an = c/n for some constant c. Based on the

results of Chung (1954), Hodges and Lehmann (1956), and Sacks (1958), the procedure is

fully asymptotically efficient with an = {nṀ(θ)}−1 under some conditions, where Ṁ denotes

the first derivative of M . This choice became the standard choice for the practical imple-

mentation of the Robbins-Monro procedure (see, for example, Wetherill and Glazebrook,

1986). The optimal choice of an in small samples has not been investigated, although in

most experiments the small sample size is the most interesting case.

Wetherill (1963) studied the performance of the Robbins-Monro procedure through sim-

ulations and found that it works quite well for α = 0.5 (LD50) but performs very poorly

for extreme quantiles. He proposed several modifications to the procedure but again they

were found to be inadequate for extreme quantiles and concluded that the Robbins-Monro

and related procedures should be used only for the estimation of quantiles in the immediate

neighborhood of LD50. Cochran and Davis (1965) and Young and Easterling (1994) also

obtained similar conclusions based on extensive simulation results.

The Robbins-Monro procedure is a very general procedure which can be used for several

kinds of data and is not restricted to binary data. Binary data on the other hand posses some

peculiar properties, which can be exploited to improve the procedure. Two such properties
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are relevant: the variance of Y is a function of x given by M(x){1−M(x)} and M(x) is a

distribution function. In this article we will make use of these properties to produce optimal

Robbins-Monro procedures for binary data. We will also propose a slight modification to

the Robbins-Monro procedure to get better convergence properties.

Several methods for quantile estimation based on binary data are proposed in the liter-

ature. See for example Wu (1985), McLeish and Tosh (1990), Kalish (1990), Neyer (1994),

Sitter and Wu (1999), and Voelkel (2003) among many others. The objective of this study

is to find the optimal sequential procedure within the class of the Robbins-Monro type pro-

cedures, not to find the best overall method.

2. OPTIMAL ROBBINS-MONRO PROCEDURE

In most applications, the distribution function M(x) is from a location family with loca-

tion parameter θ. Therefore hereafter we denote M(x) by M(x−θ). Thus M(0) = α ∈ (0, 1)

is specified. We also assume that Ṁ(0) > 0 is known. The experimenter starts the exper-

iment at some value x1, which is believed to be close to θ based on some prior knowledge.

Therefore we may choose a prior distribution for θ say with E(Θ) = x1 and var(Θ) = τ 2
1 < ∞,

where τ1 represents the initial uncertainty of θ with respect to x1. Let Zn = xn − Θ. Note

that although x1 is a fixed quantity, x2, · · · , xn are random due to their dependence on past

data. Consider a modified Robbins-Monro process given by

xn+1 = xn − an(yn − bn).

For binary data, {bn} is a sequence of constants in (0, 1). They need not be equal to α, but

is expected to get close to α as n gets larger. We will see that using a bn different from α,
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the performance of the Robbins-Monro procedure can be greatly improved. Thus our model

is,

yn|Zn ∼ Bernoulli{M(Zn)},

Zn+1 = Zn − an(yn − bn),

E(Z1) = 0 and E(Z2
1) = τ 2

1 .

The objective is to find sequences {an} and {bn} such that Zn →p 0 at the fastest rate. First

we investigate the conditions under which the desired convergence can be obtained.

Suppose the sequence {bn} satisfies the condition

∞∑

n=2

an|bn − α|
n−1∑

j=1

aj < ∞, (3)

then we have the following convergence result whose proof closely follows that of Robbins

and Monro (1951). The above condition together with (2) ensures that bn converges to α.

Moreover, because
∑n−1

j=1 aj increases with n, the convergence of bn to α should be fast enough

for (3) to hold.

Theorem 1 If (2) and (3) hold, then Zn →p 0.

Proof: We have

E(Z2
n+1|Zn) = Z2

n − 2anZn{M(Zn)− bn}+ a2
nE{(yn − bn)2|Zn}.

Let τ 2
n = E(Z2

n), dn = E[Zn{M(Zn)− bn}], and en = E{(yn − bn)2}. Then

τ 2
n+1 = τ 2

n − 2andn + a2
nen, (4)

5



which gives

τ 2
n+1 = τ 2

1 − 2
n∑

j=1

ajdj +
n∑

j=1

a2
jej. (5)

Since bn ∈ (0, 1) and yn = 0 or 1, we have 0 < en < 1 for all n. Thus 0 <
∑n

j=1 a2
jej <

∑n
j=1 a2

j .

