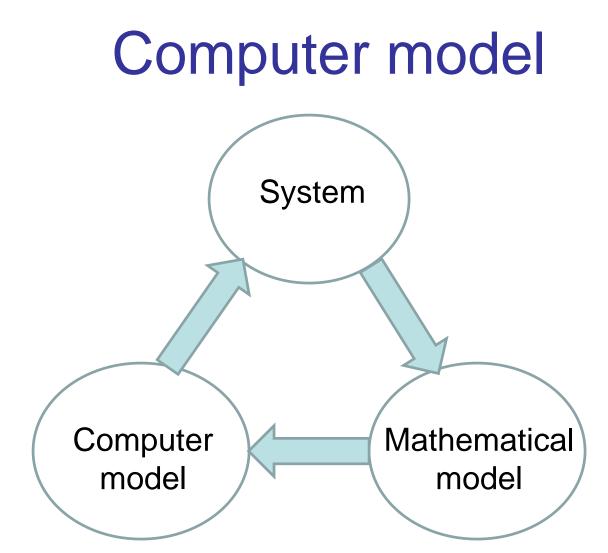
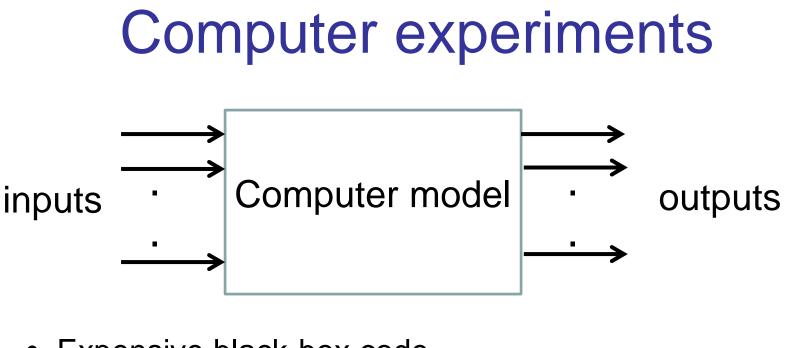
Space-Filling Designs for Computer Experiments

V. Roshan Joseph

Supported by ARO W911NF-14-1-0024



• Computer model is a numerical implementation of the mathematical model.



- Expensive black-box code
- Deterministic outputs
- Complex relationships

Experiment

3

Applications

- Approximation
- Sensitivity analysis
- Calibration
- Optimization
- Uncertainty quantification

Uncertainty Quantification

Uncertainty sources Tangential Force vs Time Tool Setup Multiple Tool S MACHINE 1/CARBIDE /ALUM Tool Number Stability Type Tool Type C Letthander Find Sold End Mil angential Force Cutter Diameter (Do) Number of Flute Radial Rake Hely Arvie In Relef Angle (b) Comer Radius (F Gage Length Tool Length [Ti **Rute Length IR** 21.5 42.9 64.3 85.7 Time (sec) Time (sec) = 7.159, Tangential Force (lbf) = 79.7652, Tool #1, File #1, Sequence #1 Propagation of uncertainty

Input

Output

Gul, E., Joseph, V. R., Yan, H., and Melkote, S. N. (2015). "Uncertainty Quantification in Machining Simulations Using In Situ Emulator," Under Review.

107.2

128.6

Review of Space-Filling Designs

- No need to worry about
 - Replication
 - Randomization
 - Blocking
- What type of designs?
 - Fractional factorial designs, orthogonal arrays,...? No, use space-filling designs!

Space-Filling Designs

• Definition:

designs that fill the space!

- What is the meaning of filling the space?
 - Maximin distance
 - Minimax distance
 - Uniform

Maximin distance design

• Johnson, Moore, and Ylvisaker (1991)

$$\mathcal{X} = [0,1]^p$$

 $D = \{x_1, x_2, \dots, x_n\} \quad x_i \in \mathcal{X}$

$$\max \min_{\boldsymbol{D}} \min_{\boldsymbol{x}_i, \boldsymbol{x}_j \in \boldsymbol{D}} d(\boldsymbol{x}_i, \boldsymbol{x}_j),$$

where $d(x_i, x_j)$ is the Euclidean distance between the points x_i and x_j .

