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ACRONYMS3

PCB printed circuit board

OA orthogonal array

NOTATION

β(X,N ) average rate of degradation

βij β(X i,N j(i))

βij (Dij0, βij)
′

µ̂i estimate of the mean of the log-lifetime at run i

λ threshold for the failure

τ intended lifetime

σ(X,N ) measure of variation of the degradation rate

σ2
e var(et)

σ2
ij σ2(X i,N j(i))

log σ̂2
i estimate of the log-variance of the log-lifetime at run i

Ψij σ2
ijR + σ2

eIn

| · | determinant of a matrix

D0(X,N ) true initial value of the degradation characteristic

Dt true value of the degradation characteristic at time t

Dij0 D0(X i,N j(i))

et measurement error at time t

E0(X) E{D0(X,N)}
E1(X) E{β(X,N )}

F an n× 2 matrix defined as [1, t], where 1 = (1, · · · , 1)′

In n× n identity matrix

3The singular and plural of an acronym are always spelled the same.
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L(Yt) quality loss of the product when the degradation characteristic is equal to Yt

l log-likelihood

N product noise factors

N j(i) product noise factors in the product j used in run i

Qt environmental noise factors

R an n× n matrix with elements Rij = min(ti, tj)

TL
∫ τ
0 L(Yt) dt

Tij lifetime of product j at run i

t (0, t2, · · · , tn)′

V0(X) var{D0(X,N)}+ σ2
e

V1(X) E{σ2(X,N)}+ 2cov{D0(X,N ), β(X,N )}
V2(X) var{β(X,N )}
W (Qt) zero mean noise term that depends on the environmental noises

X control factors

X i control factor setting in run i

Yt measured value of the degradation characteristic at time t

yijk degradation measurement at run i, product j, and time tk

yij (yij1, · · · , yijn)′
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I. INTRODUCTION

Designed experiments are widely used in industries for quality improvement. However,

not much work have been done on applying it to reliability improvement. A designed ex-

periment can be used to efficiently search over a large factor space affecting the product’s

performance, and identify their optimal settings in order to improve reliability. Several case

studies are available in the literature; for examples, an experiment to improve the lifetimes

of router-bits is reported in [1], and an experiment to improve the reliability of an automatic

vending machine is reported in [2]. They clearly demonstrate the importance of design of

experiments for reliability improvement. A recent review on this topic is given by [3].

In general, reliability improvement experiments are more difficult to conduct than the

quality improvement experiments. This is mainly due to the difficulty of obtaining the data.

Reliability can be defined as quality over time [4], and therefore in reliability improvement

experiments we need to study the performance of the product over time as opposed to just

measuring the quality at a fixed point of time. Two types of data are usually gathered

in reliability experiments: lifetime data, and degradation data. Lifetime data gives the

information about the time-to-failure of the product. In the degradation data, a degrada-

tion characteristic is monitored throughout the life of the product. Thus, they provide the

complete history of the product’s performance in contrast to a single value reported in the

lifetime data. Therefore, the degradation data contain more information than the lifetime

data. Moreover, one can obtain the lifetime data from the degradation data by defining the

failure as the condition when the degradation characteristic crosses a certain threshold value.

For examples, a fluorescent light bulb can be considered as failed when the luminosity of the

light bulb falls below a certain value [5], and a metal can be considered as failed when the

fatigue crack-size grows above a certain value [6].

This article focuses on reliability improvement experiments with degradation data. Some

examples are the fluorescent lamp experiment [5], and the light emitting diodes experiment

[7]. These experiments differ from the usual quality improvement experiments on various

aspects. The most important of them is that the degradation measurements from the same
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product are correlated over time. This demands a different type of modeling than the ones

used in quality improvement studies. Another important feature of degradation data is that

the variance of the degradation characteristic has a special structure which is very different

from that of a quality characteristic. Due to these reasons, we propose a new classification of

the noise factors, and develop a suitable model for the degradation characteristic. There are

different approaches to modeling [8], [9], such as the cumulative damage models [10], multi-

state models [11], and Brownian motion models [12], [13]. This article uses the Brownian

motion model.

There are some similarities between reliability improvement, and quality improvement.

