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Abstract

Zone-controlled guidepath-based transport systems is a modeling abstraction representing the traffic dynamics of a
set of agents circulating in a constricted medium. An important problem for the traffic coordinator of these systems
is to preserve liveness, that is, the ability of each agent to successfully complete its current trip and to be engaged in
similar trips in the future. We present a polynomial-time algorithm for enforcing liveness in a class of these systems,
in a maximally permissive manner. Our result is surprising and applicable in the traffic control of various unit-load
material handling systems and other robotic applications.

Keywords: Guidepath-based transport systems; traffic liveness and its enforcement; deadlock avoidance; discrete
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1. Introduction

Zone-controlled guidepath-based transport systems is a model representing the traffic dynamics of a set of agents
circulating in a constricted medium. In this model, the traffic-supporting medium is abstracted to a set of intercon-
nected zones that are traversed by the agents as they travel between different locations. The zone connectivity is
represented by a multigraph that is known as the guidepath network. Depending on the traffic dynamics and the5

abstracting semantics, the zones can be represented either by the vertices or by the edges of this multigraph.
In order to ensure a certain level of separation among the traveling agents, and establish various notions of safety

for the agents and the transported payloads, it is stipulated that (i) each zone can be occupied by no more than one agent
at a time, and (ii) the allocation of the requested zones to the agents observes a zone allocation protocol encoded and
enforced by a traffic coordinator. Additional restrictions on the motion of agents and on the ensuing traffic dynamics10

may be defined by inherent limitations of the agents and by other attributes and concerns depending on the underlying
application context.

Daugherty et al. [1] provide an extensive survey of the literature on the real-time traffic management of zone-
controlled guidepath-based transport systems. This model is a natural abstraction of unit-load material handling
systems (MHSs), like the automated guided vehicles (AGVs) and the overhead monorail systems used in many pro-15

duction and distribution facilities [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The model has further been applied in many
robotic applications [14, 15, 16, 17], in the representation of some board games [18, 19, 20], in the programming of
animations developed by the current video game industry [21], and more recently, in the modeling and analysis of the
elementary physical operations taking place in quantum computing [1, 22].
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For the systematic investigation of the traffic dynamics taking place in the guidepath-based transport systems, and20

the effective real-time management of the generated traffic, these transport systems are classified by the following
attributes [23]:

(i) The accommodation of the idle agents in the guidepath network. Many systems avail of a home location where
the idling agents retire. In the case of MHS and robotics applications, the home location is an area where the idle
vehicles rest, receive maintenance, and recharge batteries. In the case of quantum computing, the home location is25

the system memory that holds the qubits – the ionized atoms that act as the primary information carriers – that are not
involved in the currently executed operation. A guidepath-based transport system that possesses a home location is
classified as open; the rest as closed.

(ii) The agent ability to reverse their direction of motion while traversing any zone of the guidepath network.
Systems that provide this ability are classified as reversible; the rest as irreversible. Irreversibility of agents can result30

from inherent limitations of the mechanisms that generate the agent motion, or from spatial and other constrictions
that are imposed by the guidepath network and render infeasible and/or unsafe the reversal of the agent motion.

(iii) The mechanism generating the routes to be followed by the agents, as they reach their various destinations
in the guidepath network. If these routes are predetermined upon the allocation of a certain trip to an agent, then
the routing scheme is classified as static. If the agent routes are determined more incrementally, while accounting35

for the prevailing traffic conditions in various parts of the guidepath network, then the routing scheme is classified as
dynamic.

Combinations of the above attributes define several classes of zone-controlled guidepath-based transport systems.
These classes pose different control requirements for the traffic coordinators. Also, the complexity of certain control
requirements can be significantly different across different classes.40

A primary requirement for the traffic coordinator of any zone-controlled guidepath-based transport system is the
establishment of expedient traveling for the agents. This requirement is attained through (a) a pertinent allocation of
the arising transport tasks to available agents and (b) the routing and scheduling of the resulting trips through various
zones of the underlying guidepath network in a way that controls the congestion and the delays experienced by the
agents. The works of [1, 24] have investigated this traffic control problem and the synthesis of a solution for certain45

classes using a Model Predictive Control (MPC) scheme.
For irreversible zone-controlled guidepath-based transport systems, it is necessary to impose an additional type of

control for preserving the liveness of the traffic, that is, the ability of each agent to successfully complete its current
trip and to be engaged in similar trips in the future [23, 24]. The primary reason for a loss of liveness is the formation
of deadlocks and livelocks among some traveling agents, which may prevent the agent advancement from their current50

zones, or restrict their circulation to particular regions of the guidepath network.
A controller preventing the development of deadlocks and livelocks is known as a liveness-enforcing supervisor