Therefore by condition (2) the positive-term series
∑n

j=1 a2
jej converges.

We have

n∑

j=1

ajdj =
n∑

j=1

ajE[Zj{M(Zj)− bj}] =
n∑

j=1

ajE[Zj{M(Zj)− α}] +
n∑

j=1

aj(α− bj)E(Zj).

Since M is a distribution function and Ṁ(0) > 0, there exists δ and δ′ such that 0 < δ ≤

(M(z)− α)/z ≤ δ′ < ∞ for all z. This implies E[Zj{M(Zj)− α}] ≥ δE(Z2
j ) = δτ 2

j . Thus

n∑

j=1

ajdj ≥ δ
n∑

j=1

ajτ
2
j +

n∑

j=1

aj(α− bj)E(Zj).

Consider the magnitude of the second term on the right side,

|
n∑

j=1

aj(α− bj)E(Zj)| ≤
n∑

j=1

aj|α− bj||E(Zj)| <
n∑

j=2

aj|α− bj|
j−1∑

i=1

ai,

because Zn = Z1−∑n−1
j=1 aj(yj− bj) ⇒ |E(Zn)| < ∑n−1

j=1 aj. Also since τ 2
n+1 ≥ 0 for all n, from

(5) we get
∑n

j=1 ajdj ≤ (τ 2
1 +

∑n
j=1 a2

jej)/2. Thus

δ
n∑

j=1

ajτ
2
j ≤

n∑

j=1

ajdj −
n∑

j=1

aj(α− bj)E(Zj)

<
1

2
(τ 2

1 +
n∑

j=1

a2
jej) +

n∑

j=2

aj|α− bj|
j−1∑

i=1

ai.

The right side converges by condition (3) and therefore the positive-term series
∑n

j=1 ajτ
2
j

converges. Now

n∑

j=1

|ajdj| ≤
n∑

j=1

aj|E[Zj{M(Zj)− α}]|+
n∑

j=1

aj|α− bj||E(Zj)|

< δ′
n∑

j=1

ajτ
2
j +

n∑

j=2

aj|α− bj|
j−1∑

i=1

ai,
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Because the right side converges, the series
∑n

j=1 ajdj converges absolutely and hence the

series converges. Thus from (5), lim τ 2
n exists and is equal to τ 2

1−2
∑∞

j=1 ajdj +
∑∞

j=1 a2
jej. But

since 0 ≤ ∑∞
n=1 anτ

2
n < ∞ and

∑∞
n=1 an = ∞, this limit must be 0 and therefore Zn →p 0.

♦

There are infinite number of sequences for {an} and {bn} satisfying the conditions of the

Theorem 1. We are interested to find the particular sequence that gives the best convergence

properties. We propose to choose an and bn such that E(Z2
n+1) is a minimum subject to

the condition that E(Zn+1) = 0. Similar ideas of choosing two sequences to minimize the

conditional mean square error in sequential designs was employed by Hu (1997, 1998) in a

Bayesian framework.

We have

E(Zn+1) = E(Zn)− an[E{M(Zn)} − bn] = 0.

Because the sequence a1, · · · , an−1 and b1, · · · , bn−1 are obtained such that E(Z2) = · · · =

E(Zn) = 0, we obtain

bn = E{M(Zn)}. (6)

From (4), we have

τ 2
n+1 = τ 2

n−2anE[Zn{M(Zn)−bn}]+a2
n

(
[E{M(Zn)} − bn]2 + E{M(Zn)}[1− E{M(Zn)}]

)
.

(7)

Minimizing τ 2
n+1 with respect to an and using (6), we obtain

an =
E{ZnM(Zn)}

E{M(Zn)}[1− E{M(Zn)}] . (8)
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Unfortunately, the optimal sequences depend on the function M which is unknown to

the experimenter. Therefore the best we can do is to choose a function G that can closely

approximate the true function M and derive the sequences. The resulting Robbins-Monro

procedure is optimal only when M = G and approximately optimal otherwise. It can be

considered as an efficient procedure as long as the deviation of G from the true function is

not severe. The choice of an = {nṀ(0)}−1 is based on a linear approximation of M around

0, which is not good for a distribution function particularly in the tail areas.

