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1. Introduction 
 
Dynamic parameter design introduced by Taguchi (1987) is one of the most important 
tool in quality engineering. It is also known as parameter design in signal-response 
systems (Miller and Wu, 1996; Wu and Hamada, 2000, chapter 11). The name suggests 
that the interest lies in a signal-response relationship rather than a single value of the 
response. Taguchi’s approach to dynamic parameter design can be described as follows. 
Let Y be the response and M the signal factor. There exists an ideal relationship between 
the signal and the response given by MY Iβ= . In reality due to the presence of noise 
factors, deviations occur from this ideal function. Therefore a more realistic statistical 
model is 

εβ += MY ,      (1) 
where 0)( =εE , , and 2

0)( σε =Var ε  is a random error caused by the noise factors. 
The β and are functions of the control factors X. The objective of dynamic parameter 
design is to choose an X to make (1) as close to the ideal relationship as possible. 
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Taguchi introduced the following signal-to-noise (SN) ratio for evaluating the 
performance of the system, 
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which will be referred to as Taguchi’s SN ratio. In (2) β and  are estimated for each 
control run as 
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where  is the response value at control run i, signal level j, and noise level k. The SN 

ratio for the ith control run can be estimated as . Then an X is sought that 
maximizes the SN ratio. Next an adjustment parameter is used to adjust 
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β to its ideal 
value. The justification for the SN ratio was that when an adjustment parameter is used to 
adjust the value of β to Iβ , will change to  and therefore we should 
minimize  rather than . 
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In statistical literature there was some skepticism of using SN ratio indiscriminately to all 
problems. Miller and Wu (1996) classified the dynamic parameter design into 
measurement systems and multiple target systems. A third class of dynamic parameter 
design is on the optimization with functional response. Miller and Wu proved that SN 
ratio is a meaningful performance measure in measurement systems with linear 
calibration equation, but criticized its use in multiple target systems. Joseph and Wu 
(2002) gave a general formulation for multiple target systems and showed that  is the 
right performance measure under model (1). They derived a modified version of the SN 
ratio based on a different statistical model. Interestingly this SN ratio can be justified 
even without using the notion of an ideal function. On the other hand, no reasonable 
justification is available for the use of SN ratio in the functional response problem (Nair, 
Taam, and Ye, 2002). Performance measures and SN ratios for parameter design with 
control systems are developed in Joseph (2002). 
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In this article we will describe the application of SN ratio in the analysis of the multiple 
target systems. The exposition is mostly based on the work of Joseph and Wu (2002). We 
will derive an SN ratio as a performance measure independent of adjustment under some 
modeling assumptions. We will also present two modeling approaches known as response 
modeling and performance measure modeling for the analysis of dynamic parameter 
design experiments. This will be illustrated with a real experiment. 
 
 
2. Signal-to-Noise Ratio 
Let X be the set of control factors and Z the set of noise factors. Assume Y and M to be 
nonnegative variables taking values in [ )∞,0 . Let 
    ),,( MZXfY =
be the signal-response relationship. If this relationship passes through the origin, then as 
shown in Joseph and Wu (2002), we can approximate it as 

MZXY ),(β= . 
Let N denote the observable set of noise factors and U the unobservable set of noise 
factors. So . The observable noise factors are systematically varied in the 
experiment. Let 

{ UNZ ,= }
[ ] ),(|),,( NXNUNXEU ββ =  and [ ] ),(|),,( 2 NXNUNXVarU σβ = . 