(LES). A desirable property of an LES is maximal permissiveness. A maximally permissive LES establishes traffic
liveness while imposing the minimal possible restriction on the generated traffic. Therefore, this LES maximizes the
performance potential for the transport system.55

A maximally permissive LES permits the advancement of a set of agents to some neighboring zones in the guide-
path network only if the traffic state resulting from this advancement satisfies certain conditions. These conditions
characterize the traffic state as live. In statically routed, irreversible, zone-controlled guidepath-based transport sys-
tems, deciding the liveness of a traffic state is NP-hard [23, 25]. On the other hand, this decision problem is open for,
both, open and closed, irreversible, dynamically routed, zone-controlled guidepath-based transport systems.60

Researchers have coped with this situation by developing suboptimal LES that might not be maximally permissive,
but are polynomial with respect to the size of the guidepath network. For some examples, we refer the reader to the
works of [9, 10, 11, 13, 26, 27, 28, 29, 30].

Recently, we identified certain traffic-state attributes that render easier the assessment of liveness. Namely, if the
traffic state of an open, irreversible, dynamically routed, zone-controlled, guidepath-based transport system is totally65

congested, that is, if every zone of the network is occupied by a traveling agent, then the assessment of its liveness is of
linear complexity with respect to the size of the guidepath network [25]. A similar result holds if some graph induced
by a particular graphical representation of the traffic state possesses a tree-structure [31]. We provided representations
and algorithms for computing this graph and for resolving liveness with polynomial complexity with respect to the
size of the guidepath network. We further employed these tools in a general algorithm that can assess liveness of any70
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arbitrary traffic-state of an open, irreversible, dynamically routed, zone-controlled, guidepath-based transport system,
but without polynomial-time guarantees [32].

In this paper, we answer the open question of the worst-case complexity of deciding traffic-state liveness for open,
irreversible, dynamically routed, zone-controlled guidepath-based transport systems, by developing a polynomial-
time algorithm for this problem. Our algorithm also enables a practical deployment of the maximally permissive LES75

for this class of guidepath-based transport systems, which has a strong presence in contemporary applications. From a
methodological standpoint, we build upon the representational and analytical concepts and tools developed in [13, 31].
However, in order to address the representational and analytical needs that arise in the subsequent developments,
we extend and complete these past results in a substantial manner. Furthermore, our theoretical developments are
complemented by some numerical experimentation that is presented in the last part of the paper and reveals that80

the developed algorithm executes extremely fast, even when applied on traffic states coming from some very large
instantiations of the considered transport systems. Finally, our developments also provide a methodological base
for addressing the companion decision problem of assessing traffic-state liveness in closed, irreversible, dynamically
routed, zone-controlled, guidepath-based transport systems. For space-related reasons, we do not treat this problem
here, but rather establish some connections in the conclusions.85

The paper is organized as follows. Section 2 defines the considered class of guidepath-based transport systems
and the liveness-assessment problem, and provides background material that is necessary for the main developments.
Section 3 presents the new algorithmic developments together with the experimental results. Finally, Section 4 con-
cludes the paper and highlights some future directions. In addition, Appendix A provides a statement of the Master
Theorem of complexity theory [33], that is necessary for the complexity analysis of our algorithms, and Appendix B90

collects, for the reader’s convenience, the primary notation, concepts and terminology used in the manuscript.

2. Preliminaries

This section provides background material that is necessary for the development of our results. This material
concerns (i) the graph-theoretic concepts and results that are employed in this work, (ii) the complete definition of the
considered transport systems and their liveness, (iii) a representation of some qualitative dynamics of the generated95

traffic that we developed in [31], and (iv) the connection of this representation to the notion of traffic-state liveness.

2.1. Graph-theoretic concepts and results

This section overviews the necessary graph-theoretic concepts and results. For more details, we refer to [34].
A multigraph G = (V, E, ξ) consists of a finite set of vertices or nodes, V , a finite set of edges, E, and a function ξ

that associates with each edge e ∈ E two vertices v1 and v2 (not necessarily distinct), the endpoints of e. In particular,100

the endpoints v1, v2 can be an ordered or an unordered set. In the first case, edge e is directed; otherwise, it is
undirected. Graph G is undirected if all its edges are undirected. Similarly, G is directed if all its edges are directed.
Partially directed graphs, or PDGs, are graphs with some edges directed and the others undirected.