Generally speaking, improving the quality will also improve the reliability [14]. But this may

not be true always. For example, suppose in a printed circuit board (PCB) manufacturing

industry, tin plating is a more stable process than gold plating. Therefore in terms of

improving quality, the industry should prefer tin plating compared to gold plating, because

a better platted thickness can be achieved using tin plating. On the other hand, during

customer usage, the tin will wear out faster than gold, and therefore the gold-plated PCB will

have higher reliability. Therefore, gold plating should be preferred for improving reliability.

Thus, the choice that is good for quality need not always be good for reliability. Because

of this reason, the procedure for finding the optimal setting of the factors should consider

both quality & reliability, and their interaction. This is not well addressed in the literature.

We will develop a new optimization procedure to achieve combined quality & reliability

improvement.

As a real example, consider the window wiper switch experiment reported in [15](Chapter

12). The experiment uses an OA(8, 4124) to study one four-level factor (A), and four two-

level factors (B–E). Four switches are available for each of the eight runs. For each switch,

the initial voltage drop across multiple contacts is recorded (i.e, first inspection), and then

recorded every 20,000 cycles thereafter up to 180,000 cycles, resulting in 10 inspections. The

experiment layout, and the data on voltage drop are given in Table I. In this article, we

will develop a methodology to analyze such data from designed experiments, and to find the

optimal setting for the factors.
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Table 1: Design Matrix, and Voltage Drop Data for the Wiper Switch Experiment.

Run Factor Inspection
A B C D E 1 2 3 4 5 6 7 8 9 10

1 0 − − − − 24 37 40 65 72 77 90 101 117 128
22 36 47 64 71 86 99 118 127 136
17 34 40 52 66 79 91 98 115 119
24 30 38 46 57 71 73 91 98 104

2 0 + + + + 45 60 79 90 113 124 141 153 176 188
51 68 84 104 122 136 148 166 191 197
42 58 70 82 103 119 128 143 160 175
41 56 56 70 81 89 98 108 113 128

3 1 − − + + 28 40 56 69 87 86 110 121 132 146
46 50 81 95 114 130 145 161 185 202
45 54 79 90 111 132 143 168 185 202
37 58 81 99 123 143 166 191 202 231

4 1 + + − − 54 51 64 66 78 84 90 93 106 109
47 45 50 53 58 57 61 55 61 66
47 54 63 68 70 77 88 86 91 102
53 55 66 68 91 90 98 104 118 120

5 2 − + − + 18 35 48 56 65 81 89 98 117 124
20 37 52 53 67 75 85 95 112 122
32 54 76 98 119 143 158 181 205 231
28 39 54 73 89 98 117 127 138 157

6 2 + − + − 44 50 48 46 55 63 65 71 68 76
43 44 55 56 58 62 66 66 72 72
40 46 45 49 55 62 61 61 64 66
55 67 73 75 91 88 102 111 115 119

7 3 − + + − 39 47 58 72 84 104 109 129 143 154
29 42 55 67 82 91 104 117 130 136
36 45 56 80 93 101 121 138 154 170
31 40 60 72 82 98 103 117 130 146

8 3 + − − + 61 67 69 86 86 88 95 103 107 118
68 75 82 90 95 109 107 118 120 133
60 72 85 84 87 98 99 111 113 125
65 68 69 75 79 84 95 96 101 100
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The article is organized as follows. In Section II, a classification of the factors affecting

the product is described. A systematic development of the Brownian motion model is given

in Section III. The optimization procedures are developed in Section IV, and estimation pro-

cedures are developed in Section V. In Section VI, the new approach is applied to analyze the

window wiper switch experiment, and comparisons are made with the existing approaches.

Some concluding remarks are given in Section VII.

II. CLASSIFICATION OF FACTORS

In robust parameter design, factors are classified as control, and noise factors. Control

factors can be easily controlled, but noise factors are either difficult or impossible to control

during normal user conditions. Different types of noise factors are discussed in [16] & [15]

(Chapter 10). For use in reliability experiments, we classify the noise factors into two groups:

product noise, and environmental noise (see also [17]). Product noise factors are those factors

that vary from product to product. For example, the resistance of the filament in a light

bulb will be different from unit to unit. Environmental noise factors are those factors that

vary during the usage of the product. For example, temperature, and humidity around the

light bulb can vary during its usage. We make this classification because, as we will see, the

variations introduced by the two types of noise factors on the degradation characteristic have

different structures. In this article, we use X to denote the control factors, N to denote the

product noise factors, and Qt to denote the environmental noise factors. Note that we index

the environmental noise factors using the time t because they vary over time. Also, there

will be some measurement error in the degradation characteristic due to the limitation of the

measurement system. Let et denote the measurement error on the degradation characteristic

at time t. The classification of the factors, and their notations are shown in Figure 1.
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Noise Factors System

Product Noise (N)

Enviromental Noise (Q
t
)

Degradation

Characteristic (Yt)

Control Factors (X)
Measurement

Error (et)

Dt

Figure 1: Classification of Factors.

