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• Computer model is a numerical implementation of the mathematical model.
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Computer experiments
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• Expensive black-box code
• Deterministic outputs
• Complex relationships

Experiment
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Applications

• Approximation 
• Sensitivity analysis
• Calibration
• Optimization
• Uncertainty quantification
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Uncertainty Quantification
Uncertainty
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Gul, E., Joseph, V. R., Yan, H., and Melkote, S. N. (2015). “Uncertainty Quantification in Machining 
Simulations Using In Situ Emulator,” Under Review.



Review of Space-Filling Designs

• No need to worry about
– Replication
– Randomization
– Blocking

• What type of designs?
– Fractional factorial designs, orthogonal 

arrays,…? No, use space-filling designs!
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Space-Filling Designs

• Definition: 
designs that fill the space!

• What is the meaning of filling the space?
– Maximin distance
– Minimax distance
– Uniform
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Maximin distance design

• Johnson, Moore, and Ylvisaker (1991)
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Minimax distance design

• Johnson, Moore, and Ylvisaker (1991)
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Consider the simple case of four-run design in two factors (n=4, p=2).

Maximin distance design.                   Minimax distance design.

Examples of Maximin and Minimax Designs



Latin hypercube design

• McKay, Conover, Beckman (1979)
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Latin hypercube design
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Maximin Latin hypercube design

• Morris and Mitchell (1995): Maximin
distance design within the class of Latin 
hypercube designs.

where D is an LHD.
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Uniform design

• Fang (1980)

• Good for approximating integrals by 
sample averages.
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Maximum Projection Designs

Joseph, V. R., Gul, E., and Ba, S. (2015). “Maximum 
Projection Designs for Computer Experiments,” 
Biometrika, 102, 371-380.
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MmLHD
• MmLHD (20,2) 
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MmLHD
• A two-dimensional projection of MmLHD (20,10)
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MmLHD

• Ensures good space-filling in p dimensions 
and uniform one-dimensional projections, 
but their projections in 2,…,p-1 dimensions 
can be poor.
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Improvements to MmLHD

• Draguljic, Santner, Dean (2012)

• Criterion is computationally expensive.
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Uniform Design

• Hickernell (1998) proposed CL2 criterion 
that ensures projections to all subspaces.

• But is uniformity important in computer 
experiments?
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Generalized LHD

• Dette and Pepelyshev (2010): placing 
more points in the boundaries than around 
the center can minimize the prediction 
errors from GP modeling.
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MaxPro criterion
• Weighted Euclidean distance:

• Modify the Morris-Mitchell criterion to
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Bayesian criterion

• We don’t know about 𝜃𝜃 before the 
experiment!

• Prior:

• Then, the criterion becomes
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MaxPro criterion

• MaxPro criterion:
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LHD property

•
• MaxPro design must have n distinct levels 

for each factor.
• LHD requirement is automatically enforced 

in the criterion!
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Design construction algorithm

• Minimizing MaxPro objective function is 
not easy!
– np number of variables
– many local minima
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R Package: MaxPro
JMP 12 (under FFF)



Examples
MaxProLHD(20,2) and MaxPro(20,2)
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Numerical comparisons
• n=100, p=10
• Designs:

– MaxPro
– MaxProLHD
– MmLHD
– UD
– GLHD

• Criteria:
– Maximin
– miniMax
– CL2
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Minimum distance (larger-the-better)
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GP-based criteria
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An optimality result

• Prior: 

• MaxPro design is good in terms of 
Entropy, condition number, prediction 
variance, etc.
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Applications
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Solid End Milling Process
• Simulation on computer model of Production Module 

software
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UQ for Solid End Milling
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MaxPro LHD
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After Inverse probability transform
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In-Situ Emulator
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𝑓𝑓 𝒖𝒖, 𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒{log 𝑓𝑓 𝒖𝒖𝟎𝟎, 𝑡𝑡 + �̂�𝛿𝑡𝑡 (𝒖𝒖)}

�̂�𝛿𝑡𝑡(u) = 𝒓𝒓 𝒖𝒖 ′𝑹𝑹−1(𝒘𝒘𝑡𝑡 − 𝒘𝒘0,𝑡𝑡)

𝑅𝑅𝑡𝑡(𝒖𝒖𝑖𝑖 − 𝒖𝒖𝑖𝑖) = 𝑅𝑅𝑡𝑡,𝒖𝒖 𝒖𝒖𝑖𝑖 − 𝒖𝒖𝑗𝑗 − 𝑅𝑅𝑡𝑡,𝒖𝒖 𝒖𝒖𝑖𝑖 − 𝒖𝒖0 − 𝑅𝑅𝑡𝑡,𝒖𝒖 𝒖𝒖𝑗𝑗 − 𝒖𝒖0 + 1,

𝑅𝑅𝑡𝑡,𝒖𝒖 𝒖𝒖𝑖𝑖 − 𝒖𝒖𝑗𝑗 = exp −∑𝑘𝑘=1
𝑝𝑝 𝜃𝜃𝑡𝑡,𝑘𝑘 𝑢𝑢𝑖𝑖𝑘𝑘 − 𝑢𝑢𝑗𝑗𝑘𝑘
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.

where



Output with 95% confidence region
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Computational time
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UD (n=2000) In-Situ Emulator
Curve cutting 1 day 8 mins
5-axis cutting 9 days 1 hour
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