For a directed edge e ∈ E with ξ(e) = (v1, v2) ∈ V×V , v1 is its tail and v2 its head, and we say that edge e emanates
from vertex v1 and leads to vertex v2. An edge where the tail coincides with the head is a loop. Two edges e and e′105

are parallel if ξ(e) = ξ(e′). A graph is a multigraph without parallel edges. A graph is simple if it contains no loops
and parallel edges. For simple undirected graphs, we write e = {v1, v2} for an edge e with ξ(e) = {v1, v2}. Similarly,
we write e = (v1, v2) for simple directed graphs.

Vertices v1, v2 of an undirected graph G are adjacent or neighboring if they are endpoints of an edge e of G; edge
e is incident to vertices v1 and v2. The number of edges of G incident to a vertex v is the degree of v. A vertex of110

degree zero is isolated, and a vertex of degree one is a leaf (vertex) of G. The minimal degree of G is the minimal
degree among its vertices. Analogously we define the above notions for directed graphs. Additionally, we define the
indegree (resp., outdegree) of a vertex v as the number of edges e having v as their head (resp., tail) vertex. A vertex
with zero indegree is a source vertex, and a vertex with zero outdegree is a terminal vertex.

The undirected graph G̃ that is induced by a (partially) directed graph G has the same sets of vertices and edges115

as G, but the edges are undirected in G̃. A subgraph H of a graph G = (V, E, ξ) is a graph H = (V ′, E′, ξ′) such that
V ′ ⊆ V ′, E′ ⊆ E′, V ′ contains all the endpoints of every edge e ∈ E′ according to the definition of these vertex sets
by ξ, and ξ′ is the restriction of ξ on the edge set E′. The union of two or more multigraphs Gi, i = 1, . . . , n, is a
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multigraph G that has as vertex (resp., edge) set the union of the vertex (resp., edge) sets of the multigraphs Gi. An
undirected graph G is bipartite if its vertex set V is partitioned into two subsets V1 and V2, and for every edge e ∈ E,120

ξ(e) ∩ V1 , ∅ ∧ ξ(e) ∩ V2 , ∅.
A walk π = 〈v0, e1, v1, . . . , ek, vk〉, k ≥ 0, in an undirected graph is a sequence of vertices and edges such that,

for 1 ≤ i ≤ k, vi−1 and vi are the endpoints of ei. A trail is a walk with no repeated edge. A path is a walk with
no repeated vertex. These concepts can be extended to directed and partially directed graphs by requesting that each
oriented edge ei, 1 ≤ i ≤ k, emanates from vertex vi−1 and leads to vertex vi. The vertices v0 and vk on path π are the125

terminal vertices. The nonterminal vertices of π are internal. We also say that path π connects its terminal vertices v
and v′ in G. In the case of directed graphs, we refer to vertex v0 as the tail vertex, and to the destination vertex v′ as
the head vertex. A cycle c of an undirected graph G is a subgraph of G such that, after removing a single edge, the
subgraph is a path in G. In directed graphs, a (directed) cycle is created from a path by adding an edge connecting the
head vertex and the tail vertex. A directed acyclic graph or a DAG is a directed graph without cycles. The length of a130

path, cycle, walk or trail is the number of edges in the corresponding subgraph.
An undirected graph G is connected if every two vertices v1, v2 are terminal vertices for a path of G. A directed

graph G is strongly connected if, for every two vertices v1, v2, there is a directed path leading from v1 to v2. A directed
graph G is weakly connected if the induced undirected graph G̃ is connected. The components of an undirected graph
are its maximal connected subgraphs. A component is trivial if it has no edges; otherwise, it is nontrivial. For an135

undirected graph G, G− v denotes the graph that contains all vertices and edges of G except for vertex v and the edges
incident to v. Similarly, G − e denotes the graph that contains all vertices and edges of G except for edge e. A vertex v
of an undirected graph G is a cut-vertex (or an articulation) if the graph G−v has more components than G. Similarly,
an edge e of an undirected graph G is a cut-edge (or a bridge) if the graph G − e has more components than G. Notice
that e is a cut-edge if and only if it does not belong on any cycle of G.140

A block of an undirected graph G is a maximal connected subgraph of G that has no cut-vertex. An isolated vertex
of G is a block. We refer to such blocks as vertex-blocks. If G is connected with no cut-vertex, it is a single block.
Consequently, an undirected graph consisting of a single edge is a block. A single edge of a larger graph is a block if
it is a bridge. We refer to such single-edge blocks as bridge-blocks. A block of a connected undirected graph G that is
not a single edge, has a minimal vertex degree of 2, and it is a biconnected (or bi)-block.145

An undirected graph T is a tree if it is connected and acyclic. Hence, every pair of vertices v, v′ of T is connected
by a unique path. A rooted tree is a tree T with one vertex r of T chosen as the root. For each vertex v , r, the node v′

that is adjacent to v on the path from v to the root r is the parent (vertex) of v. All the remaining neighboring vertices
of v in T are the children of v. The ancestors of v are all the vertices on the path from the parent of v to the root. The
descendants of v are all the vertices u for which v is an internal vertex on the path from u to the root. In a rooted tree,150

a leaf is a vertex with no children. An in-tree is a DAG whose induced undirected graph is a rooted tree, and whose
edges point towards the root.