III. MODELING

Let Dt be the true value of the degradation characteristic at time t, and Yt be the

measured value. Therefore, Yt = Dt + et, where et is the measurement error. Assume that et

are independent over time with E(et) = 0, and var(et) = σ2
e . In addition, assume that the

average degradation rate, may be after a suitable transformation of the original degradation

characteristic, is a positive constant. But we allow the constant to depend on the control,

and product noise factors. We assume the following model:

dDt

dt
= β(X,N) + σ(X,N )W (Qt),

where β(X, N) is the average rate of degradation, σ(X,N ) is a measure of variation of the

degradation rate, and W (Qt) is the zero mean error term that depends on the environmental

noises. To ensure a positive degradation rate, we assume that β(X,N ) > 0. The above

model will lead to a linear degradation path with some random perturbation. Some of

the degradation paths can be nonlinear, in which case appropriate transformations on the

degradation characteristic should be made before using the above model (see [5] & [18] for

some real examples).

Let D0(X,N) be the true value of the degradation characteristic at the beginning of the

experiment. Then, after time t, the degradation measurement will be

Yt = D0(X,N ) +
∫ t

0
β(X,N)ds +

∫ t

0
σ(X, N)W (Qs)ds + et,
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We assume {Qt} to be a white-noise process. Thus we expect the effect of environmental

noises on the degradation characteristic in non-overlapping time intervals to be i.i.d. It is

well-known that for small ∆t, (Bt+∆t−Bt)/∆t behaves like a white-noise process, where Bt

is a standard Brownian motion. Therefore, it is reasonable to take W (Qt)dt = dBt. Then,

Yt = D0(X,N ) + β(X,N )t + σ(X,N )Bt + et. (1)

This is similar to the Brownian motion model used in the literature [12]. The major difference

from the existing work is that here we explicitly model the parameters as functions of the

control & noise factors. Another difference is the distinction we make on the two types of

noise factors. It is now clear that the randomness in the degradation measurement introduced

by Bt is due to the environmental noise factors. This has important consequences, which

will be discussed later. The first term in Equation (1) represents the quality of the product.

Thus a quality improvement program will focus only on D0(X,N), whereas optimizing on

Yt will result in both quality & reliability improvement for the product.

Because E(Bt) = 0, var(Bt) = t, and cov(Bt1 , Bt2) = min(t1, t2), we obtain

E(Yt|N) = D0(X, N) + β(X,N)t

var(Yt|N) = tσ2(X, N) + σ2
e

cov(Yt1 , Yt2|N) = min(t1, t2)σ
2(X,N ) for t1 6= t2.

Now taking the expectation & variance over the distribution of N , we obtain

E(Yt) = E{E(Yt|N )}
= E{D0(X,N )}+ E{β(X,N )}t,

(2)

and

var(Yt) = E{var(Yt|N )}+ var{E(Yt|N )}
= E{σ2(X,N )}t + var{D0(X,N)}
+ 2cov{D0(X, N), β(X, N)}t + var{β(X, N)}t2 + σ2

e .

(3)

It can be seen that the variance is a quadratic function of time. Note that the term

E{σ2(X, N)}t is due to the environmental noise factors, and the term var{β(X,N )}t2
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is due to the product noise factors. To see this, consider the model with no product noise

factors. Then the variance will increase linearly with t, which is due to the environmental

noises. On the other hand, if we consider the model with no environmental noise factors,

we will get the quadratic term in the variance (ignoring the covariance term), which is due

to the product noise factors. Thus, the environmental noise factors introduce variations in

Yt that are proportional to t, whereas the product noise factors introduce variations that

are proportional to t2. Therefore, when t is large, we should worry more about the product

noise factors than the environmental noise factors. Thus, by splitting the total variation

with respect to the product & environmental noise factors, we are able to understand the

variation pattern better, and will be able to pay more attention to the right type of factors

for reliability improvement, which is clearly an advantage of our approach compared to the

existing methods. This will be demonstrated through an example in a later section.

