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Abstract

Loss functions play a fundamental role in every quality engineering method. A

new set of loss functions is proposed based on Taguchi’s societal loss concept. Its

applications to robust parameter design are discussed in detail. The loss functions are

shown to posses some interesting properties and lead to theoretical results that cannot

be handled with other loss functions.

Introduction

Quality is an abstract concept and is very difficult to have a precise definition. Crosby

(1979) views quality as “conformance to requirements”. Does he mean to say that a product

can be treated as a quality product only if it meets the requirements and inferior otherwise?

Conceptually it is more appealing to consider that the product has best quality when it

exactly meets the requirements and that it suffers a loss of quality when it deviates from

the requirements. This is inherent in Taguchi’s (1986) definition of quality, who states that

“quality is the loss a product causes to society after being shipped, other than any losses

caused by its intrinsic functions”. Furthermore Taguchi quantifies the deviations from the

requirements in terms of monetary units by using a quadratic loss function given by

L(Y ) = c(Y − T )2, (1)

1Dr. Joseph is an Assistant Professor in the School of Industrial and Systems Engineering. He is a
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where Y is the quality characteristic, T its target value, and c a cost-related numerical

constant. The quadratic loss function in Equation (1) can be justified as an approximation to

the true loss function using Taylor series expansion. The quality loss functions were a radical

change from the then prevailing concept of evaluating quality in terms of specifications. By

converting the abstract concept of quality into loss functions, we can develop quantitative

methods for quality control and improvement.

The quality characteristic in the above discussion is known as a nominal-the-best (NTB)

characteristic, because the quality is evaluated with respect to a nominal value T . Two other

types of quality characteristics are smaller-the-better (STB) and larger-the-better (LTB). An

STB characteristic is a nonnegative variable with target T = 0. Thus its loss function is

given by

L(Y ) = cY 2. (2)

An LTB characteristic is a nonnegative variable with target equal to a large value (infinity).

Here we cannot put T = ∞ in Equation (1). To circumvent this problem, Taguchi uses the

trick that, if Y is LTB, then 1/Y should be STB and therefore its loss function is given by

L(Y ) = c/Y 2. (3)

Although the quadratic loss function in (1) is a reasonable choice for many quality charac-

teristics, there are several situations where it is not appropriate. In the case of a time watch,

any deviations from the actual time, slow or fast, will result in a loss and the quadratic loss

function can be used to adequately model the loss. Whereas in the case of painting thickness

on a car body, there is no target specified by the customer and the manufacturer will have

to decide upon a target based on losses incurred by the painting thickness to the society.

Quadratic loss function is not the natural choice here.

Consider a nonnegative NTB characteristic. Because Y is restricted in the interval [0,∞],

we may think 0 and ∞ as equally bad to the society. Thus a function that assigns ∞ to

the loss when Y = ∞ should also assign ∞ to the loss when Y = 0. The quadratic loss

function in Equation (1) does not posses this property. This may not cause much problem if

the distribution of Y is concentrated away from 0, but not otherwise. Because most of the
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real physical variables are nonnegative in nature the above point demands special attention

and careful treatment.

Some of the quality characteristics such as the neck size of a ready-made shirt, the

amount of soft drink in a bottle, drug dose, etc. have asymmetric loss with respect to their

target value. Quadratic loss function as defined in Equation (1) cannot be used to model

such losses. Ironically, it is impossible to have a symmetric loss function for nonnegative

variables, because there is no mid point in [0,∞].

The estimation of the cost-coefficient c in Equation (1) is not a trivial task. The usual

technique is to guess the loss at some value of Y and then solve for the c from Equation

(1). This difficulty is mainly because of not having any physical interpretation for c. The

quadratic loss function is only a mathematical approximation to the true loss function. If a

loss function can be derived directly from the definition of quality, then the parameters in

that loss function will have some interpretation and will be easier to estimate.

Loss functions are widely used in statistics, economics, and other disciplines. Taguchi

is probably the first to apply them in the area of quality. Since then several authors have

proposed alternatives to Taguchi’s quality loss functions. Spiring (1993) has proposed an

inverted normal density function to model losses with finite maximum. Further work in this

direction can be found in Sun, Laramee, and Ramberg (1996) and Spiring and Yeung (1998).