Minimax distance design

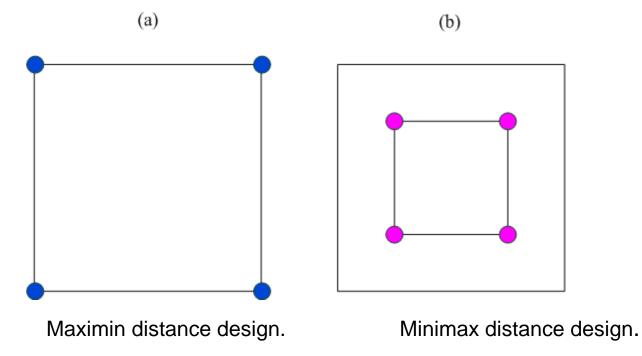
• Johnson, Moore, and Ylvisaker (1991)

 $\min_{\boldsymbol{D}} \max_{\boldsymbol{x} \in \mathcal{X}} d(\boldsymbol{x}, \boldsymbol{D}),$

where $d(\boldsymbol{x}, \boldsymbol{D}) = \min_{\boldsymbol{x}_i \in \boldsymbol{D}} d(\boldsymbol{x}, \boldsymbol{x}_i).$

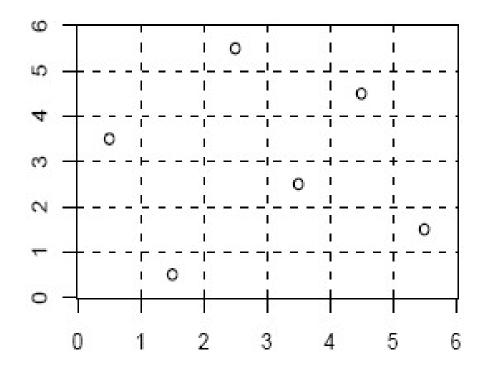
Examples of Maximin and Minimax Designs

Consider the simple case of four-run design in two factors (n=4, p=2).

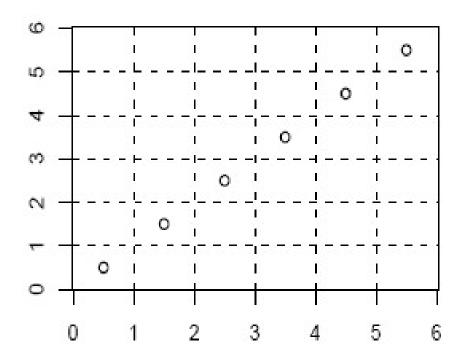


Latin hypercube design

• McKay, Conover, Beckman (1979)



Latin hypercube design



Maximin Latin hypercube design

 Morris and Mitchell (1995): Maximin distance design within the class of Latin hypercube designs.

$$\min_{\boldsymbol{D}} \left\{ \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{d^k(\boldsymbol{x}_i, \boldsymbol{x}_j)} \right\}^{1/k}$$

where D is an LHD.

Uniform design

• Fang (1980)

$$\min_{\boldsymbol{D}} \int_{\mathcal{X}} \{F_n(\boldsymbol{x}) - F(\boldsymbol{x})\}^2 d\boldsymbol{x},$$

$$F_n(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^n I(\boldsymbol{x}_i \le \boldsymbol{x}).$$

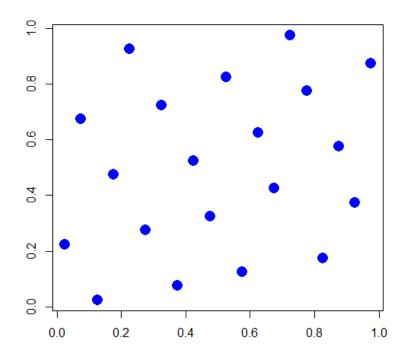
• Good for approximating integrals by sample averages.

Maximum Projection Designs

Joseph, V. R., Gul, E., and Ba, S. (2015). "Maximum Projection Designs for Computer Experiments," *Biometrika*, 102, 371-380.