Consider an approximation for M(z) given by,

G(z) = Φ{Φ−1(α) + βz}, (9)

where β = Ṁ(0)/φ{Φ−1(α)}, Φ is the standard normal distribution function, and φ its

density function. Now an and bn can be obtained from (6) and (8) using G(z) instead of

M(z). We also need the distribution of Zn to evaluate the expectations in (6) and (8). It is

easy to show that the density function of Zn+1 is

fZn+1(z) = {1−G(z − anbn)}fZn(z − anbn) + G{z + an(1− bn)}fZn{z + an(1− bn)}.

The fZn(z) can be recursively computed starting with fZ1(z). Let Z1 ∼ N(0, τ 2
1 ), so fZ1(z) =

1/τ1φ(z/τ1). Clearly the expectations in (6) and (8) are difficult to compute with this exact

distribution. Therefore we resort to approximation. It is quite natural to approximate the

distribution of Zn by N(0, τ 2
n) as the first two moments of the two distributions match exactly.

It turns out that this is a very good approximation as verified by plotting these functions
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for various values of α, τ1, and n. Using this approximation we obtain

bn = E{G(Zn)} =
∫ ∞

−∞
Φ{Φ−1(α) + βz} 1/τnφ(z/τn) dz = Φ

{
Φ−1(α)

(1 + β2τ 2
n)

1
2

}
,

and

an =
E{ZnG(Zn)}

E{G(Zn)}[1− E{G(Zn)}] =
1

bn(1− bn)

∫ ∞

−∞
z Φ{Φ−1(α) + βz} 1/τnφ(z/τn) dz

=
1

bn(1− bn)

βτ 2
n

(1 + β2τ 2
n)

1
2

φ

{
Φ−1(α)

(1 + β2τ 2
n)

1
2

}
.

Substituting in (7) we obtain τ 2
n+1 = τ 2

n − bn(1 − bn)a2
n, which shows that there is an im-

provement by moving from xn to xn+1. Let cn = βanbn(1 − bn) and νn = β2τ 2
n. Then the

optimal Robbins-Monro procedure can be written as

xn+1 = xn − cn

βbn(1− bn)
(yn − bn), (10)

where

cn =
νn

(1 + νn)
1
2

φ

{
Φ−1(α)

(1 + νn)
1
2

}
, bn = Φ

{
Φ−1(α)

(1 + νn)
1
2

}
and νn+1 = νn − c2

n

bn(1− bn)
, (11)

with ν1 = β2τ 2
1 . Note that cn and bn are sequences that can be specified before the ex-

periment. They can be easily computed once ν1 ∈ (0,∞) is specified. The procedure can

work only with a finite value of ν1, which implies that a noninformative prior for θ cannot

be used. Therefore the Bayesian formulation of the problem with a proper prior was very

crucial in the development of the above procedure. After n experiments the best estimate

of θ is xn+1. We can also get a (1− γ) credible interval for θ as xn+1±Φ−1(γ/2)τn+1, where

τn+1 = ν
1
2
n+1/β.

Proposition 1 As n →∞, νn → 0, bn → α, and cn → 0.
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Proof: From (11), we have

νn+1 = νn − ν2
n

1 + νn

I{ Φ−1(α)

(1 + νn)
1
2

}, (12)

where I(u) = φ2(u)/(Φ(u){1 − Φ(u)}) is the Fisher information of u in binary data with

probability of success equal to Φ(u). It is well known that 0 < I(u) ≤ 2/π. Thus νn+1 < νn

and νn+1 ≥ νn(1 − 2/π) ≥ ν1(1 − 2/π)n > 0 for all n. Hence the sequence {νn} converges.

Let h(νn) be the right side of (12). Then lim νn satisfies the equation ν = h(ν), for which 0

is a unique solution. Thus from (11), we obtain bn → α, and cn → 0. ♦

By Proposition 1 we have τ 2
n → 0 and therefore Zn →p 0 if M is equal to the normal

distribution function given in (9). We can expect the result to hold even when the true model

is different from it. Fortunately this hypothesis is true as stated in the following proposition.

Proposition 2 For the procedure in (10), Zn →p 0.