Moorhead and Wu (1998) discusses a class of asymmetric quality loss functions.

The article is organized as follows. We first derive a new set of quality loss functions

for nonnegative variables based on Taguchi’s definition of quality. The loss function is then

compared with the quadratic loss function. Some examples where the new loss functions

seem more appropriate are presented. Its applications to quality engineering particularly to

robust parameter design, is discussed. A multivariate extension of the quality loss function

is proposed. Some concluding remarks are given at the end.
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Loss Functions

We will use Taguchi’s societal loss concept to derive some quality loss functions. Here

the society includes the manufacturer, customer, environment, and all others who directly or

indirectly come in contact with the product. Consider a nonnegative quality characteristic

(Y ) of the product taking values in [0,∞]. If Y is physically restricted in [a, b], 0 < a < b <

∞, then we should transform it to, say, (Y − a)/(b − Y ) so that the transformed variable

takes values in [0,∞]. Now define the three types of characteristics as follows:

• Y is an STB characteristic if all the members of the society wants Y to be as small as

possible.

• Y is an LTB characteristic if all the members of the society wants Y to be as large as

possible.

• Y is an NTB characteristic if some of the members of the society want Y to be as small

as possible and some others want it to be as large as possible.

Note that in the definition of NTB there are two groups of members with conflicting interests.

If a member wants Y to be neither large nor small, then that member is assigned to both

groups. We will see that a single target will be arrived as a compromise choice between these

two groups. The NTB case will be illustrated with some real examples in a later section.

Consider an STB characteristic. Let I be the set of members in the society and Li(Y )

be the loss caused by the product to member i. From the definition of STB characteristic it

is clear that Li(Y ) is an increasing function of Y for all i ∈ I. There are infinite number of

increasing functions, the simplest of which is the linear function Li(Y ) = CiY . Assume that

the loss is additive for each member. Then the total loss imparted to the society is given by

L(Y ) =
∑

i∈I

Li(Y ) =
∑

i∈I

CiY = cY. (4)

Similarly for an LTB characteristic choose Li(Y ) = Ci/Y . Then

L(Y ) =
∑

i∈I

Li(Y ) =
∑

i∈I

Ci/Y = c/Y. (5)
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This choice of loss function is more arbitrary, but the derived results are good to justify it.

For an NTB characteristic, let I1 and I2 represent the two groups (I = I1 ∪ I2), where Y is

STB for the members in I1 and LTB for the members in I2. Then

L(Y ) =
∑

i∈I1

Li(Y ) +
∑

i∈I2

Li(Y )

=
∑

i∈I1

CiY +
∑

i∈I2

Ci/Y

= c1Y + c2/Y. (6)

Note that (4) and (5) are special cases of (6) with c2 = 0 and c1 = 0 respectively. Therefore

in the future we can study the loss function in (6) without any reference to the type of

characteristic. Thus these loss functions are more congruent than Taguchi’s loss functions.

Define the target (T ) of a quality characteristic as

T = arg min
Y≥0

L(Y ).

Differentiating L(Y ) in Equation 6 with respect to Y and equating to zero we get a unique

solution for Y ∈ [0,∞],

T =
√

c2/c1. (7)

The minimum loss is L(T ) = 2
√

c1c2. For an NTB characteristic L(T ) > 0. This would

seem to suggest that it is better not to produce the product, because it imparts a loss to

society whatever the value of Y is! This is a confusion that is created by working with the

loss caused by the product instead of the utility of the product. If we assume the utility

function to be U(Y ) = K − L(Y ), with the constant K ≥ L(T ), then this problem will be

avoided. As a matter of convention, we may define the loss function as

L(Y ) = c0 + c1Y + c2/Y, (8)

where c0 is chosen so as to force the minimum loss to zero.