IV. OPTIMIZATION

Assume that Dt is nonnegative & increasing with t. Then Dt is a smaller-the-better

characteristic. Let λ be the threshold for the failure, which means the product fails when

Dt > λ. It is very common in the reliability literature to assume that the product imparts

a loss when it fails, and no loss when it functions. But this is not a realistic assumption. In

most cases, the loss should increase over time, because the product performance deteriorates

with time. We can use the measurement of the degradation characteristic as an indicator of

the product’s performance. Let L(Yt) be the quality loss of the product when the degradation

characteristic is equal to Yt. Let τ denote the intended lifetime of the product. Then, the

total loss can be defined as

TL =
∫ τ

0
L(Yt) dt.

Note that the product may fail before τ , and there are no degradation measurements after

it had failed. Therefore TL should be viewed as the total loss if the products were to

function until τ . There are several choices for the loss functions. One meaningful choice is

L(Yt) = cYt, where c is a cost-related coefficient. See [19] for a discussion on various quality

loss functions.
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Our objective is to find a control factor setting which will minimize the expected total

loss. Therefore, we want to minimize

E(TL) =
∫ τ

0
E{L(Yt)} dt = c[E{D0(X, N)}τ + E{β(X,N )}τ 2/2] = cτE(Yτ/2).

Thus, the expected total loss can be minimized by minimizing the expected value of the

degradation characteristic at time τ/2.

The above procedure does not directly minimize the variation in Yt. It is a usual prac-

tice to minimize variations, but it is not always beneficial in the case of smaller-the-better,

or larger-the-better characteristics. By reducing the variation in lifetime without changing

the mean, we will be able to increase the lifetime of some products; but at the same time,

the lifetime of some other products will decrease. The short-lived products can seriously

damage the reputation of the manufacturer. Therefore, if we prefer increasing the lifetime

of short-lived products at the expense of decreasing the lifetime of some long-lived products,

then minimizing the variation in lifetime makes sense. First, minimizing the mean, and then

minimizing the variance, is commonly adopted in the case of smaller-the-better character-

istics [15], [20]. Intuitively, the variation in the lifetime can be minimized by minimizing

the variations in the degradation characteristic (a proof is given in the Appendix). Because

the variance of Yt is a quadratic function of t given by Equation (3), we may not be able

to minimize this function uniformly over t. Instead, we can minimize it at a specific value

of t. Because minimizing the expected total loss is equivalent to minimizing the expected

value of the degradation characteristic at time τ/2, it is meaningful to consider minimizing

the variance of Yτ/2. Thus, we have the following two-step optimization procedure:

1. Minimize E(Yτ/2) with respect to the control factors.

2. Minimize var(Yτ/2) with respect to the remaining set of control factors that do not

affect E(Yτ/2).

Note that minimizing the mean is more important than minimizing the variance; and there-

fore, the Step 2 is performed only if there exists some control factors that do not affect the

mean, but only the variance. It is important to mention the difference between the above
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optimization procedure, and the existing ones. The existing methods [5], [7] estimate the

lifetime from the degradation data, and derive optimization procedures based on the lifetime.

On the other hand, our procedure directly optimizes the degradation characteristic.

One drawback of the above two-step procedure is that the solution depends on τ , for

which the experimenter may not have a good estimate. In such cases, the two-step procedure

should be repeated for various probable values of τ . Another approach to circumvent this

problem is as follows. From Equations (2) & (3), we have

E(Yt) = E0(X) + E1(X)t,

and

var(Yt) = V0(X) + V1(X)t + V2(X)t2,

where E0(X) = E{D0(X,N )}, E1(X) = E{β(X,N)}, V0(X) = var{D0(X, N)} + σ2
e ,

V1(X) = E{σ2(X, N)} + 2cov{D0(X, N), β(X, N)}, and V2(X) = var{β(X,N )}. We

can find the optimum control factor setting by minimizing these five terms separately. This

requires five optimizations, which increases the computational burden, but it does not depend

on the choice of τ . The main disadvantage of doing separate optimizations is that it can

lead to conflicting levels of factor settings. As a compromise between the above separate

optimizations, and the two-step optimization procedure, we propose the following procedure.