Then we can use the following model 
εβ += MNXY ),( ,      (4) 

where 0)|( =NE ε  and . Consider the quality loss function 
, where T is the customer intent. Then 
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For a given T, we can set the signal factor to minimize the loss. Solving for M from 
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we get 
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Thus the expected loss at this optimal signal setting is 
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which can be called a signal-to-noise ratio. Then . Suppose W(T) 
is the distribution of the customer intent T. Then we want to find an 

))(1/(2* XSNTEL +=
DX ∈  to 

minimize  averaged over W(T), where D is the feasible region of X. Thus *EL
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This is equivalent of maximizing . Therefore can be considered as a 
performance measure independent of adjustment (PerMIA) for signal-response systems. 
This is an extension of PerMIA introduced by Leon, Shoemaker, and Kacker (1987) for 
static parameter design. See Leon and Wu (1992) for a theory on PerMIA. Thus the 
optimization procedure for multiple target systems can be stated as 
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1. Find DX ∈*  to maximize the signal-to-noise ratio 
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2. Adjust M, depending on T, as  
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The optimization in step 1 is sometimes carried out with some bounds on )(Xβ  (see 
Joseph and Wu (2002) for details). The adjustment in (8) can be interpreted as a 
shrinkage procedure as it results in a lower mean value than the target. The adjustment 
step could be modified as , so that the mean will be on target. It is easy to 
show that the step 1 remains the same even under this unbiased adjustment strategy.  
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The above modeling approach is known as response modeling. Another approach to 
parameter design is the performance measure modeling (see Wu and Hamada, 2000, 
chapters 10 and 11). This is  commonly used in Taguchi’s approach. It can be formulated 
as follows. Absorbing the observable noise into the error term,  (4) becomes 

εβ += MXY )( ,     (9) 
where 0)( =εE  and .  Now for a given control run , we can 
estimate 

22 )()( MXVar σε = iX
)( iXβ  and  using weighted least squares as )(2
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Note that the estimation procedure in (10) is markedly different from that of (3). The 
signal-to-noise ratio can be estimated as . This can be modeled (after a log 
transform) in terms of X and optimized. The above signal-to-noise ratio is different from 
(2) because the underlying models are different. The two models (1) and (9) are 
pictorially shown in Figure 1. In most cases as M reduces to 0, the variance also reduces 
to 0 and therefore model (9) is more reasonable than model (1). 
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Figure 1. Signal-Response Systems 

 
3. An Example 
We will illustrate the approach using a push-pull cable actuator experiment reported in 
Byrne and Quinlan (1993). This experiment was also analyzed in Tsui (1999). There 
were 11 control factors and one noise factor in the experiment. The input displacement is 
the signal factor and the output displacement is the response. The data from an 

 experiment is given in Table 1. )2,12( 11OA
 
Assume a normal error in model (4). Then using maximum likelihood estimation we get, 
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2 4875.8372.5738.5),(ˆlog xxNX +−−=σ ,    (11) 

108721 0627.0434.0278.0880.0457.5631.),(ˆ xxxxxNX −++++=β , (12) 
where the two levels of the variables are coded as –1 and 1. The proposed SN ratio in (6) 
becomes 
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Maximizing this with the variables restricted in the region 
, we get }11,...,1,11|{ =≤≤−= ixXD i
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If we use performance measure modeling, then we will get the model 
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which on maximization gives  The results of Taguchi’s signal-to-noise 
ratio analysis from (2) is 
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which gives the same conclusions as in the performance measure modeling. 
 
The response modeling approach is more informative and statistically valid. We see that 
the noise factor does not appear in (11) and (12). Therefore this was not a useful noise 
factor to experiment with. The variables  affect the variance and are therefore 
useful to make the cable actuator robust against unobserved noise variation. The variables 

 affect the sensitivity. Their levels are chosen to increase the sensitivity, 
thereby increasing the SN ratio. If a high sensitivity is undesirable, then some of these 
variables can be manipulated to achieve a desired sensitivity. 