Proof: Let n∗ = 1/I{Φ−1(α)} and ν∗ = 1/I2{Φ−1(α)}. We have ḣ(0) = 1. Since ḣ(ν) is a

continuous function in ν, there exists a ν̄ ∈ (0, ν∗] such that ḣ(ν) > 0 for all ν ≤ ν̄. Also

since νn → 0, there exists an n̄ such that νn < ν̄ for all n ≥ n̄. Let ñ = max{dn∗e, n̄, dν∗/ν̄e}

and ν ′ = ñν̄, where dxe is the smallest integer greater than or equal to x. Thus νñ ≤ νn̄ <

ν̄ = ν ′/ñ. Suppose νn ≤ ν ′/n for some n ≥ ñ. Since ν ′ ≥ ν∗ > 1, we have for n ≥ ñ,

I{ Φ−1(α)

(1 + ν ′/n)
1
2

} ≥ I{Φ−1(α)} =
n∗ + ν∗

(n∗ + 1)ν∗
≥ n + ν∗

(n + 1)ν∗
≥ n + ν ′

(n + 1)ν ′
.

Since νn ≤ ν ′/n ≤ ν ′/ñ = ν̄ and h(ν) is increasing in ν for all ν ≤ ν̄, from (12) we get

νn+1 ≤ ν ′

n
[1− ν ′

n + ν ′
I{ Φ−1(α)

(1 + ν ′/n)
1
2

}] ≤ ν ′

n + 1
.
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Then by mathematical induction νn ≤ ν ′/n for all n ≥ ñ.

Let ν ′′ = min{1, ñνñ}. Then νñ ≥ ν ′′/ñ. Suppose νn ≥ ν ′′/n for some n ≥ ñ. Since

ν ′′ ≤ 1, we have I{Φ−1(α)/(1 + ν ′′/n)
1
2} < 1 ≤ (n + ν ′′)/((n + 1)ν ′′). Because ν ′′/n ≤ νn ≤

ν ′/n ≤ ν̄, from (12) we get

νn+1 ≥ ν ′′

n
[1− ν ′′

n + ν ′′
I{ Φ−1(α)

(1 + ν ′′/n)
1
2

}] ≥ ν ′′

n + 1
.

Then by mathematical induction νn ≥ ν ′′/n for all n ≥ ñ.

We have for all n ≥ ñ

an =
νn

β(1 + νn)
1
2

φ{Φ−1(α)/(1 + νn)
1
2}

Φ{Φ−1(α)/(1 + νn)
1
2}[1− Φ{Φ−1(α)/(1 + νn)

1
2}]

≤ ν ′

β(n2 + nν ′)
1
2

1/
√

2π

α(1− α)
≤ ν ′√

2πα(1− α)βn
,

and an ≥ ν ′′

β(n2 + nν ′′)
1
2

φ{Φ−1(α)}
1/2(1− 1/2)

≥ 4ν ′′φ(Φ−1(α))

β(n + 1)
.

Thus {an} satisfies (2). Also
∑n−1

j=1 aj = O(log n) as n →∞.

Using Taylor series expansion we obtain

bn = Φ{ Φ−1(α)

(1 + νn)
1
2

} = α− νn
Φ−1(α)

2
φ{Φ−1(α)}+ O(ν2

n).

Thus |bn − α| = O(1/n), which implies an|bn − α|∑n−1
j=1 aj = O(log n/n2) and therefore (3)

holds. Thus by Theorem 1, Zn →p 0. ♦

It is clear from (11) that bn always lies between α and 1/2. The consequence of this is

important. Even if we are interested in extreme quantiles, for small n, the optimal Robbins-

Monro procedure is operated as though we are interested in a quantile between α and LD50.

The search is moved closer to α as n gets larger (since bn → α). This is markedly different
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from the ordinary Robbins-Monro procedure in (1). Wetherill (1963) noted that the Robbins-

Monro procedure performs miserably for the estimation of small or large quantiles. This is

mainly because of the unequal up and down movements of the procedure. By using bn instead

of α this imbalance is somewhat mitigated. Consider an example of Wetherill. Suppose

α = 0.25 and the true model is a logistic function given by M(z) = {1 + 3 exp(−z)}−1.