Suppose we have a rough idea about the intended lifetime (τ), then we can judiciously choose

the order of the five optimizations. When τ is expected to be small, quality is more important,

and the optimizations are to be done with decreasing importance for the sequence: E0(X),

E1(X), V0(X), V1(X), and V2(X). Thus minimizing E0(X) is most important, while

minimizing V2(X) is least important. When τ is expected to be large, reliability is more

important, and the five optimizations are to be done in the sequence: E1(X), E0(X), V2(X),

V1(X), and V0(X). For obvious reasons, we will name the above approach as the five-step

optimization procedure. Note that, because of the sequential optimization, conflicting levels

of the factors will not arise. For the optimization at a step, we should consider only those

factors that do not affect the objective functions in the previous steps. In practice we may
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use both two-step, and five-step approaches; and make final conclusions using engineering

judgment.

V. ESTIMATION

Let there be r runs in the experimental design, and p products are tested for each run.

Suppose that the degradation characteristic is measured at n levels for each product, say

t1, · · · , tn. For example, in the window wiper switch experiment in Table I, r = 8, p = 4, and

n = 10. Without loss of generality, we take t1 = 0; otherwise subtract t1 from all the time

points. Let yijk be the degradation measurement at run i, product j, and time tk. Let X i

be the control factor setting in run i, and N j(i) the product noise factors in the product j

used in run i. Denote Dij0 = D0(X i,N j(i)), βij = β(X i,N j(i)), and σ2
ij = σ2(X i, N j(i)).

Then, we have

yijk|N j(i) ∼ N(Dij0 + βijtk, σ
2
ijtk + σ2

e),

for i = 1, · · · , r; j = 1, · · · , p; and k = 1, · · · , n. The degradation measurements are correlated

over time (for the same product) with covariance cov(yijk, yijk′) = σ2
ijmin(tk, tk′) for k 6=

k′, but they are independent over products. Our objective is to estimate the parameters

Dij0, βij, σ2
ij, and σ2

e for all i = 1, · · · , r and j = 1, · · · , p. Usually σ2
e will be estimated

separately through a gage repeatability & reproducibility study. But here we will assume

σ2
e to be unknown, and estimate it from the experimental data. Let yij = (yij1, · · · , yijn)′,

t = (0, t2, · · · , tn)′, and βij = (Dij0, βij)
′. Let F = [1, t], which is an n × 2 matrix, and 1

is a column filled by 1. Let R be an n × n matrix with elements Rij = min(ti, tj). The

log-likelihood is

l = constant− 1

2

r∑

i=1

p∑

j=1

log |σ2
ijR + σ2

eIn| − 1

2

r∑

i=1

p∑

j=1

(yij −Fβij)
′(σ2

ijR + σ2
eIn)−1(yij −Fβij).

(4)

An algorithm was given in [13] to estimate the parameters from a Brownian motion model

in the presence of measurement error, but we cannot use it here because of the multiple

degradation paths. Therefore, we propose a new algorithm to obtain the estimates. The

log-likelihood is a function of 3rp + 1 parameters, which can be reduced to an optimization
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in rp + 1 parameters as follows. Differentiating l with respect to βij, and equating to 0, we

obtain

β̂ij = (F ′Ψ−1
ij F )−1F ′Ψ−1

ij yij, (5)

where Ψij = σ2
ijR + σ2

eIn. Substituting for βij in Equation (4), l becomes

l = constant− 1

2

r∑

i=1

p∑

j=1

log |Ψij| − 1

2

r∑

i=1

p∑

j=1

y′ij{Ψ−1
ij −Ψ−1

ij F (F ′Ψ−1
ij F )−1F ′Ψ−1

ij }yij, (6)

which is a function of only σ2
ij, and σ2

e . Now, it can be maximized using a standard opti-

mization routine. The estimates of σ2
ij, and σ2

e can be substituted in Equation (5) to obtain

the estimate of βij.

In the above estimation procedure, we had assumed that the data are available for all k =

1, · · · , n, which may not be true if the product is subject to “hard failures” [17]. Under hard

failures, the product stops functioning, and we will not be able to measure the degradation

characteristic after its failure. For example, the light bulb burns out, and we can no longer

measure its luminosity. Thus, the number of observations for each product becomes a random

variable, which complicates the parameter estimation. Therefore, in this article, we confine

to the case of “soft failures” in which the estimation is simpler.