Here the choice of loss functions is mainly driven by mathematical simplicity. The true

loss functions could be different and complicated. So it is prudent to consider a more general

form of the loss function,

L(Y ) = c0 + c1Y
α1 + c2/Y α2 , (9)
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where α1 and α2 are positive constants. The α1 and α2 should be selected based on the

technical knowledge of the product. In the absence of any such knowledge we may have to

content with (8). The choice α1 = α2 = 2 is also of interest as it leads to Taguchi’s loss

functions for STB and LTB.

Comparison to Quadratic Loss Functions

When the target for the quality characteristic is specified before hand, we can impute

the cost ratio using (7) as c2/c1 = T 2. Substituting for c2 in (8) we get

L(Y ) = −2
√

c2
1T

2 + c1Y + c1T
2/Y

= c1T
(

Y

T
+

T

Y
− 2

)
(10)

= c1(Y − T )2/Y. (11)

Note the resemblance of (11) with the quadratic loss function in Equation (1). Expanding

(11) as follows,

L(Y ) =
c1(Y − T )2

T [1 + (Y − T )/T ]
=

c1

T

[
(Y − T )2 − (Y − T )3

T
+

(Y − T )4

T 2
− · · ·

]
(12)

for |Y − T | < T . Thus, when T is large and the distribution of Y is concentrated around

T , the behavior of L(Y ) in Equation (11) is close to the quadratic loss function in Equation

(1) with c1 = cT . Now consider a quadratic loss function with a logarithmic transformation

of Y .

Llog(Y ) = c(log Y − log T )2 (13)

Using Taylor’s series expansion

Llog(Y ) =
c

T 2

[
(Y − T )2 − (Y − T )3

T
+

11

12

(Y − T )4

T 2
− · · ·

]
. (14)

Comparing (12) and (14) we see that (13) gives a much better approximation to (11) with

c1 = c/T . These loss functions are plotted in Figure 1 with c1 = 1/T . As can be seen

that the quadratic loss function on log Y and the loss function in Equation (11) are almost

indistinguishable in the range [.5T, 2T ]. This should not be too surprising because the
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quadratic loss function is meant for unrestricted variables. The log function will transform

the nonnegative variables to unrestricted variables and therefore the quadratic loss function

on log Y should be comparable to a loss function such as (11) that is designed for nonnegative

variables.
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s
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(Y − T)2 YT

(logY − logT)2

(Y − T)2 T2

Figure 1: Comparison of loss functions

Some Examples

Consider the solder mask thickness (Y ) of a printed circuit board (PCB). The solder

mask prevents solder from being deposited on specific areas of the PCB during the hot air

leveling process and also functions as an insulator for the circuits. As the thickness of the

mask is reduced, the reliability of the PCB is reduced and therefore a customer will want

the thickness to be large. But as the thickness increases the amount of ink required in the

solder mask coating process increases, thereby increasing the manufacturing cost. This cost

increases linearly with the thickness. Thus the loss function for the thickness can be written

as in Equation (8), where c2/Y is an approximation to the customer’s loss and c1Y is the

manufacturer’s loss. Note that the manufacturer will eventually pass his loss to the customer

through product pricing, but we are not concerned with that because the total loss to the

society remains the same.
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Consider the design of a beam with rectangular cross section having width Y1 and thick-

ness Y2. The bending stress developed in the beam by a certain load is inversely proportional

to the moment of inertia Y1Y
3
2 /12. Therefore to avoid the bending failure we will want Y1Y

3
2

to be as large as possible. The cost of the beam increases linearly with its area Y1Y2. There-

fore the loss function is

L(Y1, Y2) = c0 + c1Y1Y2 +
c2

Y1Y 3
2

. (15)

Then for a given thickness L(Y1) = c
′
0 + c

′
1Y1 + c

′
2/Y1 and for a given width L(Y2) = c

′′
0 +

c
′′
1Y2 + c

′′
2/Y 3

2 .