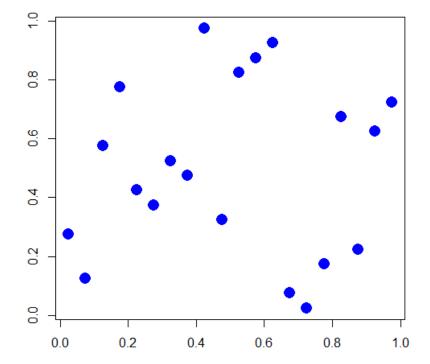
MmLHD

• MmLHD (20,2)



MmLHD

• A two-dimensional projection of MmLHD (20,10)



MmLHD

$$\min_{\boldsymbol{D}\in\mathcal{L}} \left\{ \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{d^k(\boldsymbol{x}_i, \boldsymbol{x}_j)} \right\}^{1/k}$$

 Ensures good space-filling in *p* dimensions and uniform one-dimensional projections, but their projections in 2,...,*p*-1 dimensions can be poor.

Improvements to MmLHD

• Draguljic, Santner, Dean (2012)

$$\min_{D} \left[\frac{1}{\binom{n}{2} \sum_{q \in J} \binom{p}{q}} \sum_{q \in J} \sum_{r=1}^{\binom{p}{q}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left\{ \frac{q^{1/2}}{d_{qr}(x_i, x_j)} \right\}^k \right]^{1/k}$$

• Criterion is computationally expensive.

Uniform Design

 Hickernell (1998) proposed CL₂ criterion that ensures projections to all subspaces.

$$\begin{split} \min_{\boldsymbol{D}} & \left(\frac{13}{12}\right)^p - \frac{2}{n} \sum_{l=1}^n \prod_{j=1}^p \left[1 + \frac{1}{2} |x_{lj} - .5| - \frac{1}{2} |x_{lj} - .5|^2\right] \\ & + \frac{1}{n^2} \sum_{l=1}^n \sum_{j=1}^n \prod_{i=1}^p \left[1 + \frac{1}{2} |x_{li} - .5| + \frac{1}{2} |x_{ji} - .5| - \frac{1}{2} |x_{li} - x_{ji}|\right] \end{split}$$

• But is uniformity important in computer experiments?

Generalized LHD

 Dette and Pepelyshev (2010): placing more points in the boundaries than around the center can minimize the prediction errors from GP modeling.

MaxPro criterion

• Weighted Euclidean distance:

Let $0 \leq \theta_i \leq 1$

$$d(\boldsymbol{x}_i, \boldsymbol{x}_j; \boldsymbol{\theta}) = \left(\sum_{l=1}^p \theta_l (x_{il} - x_{jl})^2\right)^{\frac{1}{2}}$$

Modify the Morris-Mitchell criterion to

$$\min_{\boldsymbol{D}} \phi_k(\boldsymbol{D}; \boldsymbol{\theta}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{1}{d^k(\boldsymbol{x}_i, \boldsymbol{x}_j; \boldsymbol{\theta})}$$

where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_{p-1})'$ and $\theta_p = 1 - \sum_{i=1}^{p-1} \theta_i$.

Bayesian criterion

- We don't know about θ before the experiment!
- Prior:

$$p(\boldsymbol{\theta}) = \frac{1}{(p-1)!}, \text{ for } \boldsymbol{\theta} \in S_{p-1},$$

where $S_{p-1} = \{ \boldsymbol{\theta} : \theta_1, \theta_2, \dots, \theta_{p-1} \ge 0, \sum_{i=1}^{p-1} \theta_i \le 1 \}.$

• Then, the criterion becomes

$$\min_{\boldsymbol{D}} \mathbb{E}(\phi_k(\boldsymbol{D};\boldsymbol{\theta})) = \int_{S_{p-1}} \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{1}{d^k(\boldsymbol{x}_i, \boldsymbol{x}_j; \boldsymbol{\theta})} p(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