For finding the optimum control factor setting, we will use the response function mod-

eling approach in robust parameter design [15] (Chapters 10 & 11). The other two popular

approaches are the performance measure modeling, and response modeling. For our problem,

response function modeling is the easiest to apply, because performance measure modeling

requires extra calculations to implement the two-step procedure, whereas the estimation &

variable selection with response modeling is much more complex. In the response function

modeling approach, the quantities required in the performance measures are estimated for

each run by averaging over the noise factors, and then they are modeled with respect to the

control factors. The estimation can be done as follows. For the ith run (X = X i)

Ê0i =
1

p

p∑

j=1

D̂ij0 = D̄i.0

Ê1i =
1

p

p∑

j=1

β̂ij = β̄i.
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V̂0i =
1

p

p∑

j=1

(D̂ij0 − D̄i.0)
2 + σ̂2

e

V̂1i =
1

p

p∑

j=1

σ̂2
ij +

2

p

p∑

j=1

(D̂ij0 − D̄i.0)(β̂ij − β̄i.)

V̂2i =
1

p

p∑

j=1

(β̂ij − β̄i.)
2

Now, five separate regressions are performed on E0, E1, V0, V1, and V2 against X to obtain

the relationships. Then

Ê(Yτ/2) = Ê0(X) + Ê1(X)
τ

2
,

v̂ar(Yτ/2) = V̂0(X) + V̂1(X)
τ

2
+ V̂2(X)

τ 2

4
,

and the two-step & five-step optimization procedures can be applied. This will be explained

with an example in the next section.

VI. AN EXAMPLE

We use the window wiper switch experiment discussed in the introduction to illustrate the

estimation & optimization procedures. Because A is a 4-level factor, we need three dummy

variables A1, A2, & A3 to decompose the three degrees of freedom. The corresponding coding

is as follows [15] (Chapter 6):

A A1 A2 A3

0 −1 1 −1

1 −1 −1 1

2 1 −1 −1

3 1 1 1

Thus, the OA(8, 4124) can be viewed as a 27−4 fractional factorial design. It is easy to verify

that the design is obtained using the following generators: C = −A1B, D = −A3B, and

E = A2B. Because this is a saturated deign, we assume that all interactions are negligible,

and study only the main effects.
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First, we analyze the data using the lifetime based method [15] (Chapter 12). In this

method, the lifetime of each unit, Tij is estimated by

T̂ij =
λ− D̂ij0

β̂ij

,

where D̂ij0, and β̂ij are obtained by ordinary least squares. As suggested in [15], we select

the failure threshold as λ = 120. Because the lifetime is a larger-the-better characteristic,

the usual two-step optimization procedure is to first maximize the mean, and then minimize

the variance [15] (Chapter 10). The mean, and log-variance of the lifetime (in logarithmic

scale) are estimated respectively by

µ̂i =
1

p

p∑

j=1

log T̂ij,

and

log σ̂2
i = log





1

p

p∑

j=1

(log T̂ij − µ̂i.)
2



 .

The results are summarized in Table II. Using ordinary regression, the control factor effects

are estimated for the mean, and variance. Half-s-normal plots of the effects are shown in

Figure 2. We see that the effects of B & E seem to be significant for the mean, and the

effects of A2 & B seem to be significant for the variance. A more quantitative assessment can

be done using Lenth’s method [15] (Chapter 3). The t-like statistics of Lenth’s method are

given in Table 3. The critical value corresponding to the individual error rate at significance

level α = 0.20 is 1.20, and at α = 0.10 is 1.71. We see that the Lenth’s method agrees with

our finding from the half-s-normal plots when α = 0.2. Using ordinary regression, we obtain

µ̂ = 2.13 + 0.25B − 0.28E,

log σ̂2 = −2.89− 0.86A2 + 0.71B.

To maximize the mean lifetime, we should choose B = 1 & E = −1, and to minimize the

variance, we should choose A2 = 1. The level A2 = 1 corresponds to the setting 0 or 3 for

the factor A.

Now consider the new approach developed in this article. The parameters Dij0, βij,

and σ2
ij, for each run i = 1, · · · , 8, and product j = 1, · · · , 4 can be estimated using the
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Table 2: Results of Wiper Switch Experiment using the Lifetime Based Method.

Run A B C D E D̂ij0 β̂ij T̂ij µ̂i. log σ̂2
i.