As another example, consider the amount of milk (Y ) filled in a bottle. For the customer,

the amount of milk is an LTB characteristic. But as Y increases the cost of the product

increases linearly. Therefore we can use

L(Y ) = c0 + c1Y +
c2

Y
= c1T

(
Y

T
+

T

Y
− 2

)

to model the loss, where T is the target for Y . It is a well known fact that the loss of under-

filling is more than that of over-filling. The above loss function captures this behavior. The

asymmetric loss can also be modeled using a skewed quadratic loss or absolute loss function

(Taguchi, 1986; Moorhead and Wu, 1998), but with these modifications the mathematical

simplicity possessed by the quadratic loss function is lost.

In the above examples the material cost played a prominent role. This is not related to

the loss caused by the product “after being shipped”. Therefore this approach is a slight

departure from Taguchi’s definition of quality. In our formulation, we include all the losses

to the society relating to the quality characteristic of the product from its manufacturing to

the end of its life cycle.

Estimation of Loss Function

It is usually difficult to accurately estimate the cost coefficients c1 and c2 in Equation

(8). The commonly used approach is to guess the loss at some values of Y and solve for c1

and c2. Suppose L1 is the loss at Y = y1 and L2 is the loss at Y = y2. Then, we obtain

c1 =
(
√

L1y1 −
√

L2y2)
2

(y1 − y2)2
and c2 =

(y2

√
L1y1 − y1

√
L2y2)

2

(y1 − y2)2
.
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If one can assume a reasonable target for Y , then we can set y2 = T and L2 = 0 in the above

formulas to obtain c1 = L1y1/(y1 − T )2 and c2 = c1T
2. In some cases c1 or c2 posses some

physical interpretation and therefore can be directly estimated. We illustrate such a case

with the solder mask thickness example discussed earlier. In this example we know that c1 is

related to the material cost. Suppose the cost of the ink is USD 100/litre. If the area of the

PCB is 500 cm2, then c1 can be estimated as 500× 100/103 × 1/104 = 0.005 USD/microns.

Direct estimation of c2 is difficult. Suppose a thickness of 15 microns is reasonable. Then as

in Equation (11) the loss function can be written as L(Y ) = .005(Y −15)2/Y . If a quadratic

loss function is used instead, then L(Y ) = c(Y − 15)2. Here the estimation of c is very

difficult because it does not have any physical interpretation as c1 has.

Applications to Quality Engineering

The quality engineering activities are aimed at making the quality loss zero. Because

Y is random, L(Y ) is also random and therefore we could state this mathematically as to

make L(Y ) = 0 with probability 1. A necessary and sufficient condition for this is to make

E[L(Y )] = 0 as can be seen from the Markov’s inequality: for all ε > 0, P{L(Y ) > ε} ≤
E[L(Y )]/ε. For the quadratic loss function in (1), E[L(Y )] = c[(E(Y ) − T )2 + V ar(Y )].

Thus to make the expected loss zero, we will aim at reducing variation to zero while keeping

the mean at target. Because of the wide spread applications of quadratic loss functions,

variation reduction became synonymous to quality improvement. With the new loss function

in Equation (8) the statistics for control and optimization will be related to E(Y ) and E(1/Y )

rather than E(Y ) and V ar(Y ). In the next section we will explain in detail the impact of

the new loss function on robust parameter design.

Screening of products with respect to a specification limit [T1, T2] is a technique that is

different from other quality engineering methods. Screening changes the shape of the loss

function whereas the other techniques change the distribution of Y . Suppose r1 and r2 are

the rejection/rework costs when Y is below T1 and above T2 respectively. If r1 and r2 are

9



independent of Y , then the loss function after screening is given by

La(Y ) =





r1 , Y < T1

c0 + c1Y + c2/Y , T1 ≤ Y ≤ T2

r2 , Y > T2

.

This is shown in Figure 2.
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Figure 2: Effect of screening

Robust Parameter Design

In this section we investigate the applications of the new loss functions to robust pa-

rameter design. Robust parameter design is one of the most important tools for quality

improvement. The basic idea is to find a setting for the control factors in the system to

make the output insensitive to the noise variation.