Suppose that the experiment started exactly at θ. If we observe y1 = 1, which can happen

with probability 0.25, then x2 = θ−1/Ṁ(0)(1−0.25) = θ−4. Thus x2 is lower than θ. The

search will move up if we observe y = 0. Suppose we observed y2 = · · · = yn = 0, then

xn+1 = θ − 4 +
0.25

0.25× 0.75

(
1

2
+

1

3
+ · · ·+ 1

n

)
,

which crosses θ from below at n = 31. In other words, it will take at least 30 steps to get

back to the true value θ. Now consider the optimal Robbins-Monro procedure in (10). Here

β = Ṁ(0)/φ{Φ(0.25)} = 0.59. We select τ1 such that x2 is exactly the same as that in the

Robbins-Monro procedure. This value is given by 4.475. Now x7 = θ − 4 + 1.579 + 0.973 +

0.655 + 0.478 + 0.370 = θ + 0.055. Thus the sequence crosses θ from below in just 5 steps

as opposed to the 30 steps taken by the Robbins-Monro procedure. This example clearly

demonstrates the superiority of the optimal Robbins-Monro procedure over the Robbins-

Monro procedure.

Note that we require the value of Ṁ(0) to compute β. In practice, it is unlikely that the

experimenter will know the exact value of Ṁ(0) and the procedure has to be implemented

using a guess value of Ṁ(0). It is clear from the proof of Proposition 2 that the procedure

will work irrespective of the value of β. But the convergence can slow down if the guess
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value is far away from the true value. If a good guess cannot be made on Ṁ(0), one can

try to adaptively estimate it from the data by fitting a parametric model such as the one in

(9). For the Robbins-Monro procedure such an adaptive procedure under some truncation

rule gives the same asymptotic performance as that of the original procedure. See Lai and

Robbins (1979) and Wu (1985) for more details.

3. SIMULATIONS

We now compare the performance of the optimal Robbins-Monro procedure in (10) with

the Robbins-Monro procedure in (1) through simulations. For the Robbins-Monro procedure

an is taken as {nṀ(0)}−1, which is the standard choice. Six models are selected for the

simulation study:

Normal distribution: M(z) = Φ{Φ−1(α) + z},

Uniform distribution: M(z) =





0 , z < −3α

α + z/3 ,−3α ≤ z ≤ 3(1− α)

1 , z > 3(1− α)

,

Logistic distribution: M(z) = (1 +
1− α

α
e−z)−1,

Extreme value distribution: M(z) = 1− exp{log(1− α) ez},

Skewed logistic distribution: M(z) = (1 +
1−√α√

α
e−z)−2,

Cauchy distribution: M(z) =
1

2
+

1

π
tan−1{z + tan(πα− π/2)}.

These functions are plotted in Figure 1. Let θ = 0. We choose 20 samples to estimate θ.

Thus the best estimate of θ is x21. We let τ1 = 1 as the initial uncertainty, which means
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we are about 95% sure that the θ is in ±2 of the starting value x1. The starting value is

randomly generated from N(0, τ 2
1 ) and is used for both procedures. Then at different values

of α between 0.1 and 0.9, 1000 simulations were performed. The mean square error of x21

is calculated and is plotted in Figure 2. We see that the optimal Robbins-Monro procedure

performs uniformly better than the Robbins-Monro procedure with great improvement for

the extreme quantiles. The performance of the two procedures around LD50 is comparable,

which agrees with the findings of Wetherill (1963). Figure 3 shows the estimated density

curves for x21 for different α values with logistic distribution as the true model. It clearly

shows how the performance of the Robbins-Monro procedure deteriorates as we move towards

the extreme quantiles. The entire process is repeated with τ1 = 2, which gave essentially the

same conclusions.

This simulation study clearly demonstrate the superior performance of the optimal Robbins-

Monro procedure over the Robbins-Monro procedure. The optimal Robbins-Monro proce-

dure did a good job even for the estimation of extreme quantiles. The procedure appears to

be robust against the model assumptions as it performed well for a wide range of distribu-

tions.

4. CONCLUSIONS

It is well known that the Robbins-Monro procedure is not useful for the estimation

of extreme quantiles. One of the main reason for its failure is the use of the sequence

an = {nṀ(0)}−1. This choice is based on asymptotic results and is obtained using a linear

approximation to M , which is not good for a distribution function. We instead used a probit
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Figure 1: Distributions used in the simulation study (α = 0.5)

approximation and derived the optimal sequence. We also introduced another sequence {bn}

into the procedure to improve the convergence. The optimal procedure is given in (10). A

simulation study conducted using a wide range of distributions showed its superior perfor-

mance over the Robbins-Monro procedure. The improvement obtained for the estimation of

extreme quantiles is quite remarkable.
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Figure 2: Mean square error against α. RM: Robbins-Monro, ORM: Optimal Robbins-

Monro.
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