1 0 − − − − 23.80 11.40 8.44 2.17 −4.24
22.29 12.96 7.54
19.15 11.55 8.73
20.76 9.43 10.52

2 0 + + + + 45.09 15.96 4.69 1.69 −2.63
52.22 16.55 4.10
41.73 14.73 5.31
42.16 9.30 8.37

3 1 − − + + 28.78 13.05 6.99 1.57 −3.01
41.40 17.67 4.45
40.31 17.91 4.45
36.96 21.36 3.89

4 1 + + − − 49.42 6.68 10.56 2.66 −1.17
46.27 2.01 36.75
49.07 5.67 12.50
50.22 8.02 8.70

5 2 − + − + 21.47 11.47 8.59 1.90 −2.29
23.75 10.68 9.01
32.15 21.68 4.05
27.64 14.30 6.46

6 2 + − + − 42.40 3.60 21.56 2.91 −1.66
44.51 3.31 22.81
41.73 2.93 26.74
57.42 7.15 8.75

7 3 − + + − 34.09 13.29 6.46 1.90 −4.86
30.51 12.18 7.35
30.95 15.21 5.85
31.75 12.48 7.07

8 3 + − − + 60.95 6.01 9.82 2.25 −3.27
68.47 6.94 7.43
64.55 6.41 8.65
62.85 4.52 12.64
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Figure 2: Half-s-Normal Plots for the Lifetime Based Method.

Table 3: The t-like Statistics in the Lenth’s Method.

Factors µ̂i. log σ̂2
i. Ê0 Ê1 V̂0 V̂1 V̂2

A1 0.63 0.58 0.67 0.70 0.04 0.11 0.08
A2 0.77 3.86 0.27 0.20 1.56 4.12 0.98
A3 0.22 0.83 2.62 0.15 0.04 0.83 0.67
B 1.44 3.19 4.60 1.92 0.59 1.19 0.63
C 0.55 0.68 0.89 0.63 0.67 0.67 0.70
D 0.67 0.67 0.17 0.81 1.06 0.34 0.26
E 1.63 0.41 1.11 1.33 0.83 2.24 1.17
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approach given in the previous section. Because no extra information about σ2
e is available,

it is also estimated from the data. We assume 0 ≤ σ2
e ≤ 2, which means that 99.73% of

the measurement errors are within ±3
√

2 = ±4.2. We obtain σ̂2
e = 2.0. The estimates of

the other parameters are tabulated in Table 4. The half-s-normal plots of the effects are

shown in Figure 3, and the t-like statistics of the Lenth’s method in Table 3. The following

equations are estimated using ordinary regression with the significant effects (at α = 0.2):

Ê0(X) = 40.38 + 6.07A3 + 10.63B,

Ê1(X) = 10.81− 3.33B + 2.31E,

V̂0(X) = 22.08− 9.67A2,

V̂1(X) = 27.74− 11.54A2 + 6.27E.

Note that there are no significant effects for V2(X).
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Figure 3: Half-s-Normal Plots for the New Method.

First, consider the five-step optimization procedure. Choosing (A2, A3) = (+1,−1),
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Table 4: Results of Wiper Switch Experiment using Our New Method.

Run D̂ij0 β̂ij σ̂2
ij Ê0 Ê1 V̂0 V̂1 V̂2

1 24.06 11.55 29.63 21.89 11.16 8.34 13.07 1.86
22.20 12.73 6.93
17.69 11.36 10.48
23.60 8.98 11.70

2 44.91 15.95 9.23 44.91 14.14 16.23 24.61 7.39
51.06 16.31 18.11
42.15 14.74 4.71
41.54 9.54 12.06

3 27.94 13.11 30.10 38.68 17.38 51.04 45.92 8.75
45.41 17.40 39.16
44.40 17.52 22.62
36.96 21.47 12.46

4 53.21 6.23 17.95 49.89 5.46 11.67 28.55 4.05
46.39 2.12 8.03
47.21 6.01 9.49
52.76 7.52 41.44

5 18.73 11.75 10.97 24.70 14.83 30.44 51.82 18.34
20.58 11.27 16.76
32.01 21.97 3.84
27.49 14.32 8.23

6 44.20 3.45 15.04 45.77 4.19 34.24 30.80 2.87
42.95 3.33 2.87
40.58 2.85 4.49
55.34 7.10 24.15

7 38.41 12.86 13.49 33.74 13.19 13.26 13.43 1.09
30.51 12.18 0.00
35.44 14.94 18.39
30.60 12.77 9.76

8 60.94 6.29 16.66 63.50 6.15 11.41 13.68 1.62
67.98 7.15 12.26
60.40 7.14 22.53
64.68 4.04 6.14
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i.e. A = 0 & E = −1, minimizes all the objective functions simultaneously. Because B

has opposite effects on E0 & E1, its setting depends on the intended lifetime. When it is

expected to be long, we should choose B = +1, otherwise B = −1. The same conclusions

are obtained for the two-step optimization procedure. But here we have a unique value for

B depending on the value of τ . It is easy to see that B = +1 if τ > 6.38, and B = −1 if

τ < 6.38.