STB and LTB Problems

The STB and LTB characteristics arise occasionally in robust parameter design exper-

iments. For examples, Quinlan (1985) reported a case study on speedometer cable casing

for reducing post-extrusion shrinkage, Byrne and Taguchi (1987) described a case study on

assembly of elastometric connector to a nylon tube for maximizing the pull-off force, etc.
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Let X be the set of control factors. The objective is to find an X ∈ D to minimize

E[L(Y )], where D is the decision region of X. From Equation (4), the performance measure

to minimize for an STB characteristic is given by

PM = E(Y ). (16)

The PM can be estimated by Y . If Taguchi’s loss function is used, then E(L) = c[E2(Y ) +

V ar(Y )]. Thus both mean and variance are simultaneously minimized. Box(1988) argued

that the STB and LTB problems are mainly concerned with “location” and the analysis of Y

would suffice to solve the problem. A two-step procedure of first minimizing E(Y ) and then

V ar(Y ) was suggested by Tsui and Li (1994). In many real cases minimizing the mean of

a nonnegative variable will also minimize the variance and therefore it is unlikely that these

procedures will lead to conflicting results.

Similarly from Equation (5), the performance measure to minimize for an LTB charac-

teristic is given by

PM = E(1/Y ), (17)

which can be estimated by (1/Y ). It is important to note that minimizing (1/Y ) and

maximizing Y are different. As argued before, in most real cases the former will lead to a

smaller variance of Y (since V ar(Y ) ∝ V ar(1/Y )) while the latter can lead to a setting that

increases variance of Y .

Multiple Target Systems

Multiple target systems arise when the response can take several targets specified by the

customer. The different targets are achieved by changing a factor in the system, known

as signal factor. For example, in the braking system of an automobile different stopping

distances can be achieved by changing the force on the pedal, different plating thicknesses

in an electro-plating process can be achieved by changing the plating time, etc. The robust

parameter design of multiple target systems is also known as dynamic parameter design, see

Miller and Wu (1996) and Joseph and Wu (2002a,b) for a detailed discussion. (We will study

the NTB problem as a special case in the next section.) Let M be the signal factor and Z
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the set of noise factors. Consider the following model,

Y = β(X,Z)M. (18)

Under the assumption that the costs are independent of the control factor setting, for the

purpose of optimization, the loss function in Equation (10) can be taken as

L(Y ) =
Y

T
+

T

Y
.

We will now derive the performance measure independent of adjustment (PerMIA). See

Leon, Shoemaker, and Kacker (1987) and Leon and Wu (1992) for details on PerMIA and

Joseph and Wu (2002a,b) for its extension to dynamic parameter design. Note that we did

not consider PerMIAs in STB and LTB problems because no adjustment parameter exists

in those problems.

For a given customer intent T , the expected loss is

EZ(L|T ) =
1

T
EZ(Y |T ) + TEZ(1/Y |T )

=
M

T
EZ(β) +

T

M
EZ(1/β).

We can set the signal factor to minimize this loss. Solving M from

1

T
EZ(β)− T

M2
EZ(1/β) = 0

we get

M∗ = T

√√√√EZ(1/β)

EZ(β)
. (19)

Thus depending on the customer intent T , the signal factor will be adjusted based on (19).

Then the expected loss at this optimal setting is

EZ(L∗|T ) = 2
√

EZ(β)EZ(1/β).

Thus by smoothing,

E(L∗) = ET [EZ(L∗|T )] = 2
√

EZ(β)EZ(1/β).
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Minimizing E(L∗) is equivalent to minimizing the performance measure

PM(X) = EZ(β)EZ(1/β). (20)

The procedure can be summarized as

1. Find X∗ ∈ D to minimize PM(X) in Equation (20).

2. Adjust M depending on T as M = T
√

EZ(1/β(X∗,Z))
EZ(β(X∗,Z))

.

The above optimization procedure can be implemented using a response modeling ap-

proach or by using a performance measure modeling approach. See Wu and Hamada (2000,

Chapter 10 and 11) for details. If the noise factors have random levels in the experiment,

PM can be estimated as

ˆPM =
1

n

n∑

i=1

Yi

Mi

1

n

n∑

i=1

Mi

Yi

, (21)

where the average is taken over the noise levels. By Jensen’s inequality E(1/β) ≥ 1/E(β),

which implies that log PM(X) is always nonnegative. Therefore when using linear models,

we may fit log log ˆPM in terms of X.