62 , xx

10871 ,,, xxxx

 
Table 1. Data of the push-pull cable actuator experiment 
run 1110987654321 xxxxxxxxxxx  N M=8 M=16 M=24 
1 .−−−−−−−−−−−  -1 

+1 
4.97 
4.69 

5.19 
4.9 

5.41 
5.11 

10.05 
9.48 

10.49 
9.9 

10.94 
10.32 

13.28 
12.53 

13.95 
13.16 

14.62 
13.79 

2 ++++++−−−−−  -1 
+1 

4.0 
3.84 

4.27 
4.1 

4.54 
4.35 

7.2 
6.9 

7.74 
7.42 

8.27 
7.93 

8.56 
8.21 

9.37 
8.98 

10.18 
9.76 

3 +++−−−+++−−  -1 
+1 

4.46 
4.4 

4.65 
4.48 

4.84 
4.66 

9.04 
8.7 

9.41 
9.06 

9.79 
9.42 

11.78 
11.34 

12.35 
11.89 

12.91 
12.43 

4 +−−++−++−+−  -1 
+1 

5.0 
4.89 

5.14 
5.03 

5.28 
5.16 

9.59 
9.38 

9.86 
9.65 

10.14 
9.92 

13.66 
13.36 

14.07 
13.76 

14.48 
14.17 

5 −+−+−++−++−  -1 
+1 

6.0 
5.75 

6.27 
6.01 

6.54 
6.27 

12.1 
11.6 

12.64 
12.12 

13.18 
12.64 

18.2 
17.45 

19.01 
18.23 

19.82 
19.0 

6 −−+−++−+++−  -1 
+1 

3.86 
3.72 

4.0 
3.85 

4.14 
3.99 

7.7 
7.42 

7.98 
7.68 

8.26 
7.95 

10.5 
10.11 

10.92 
10.51 

11.33 
10.91 

7 −+−++−−++−+  -1 
+1 

4.04 
3.96 

4.23 
4.14 

4.42 
4.32 

7.29 
7.13 

7.66 
7.49 

8.03 
7.86 

8.72 
8.53 

9.28 
9.08 

9.84 
9.62 

8 +−−−+++−+−+  -1 
+1 

3.39 
3.2 

4.61 
3.41 

3.83 
3.62 

6.36 
6.0 

6.8 
6.42 

7.25 
6.84 

6.96 
6.57 

7.63 
7.2 

8.29 
7.83 

9 −−++−+++−−+  -1 
+1 

6.13 
6.0 

6.27 
6.13 

6.41 
6.27 

11.98 
11.72 

12.25 
11.99 

12.53 
12.26 

16.53 
16.17 

16.94 
16.58 

17.36 
16.98 

10 +−++−−−−+++  -1 
+1 

6.54 
6.27 

6.76 
6.48 

6.98 
6.69 

13.18 
12.64 

13.62 
13.06 

14.06 
13.48 

19.82 
19.0 

20.48 
19.64 

21.14 
20.27 

11 ++−−−+−+−++  -1 
+1 

4.89 
4.71 

5.08 
4.89 

5.27 
5.07 

10.28 
9.9 

10.65 
10.26 

11.03 
10.62 

15.15 
14.58 

15.71 
15.12 

16.27 
15.66 

12 −++−+−+−−++  -1 
+1 

3.28 
3.09 

3.55 
3.35 

3.82 
3.60 

6.53 
6.16 

7.07 
6.67 

7.61 
7.19 

8.73 
8.23 

9.54 
8.23 

10.36 
9.77 

 
4. Conclusions 
In this article we have shown that the dynamic signal-to-noise ratio in (6) can be justified 
as a PerMIA under some modeling assumptions. The signal-to-noise ratio derived is 
different from Taguchi’s proposal. We have also described two modeling approaches to 
parameter design. The response modeling is statistically more efficient than the 
performance measure modeling, which has a theoretical justification in Berube and Nair 
(1998). 
 
Joseph and Wu (2002) described strategies for analyzing nonlinear signal-response 
systems. Taguchi treats non-linearity as an error and tries to minimize it in his signal-to-
noise ratio optimization. However, some of the signal-response systems are inherently 



nonlinear and can work well with a non-linear signal-response relationship. Therefore 
forcing such systems to behave like a linear system will lead to sub-optimal solutions. 
Interestingly the model in (4) can still be used to analyze a nonlinear signal-response 
relationship by separating the lack-of-fit term. 
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