The optimal factor settings of the lifetime based approach are similar to the new approach.

But the new approach gives some additional insights. Because none of the factors affect

V2(X), there is no interaction between the control factors & product noise factors with

respect to the average degradation rate. Note that V2(X) = var{β(X,N)}, which will be

a function of X, only if X interacts with N . Therefore, robust parameter design cannot

be used to reduce the variations caused by the product noise factors, but it can be used to

reduce the effect of environmental noise factors, because V1(X) is affected by some control

factors. Therefore, other quality/reliability engineering techniques should be applied to take

care of the product noise factors. The factor E has a significant effect on E1(X) & V1(X),

which implies that this factor is related to the degradation of the product. Whereas, the

factor A has a significant effect on E0(X) & V0(X), which implies that this factor has a

large effect on the quality of the product. The factor B affects E0(X) & E1(X). Therefore,

this factor has an effect on both quality & reliability of the product. Moreover, it has a

conflicting effect on them, i.e. changing it to improve quality will decrease the reliability,

and vice versa. Therefore, the optimum setting of B depends on how long we are going to use

the product. The above conclusions cannot be obtained using the lifetime based approach.

These findings obtained using the new approach give a deeper understanding of the product’s

performance, which could be vital for developing future quality & reliability improvement

programs. Thus, this example clearly shows the superiority of the new approach over the

existing approach.
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VII. CONCLUSIONS

By classifying the noise factors into two groups, we have described a systematic devel-

opment of the Brownian motion model for degradation characteristics. In contrast to the

existing approach of using lifetimes for optimization, we proposed an integrated loss func-

tion on the degradation characteristic, and derived a two-step optimization procedure based

on that. We also proposed a five-step optimization procedure to overcome the uncertain-

ties in choosing the intended lifetime. The proposed procedure gives very useful insights

into the functioning of the product, which cannot be obtained using the existing procedure.

The advantages of the proposed procedure is demonstrated through the analysis of a real

experiment.
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APPENDIX

We consider a linear degradation path case with common intercept. By subtracting the

common intercept, the mean path can be written as E(Yt) = βt. A confidence band for the

degradation path is of the form (βt − d
√

V ar(Yt), βt + d
√

V ar(Yt)), where d is a specified

constant . Denote the failure threshold of the degradation characteristic by λ. Let tλ = λ
β
,

and (Y l
t , Y u

t ) = (βtλ − d
√

V ar(Ytλ), βtλ + d
√

V ar(Ytλ)). See Figure 4 for the notations.

Consider the two extreme degradation paths in the confidence band, and solve for t from

the following two equations:

βt + d
√

V ar(Yt) = λ , and βt− d
√

V ar(Yt) = λ.

Let tu, and tl be the solutions of these two equations respectively. Now lT = tu − tl is a

measure of variation in the lifetime, whereas lY = Y u
t − Y l

t is a measure of variation in the

degradation characteristic.
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¿From Equation (3), d
√

V ar(Yt) can be rewritten as
√

at2 + bt + c. Then tl, and tu are

the roots of the equation

(a− β2)t2 + (b + 2β2tλ)t + (c− β2t2λ) = 0.

By simple algebra, we obtain

lT =

√√√√(b + 2β2tλ)2 − 4(a− β2)(c− β2t2λ)

a− β2
.

It can be easily shown that

l2T =
β2

(a− β2)2
l2Y +

b2 − 4ac

(a− β2)2
.

Thus, minimizing the variation of the degradation measurement minimizes the variation of

the lifetime.

Yt

ttλtl tu

Y u
t

λ

Y l
t

Yt = βt

lT

lY
d
√

V ar[Ytλ
]

Yt = βt −
√

at2 + bt + c

Yt = βt +
√

at2 + bt + c

Figure 4: The Relationship Between lY , and lT .
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