We will now compare this approach with that of the quadratic loss function. Using

PerMIA theory it is easy to show that the performance measure to maximize is equivalent

to

SN(X) =
E2

Z(β)

V arZ(β)
, (22)

and the optimal signal setting is given by

M∗ = T
EZ(β)

E2
Z(β) + V arZ(β)

. (23)

The SN in (22) can be considered as a signal-to-noise ratio. Using Taylor’s series expansion

PM(X) = EZ(β)

(
1

EZ(β)
+

V arZ(β)

E3
Z(β)

+ · · ·
)

= 1 +
V arZ(β)

E2
Z(β)

+ · · · ≈ 1 +
1

SN(X)
.

Thus minimizing PM is approximately equivalent to maximizing SN . After the optimal

signal setting in (23) the mean of Y will be

EZ(Y |T ) = T
E2

Z(β)

E2
Z(β) + V arZ(β)

≤ T.
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Thus the mean is adjusted to a value lower than the target. This shrinkage property was

observed by Leon, Shomaker, and Kacker (1987), Box (1988), and Leon and Wu (1992) in

the case of NTB characteristics. Under the signal setting given by (19) the mean of Y will

be

EZ(Y |T ) = T
√

EZ(β)EZ(1/β) ≥ T.

Thus the mean adjustment is in the opposite direction. But when the variation is small,

both will be close to T . Interestingly both the performance measures PM and SN remain

the same even under an unbiased adjustment strategy M∗ = T/EZ(β).

NTB Problem

The NTB problem can be considered as a special case of multiple target systems with

the customer intent taking a single target. Suppose there exists a signal factor (also known

as scaling factor in NTB problems) outside the set of experimental factors. For example, in

the famous Ina tile experiment by Taguchi (1986), the mould dimension can be used as a

signal factor to achieve the desired tile dimension, even though the mould dimension is not a

factor in the experiment. Suppose all the experiments were carried out at a fixed M = M0.

Then from (20) we obtain the PerMIA as

PM(X) = EZ(βM0)EZ(
1

βM0

)

= EZ(Y )EZ(1/Y ), (24)

and its sample analog is

ˆPM =
1

n

n∑

i=1

Yi
1

n

n∑

i=1

1

Yi

. (25)

From (16), (17), and (24) we see that

log PMNTB = log PMSTB + log PMLTB.

This is an interesting result because, although the loss functions are additive, the performance

measures are log-additive.

Thus to solve an NTB problem using performance measure modeling approach, model

η = log log ˆPM and

ν = log

√√√√
1
n

∑n
i=1 Yi

1
n

∑n
i=1 1/Yi
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in terms of X. Now the two-step optimization can be stated as

1. Find X∗ ∈ D to minimize η(X).

2. Adjust M to M0T exp(−ν(X∗)).

The definition of ν and the adjustment step are based on (19).

If there exists no signal factor outside the set of experimental factors then we have two

options. The first option is to still use (25), hoping that a signal factor is present among the

experimental factors. We can try to identify the signal factor from X using ν(X) because

signal factor should have a large effect on it but less effect on η(X). Then the identified signal

factor can be adjusted so that ν(X) is equal to log T . This approach may fail if there is no

such factor. The second option is to find the control factor setting by directly minimizing

the expected loss
1

n

n∑

i=1

Yi

T
+

1

n

n∑

i=1

T

Yi

.

We have already noticed that the loss function in Equation (11) is close to a quadratic

loss function with a log-transform on Y . Interestingly the results of robust parameter design

is exact if Y follows a log-normal distribution, which is evident from the following two

equations:

E [log Y ] = log

√√√√ E(Y )

E(1/Y )
and V ar [log Y ] = log [E(Y )E(1/Y )] .