MaxPro criterion

Theorem 1 If k = 2p, then under the prior in (7)

$$\mathbb{E}(\phi_k(\boldsymbol{D};\boldsymbol{\theta})) = \frac{1}{[(p-1)!]^2} \sum_{i=1}^{n-1} \sum_{j=1+1}^n \frac{1}{\prod_{l=1}^p (x_{il} - x_{jl})^2}.$$

• MaxPro criterion:

$$\psi(\mathbf{D}) = \left(\frac{1}{\binom{n}{2}} \sum_{i=1}^{n-1} \sum_{j=1+1}^{n} \frac{1}{\prod_{l=1}^{p} (x_{il} - x_{jl})^2}\right)^{1/p}.$$

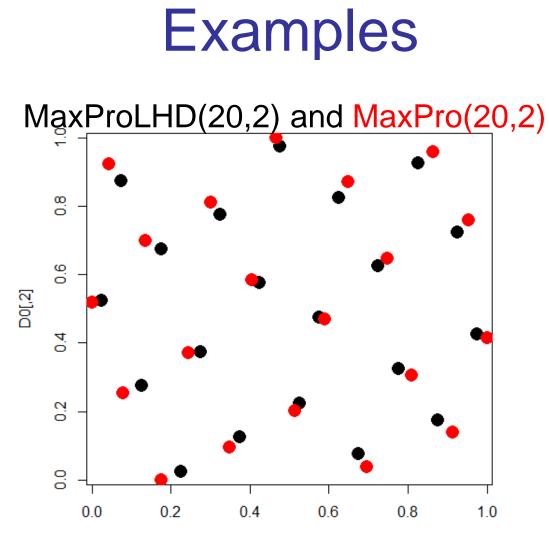
LHD property

- for any l, if $x_{il} = x_{jl}$ for $i \neq j$, then $\psi(\mathbf{D}) = \infty$.
- MaxPro design must have n distinct levels for each factor.
- LHD requirement is automatically enforced in the criterion!

Design construction algorithm

- Minimizing MaxPro objective function is not easy!
 - np number of variables
 - many local minima

R Package: MaxPro JMP 12 (under FFF)

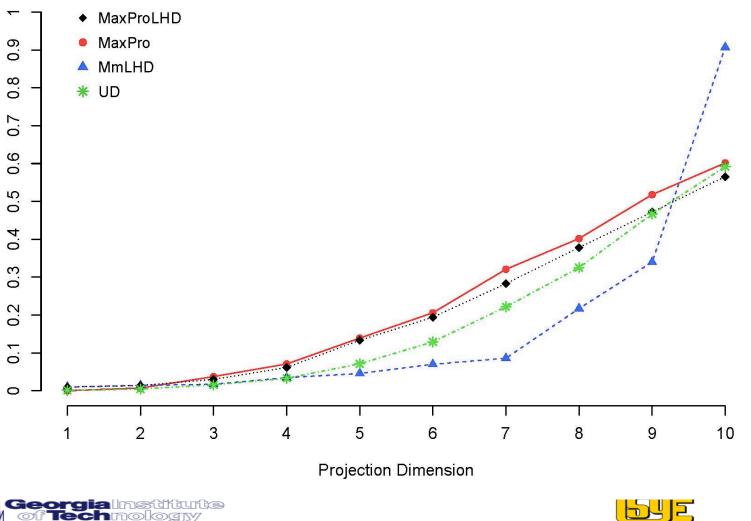


D0[,1]

Numerical comparisons

- n=100, p=10
- Designs:
 - MaxPro
 - MaxProLHD
 - MmLHD
 - UD
 - GLHD
- Criteria:
 - Maximin
 - miniMax

Minimum distance (larger-the-better)



INDUSTRIAL & SYSTEMS ENGINEERING

29

GP-based criteria

$$Y(\boldsymbol{x}) \sim GP(\mu, \sigma^2 R(.))$$

$$R(\boldsymbol{x}_i - \boldsymbol{x}_j; \boldsymbol{\alpha}) = e^{-\sum_{l=1}^p \alpha_l (\boldsymbol{x}_{il} - \boldsymbol{x}_{jl})^2}$$

An optimality result

• Prior: $p(\alpha) \propto 1$, for $\alpha \in \mathbb{R}^p_+$.