Noise Factor Compounding

Noise factor compounding is a technique introduced by Taguchi (1986) to reduce the

number of runs in robust parameter design experiments. This technique can be justified as

follows. Under the loss function in Equation (9), the ˆPM in Equation (25) becomes

ˆPM =

(
1

n

n∑

i=1

Y α1
i

)1/α1
(

1

n

n∑

i=1

1

Y α2
i

)1/α2

.

Suppose large values of α1 and α2 are meaningful. Then taking the limit α1, α2 →∞ we get

ˆPM =
maxi Yi

mini Yi

.
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Thus we need only the maximum and minimum values of Y to compute the performance

measure. If we know the effect of noise factors before hand, we can compound them into

two levels

N1 = noise settings to minimize Y,

N2 = noise settings to maximize Y.

Thus the performance measure can be computed from the two compounded noise levels

instead of repeating the experiment at n noise levels. Noise factor compounding is a useful

technique in robust parameter design experiments which cannot be mathematically justified

using quadratic loss functions. Some theoretical properties and limitations of noise factor

compounding technique are studied in Hou (2002).

Multivariate Loss Function

Often the quality of a product is expressed using more than one characteristics Y1, · · · , Yp.

We will call two characteristics “non-interacting” with respect to loss, if the loss caused by

one characteristic is independent of the other. Thus if Y1, · · · , Yp are non-interacting, then

the total loss will be

L(Y1, · · · , Yp) =
p∑

i=1

Li(Yi) = co +
p∑

i=1

c1iYi +
p∑

i=1

c2i/Yi. (26)

In the beam example considered before the two variables width and thickness “interact”

with respect to loss and therefore the total loss cannot be given by Equation (26). A more

general loss function than Equation (26) is

L(Y1, · · · , Yp) =
∑

i1

· · ·∑
ip

ci1,···,ipY
i1
1 · · ·Y ip

p , (27)

where i1, · · · , ip ∈ {0, 1,−1}. As a special case if Y1 is STB and Y2 is LTB, then the loss

function reduces to

L(Y1, Y2) = c1,0Y1 + c1,−1Y1/Y2 + c0,−11/Y2.

For a real example, consider the image transfer process in PCB manufacturing. By exposing

to ultra violet rays using a negative type photo-tool, the circuitry portion of the dry film
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photo-resist gets polymerized but the non-circuitry portion remains intact. If the circuitry

portion is not hardened enough it will be washed-off during developing and leads to “opens”

in the circuits. Therefore the degree of polymerization on the circuitry portion of photo resist

(Y1) is an LTB characteristic. Y1 can be increased by exposing for more time. But then the

non-circuitry portion will also get exposed, which will lead to “shorts” in the circuits. The

degree of polymerization on the non-circuitry portion of the photo-resist (Y2) is thus an STB

characteristic. Although Y1 and Y2 will be positively correlated they can be considered to

be non-interacting with respect to the loss and therefore the loss is given by

L(Y1, Y2) = c1/Y1 + c2Y2.

It is generally true that a process should not be attempted to optimize with respect to only

STB or only LTB type characteristics. It should be optimized using a combination of both

STB and LTB characteristics or by using an NTB characteristic. In the above example if

only Y1 were considered for optimization, then we might succeed in solving the opens problem

but might end up in a situation with full of shorts. See Joseph and Wu (2002) for a real

application of the above loss function.

The multivariate generalization of quadratic loss functions and its applications to ro-

bust parameter design are discussed in Pignatiello (1993) and Tsui (1999). Its applications

to multivariate process control are studied in Tsui and Woodall (1993). These multivari-

ate quadratic loss functions consider only up to the second order interactions between the

characteristics. The loss function in Equation (27) include up to the pth order interactions.

Conclusions

In this article we have introduced a new set of loss functions for nonnegative variables.

Some examples are presented to demonstrate the advantages of these loss functions over the

quadratic loss functions. The new loss functions under some modeling assumptions lead to

simple performance measures for robust parameter design. They also lead to some theoretical

results that cannot be handled effectively by other loss functions. No attempt is made here

to claim that these loss functions are uniformly better than other loss functions. They are

17



presented as an alternative choice that a quality practitioner should keep in mind and use

depending on the problem in hand.
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