Theorem 2 For the Gaussian correlation function and the noninformative prior for α in (14), MaxPro designs minimize

$$\mathbb{E}(\sum_{i=1}^n \sum_{j \neq i} R_{ij}^{\gamma})$$

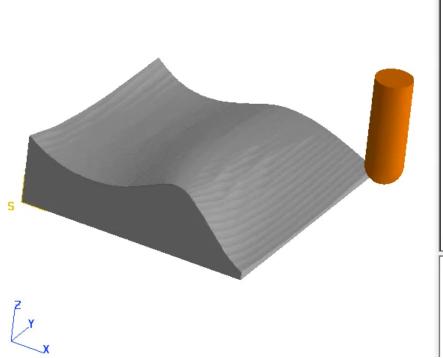
for any $\gamma > 0$.

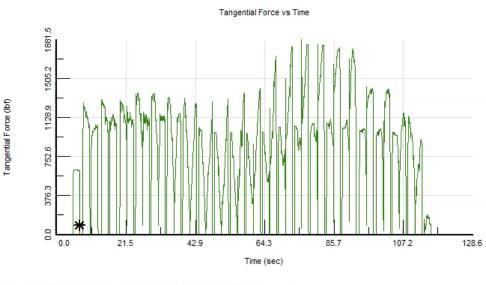
 MaxPro design is good in terms of Entropy, condition number, prediction variance, etc.

Applications

Solid End Milling Process

• Simulation on computer model of Production Module software

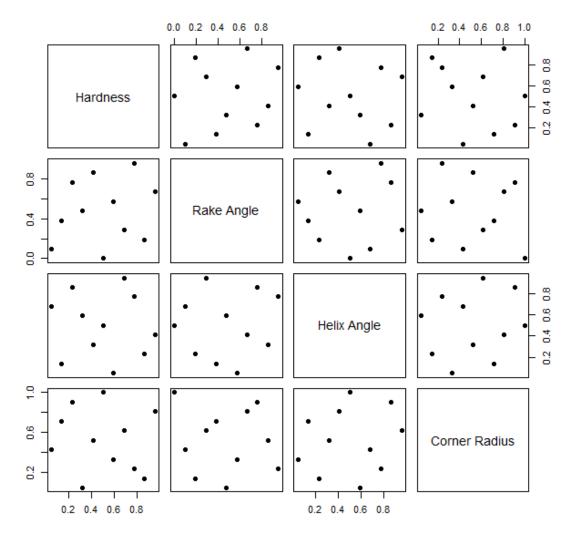




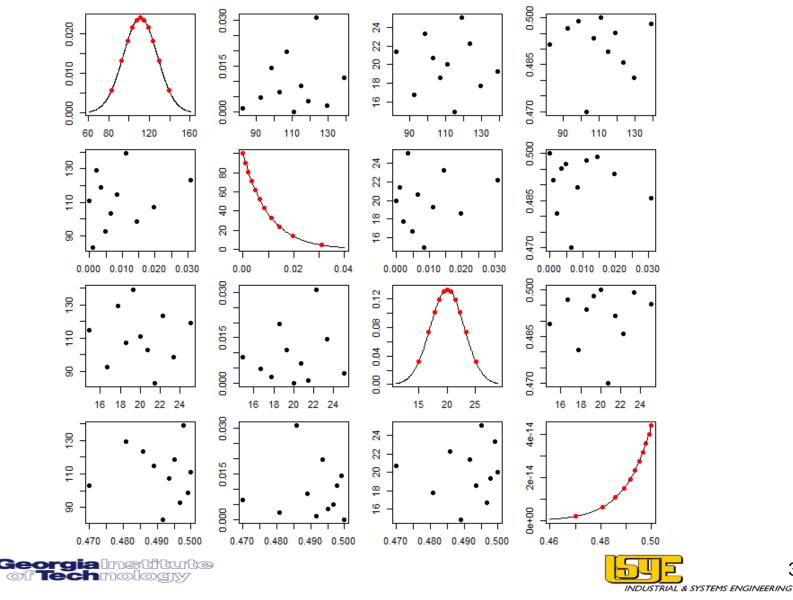
UQ for Solid End Milling

Parameter	Nominal Setting	Probability Dist.
Hardness	111 Bhn	N(111, (111*0.15) ²)
Rake Angle	0 deg	Exp(λ=100)
Helix Angle	20 deg	N(20, (20*0.15) ²)
Corner Radius	0.50 mm	Beta(α=50, β=1)/2

MaxPro LHD



After Inverse probability transform



36

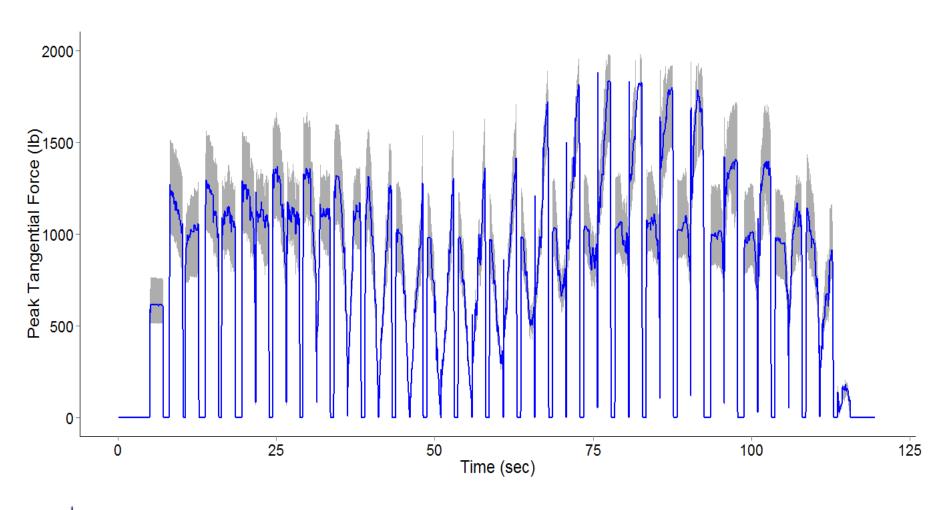
In-Situ Emulator

$$\hat{f}(\boldsymbol{u},t) = exp\{\log f(\boldsymbol{u}_{0},t) + \hat{\delta}_{t}(\boldsymbol{u})\}$$
$$\hat{\delta}_{t}(\boldsymbol{u}) = \boldsymbol{r}(\boldsymbol{u})'\boldsymbol{R}^{-1}(\boldsymbol{w}_{t} - \boldsymbol{w}_{0,t})$$

where

$$R_t(\boldsymbol{u}_i - \boldsymbol{u}_i) = R_{t,\boldsymbol{u}}(\boldsymbol{u}_i - \boldsymbol{u}_j) - R_{t,\boldsymbol{u}}(\boldsymbol{u}_i - \boldsymbol{u}_0) - R_{t,\boldsymbol{u}}(\boldsymbol{u}_j - \boldsymbol{u}_0) + 1,$$
$$R_{t,\boldsymbol{u}}(\boldsymbol{u}_i - \boldsymbol{u}_j) = \exp\left\{-\sum_{k=1}^p \theta_{t,k}(\boldsymbol{u}_{ik} - \boldsymbol{u}_{jk})^2\right\}.$$

Output with 95% confidence region



Computational time

	UD (n=2000)	In-Situ Emulator
Curve cutting	1 day	8 mins
5-axis cutting	9 days	1 hour

- V. Roshan Joseph (2016). "Space-Filling Designs for Computer Experiments: A Review," (with discussions and rejoinder), *Quality Engineering*, 28, 28-44.
- V. Roshan Joseph, Gul, E., and Ba, S. (2015). "Maximum Projection Designs for Computer Experiments," *Biometrika*, 102, 371-380.
- Gul, E., V. Roshan Joseph, Yan, H., and Melkote, S. N. "Uncertainty Quantification in Machining Simulations Using In Situ Emulator," Under review.

roshan@gatech.edu