The decomposition of a connected, undirected graph G to its blocks can be effectively represented by the block-
cutpoint tree. This is a bipartite graph in which one vertex subset, V1, consists of the cut-vertices of G, and the second
vertex subset, V2, has a vertex bi for every block Bi of G. There is an edge {v, bi} in the block-cutpoint tree with v ∈ V1155

and bi ∈ V2 if and only if v is a vertex of the block Bi. An efficient algorithm for computing the block-cutpoint tree
can be found in [34]

2.2. The considered transport systems and their liveness

The structure of open, irreversible, dynamically routed, zone-controlled guidepath-based transport systems is
formally represented by a tuple (A,G), where A is the set of agents, and G is the guidepath network. Specifically,160

G = (V, E∪{h}, ξ) is an undirected connected multigraph with vertex set V , edge set E∪{h}, and a function ξ assigning
to each edge e an unordered pair of vertices, its endpoints. It is stipulated that G has a minimal vertex degree of 2.3

The edge subset E is the set of zones of the guidepath network, and edge h is a self-loop representing the home
location of the transport system. The zone control imposed on the transport system requires that no edge e ∈ E can

3While G and its derivative graphs are actually multigraphs, to avoid an overloading of the notation, we employ a representation for edges that
is more appropriate for simple graphs. We believe that this practice does not create any confusion, and we take special effort to maintain a clear
presentation in the few cases where it might result in some ambiguity.
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be occupied by more than one agent a ∈ A at a time. On the other hand, edge h has infinite capacity; i.e., it can165

accommodate an arbitrary number of agents at the same time. We use the notation vh to denote the single vertex of
the self-loop h.

An agent a ∈ A executes trips in the guidepath network G, with each trip being defined by a sequence Σa =

〈ei ∈ E \ {h}〉 of (not necessarily neighboring) edges that must be visited in the specified order. The route of agent a
during its travel between edges ei and ei+1 of Σa is a walk in the guidepath network G that is determined by the traffic170

coordinator in real-time. Irreversibility implies that an agent entering an edge e = {v, v′} ∈ E from vertex v can exit the
edge only from vertex v′. Furthermore, the agent can move to an edge e′ = {v′, v′′}, which is neighboring to edge e at
vertex v′, only if e′ is free of any other agents; this restriction also excludes the possibility of edge-swapping between
a pair of agents.

The description of the agent motion through the guidepath network can be based on a notion of state that captures175

(i) the distribution of agents on the edges of the guidepath network, (ii) the direction of the agent motion, and (iii) the
edge sequences Σa characterizing the remaining trip for each agent a ∈ A. This state evolves upon the occurrence of
events that correspond to the transition of an agent a from its current edge e to a neighboring edge e′, and the update
of its edge sequence Σa in the case that the executed transition has attained the milestone of agent a with respect to
the edge-visitation requirements expressed by Σa.180

We are interested in the problem of preserving liveness for the traffic taking place in the above transport system.
This task can be attained, in a maximally permissive manner, by restricting the system operation to its live subspace. In
the case of open, dynamically routed, zone-controlled guidepath-based transport systems, the live state space consists
of those traffic states for which there exists an event-sequence collecting all agents in the home location h (without
necessarily completing the visitation requirements defined by sequences Σa) [23, 25]. Hence, when deciding liveness185

of a traffic state coming from an open, dynamically routed, zone-controlled guidepath-based transport system, all
agents are destined to the home location h, and the algorithms resolving this problem need not maintain an identity
for each agent a ∈ A and its sequence Σa. We thus define the traffic state as follows:

Definition 1. The traffic state s of an open, irreversible, dynamically routed, zone-controlled guidepath-based trans-
port system is defined by (i) the distribution of agents on the edges of the guidepath network G, and (ii) the orientation190

of the motion of each agent a on its current edge e , h.

In the following, we use the notation ε(a; s) to denote the edge occupied by agent a in state s. An encoding of the
traffic state s is through a partially directed graph (PDG) Ĝ(s); this graph is obtained from the guidepath network G
by turning an edge e ∈ E occupied by an agent a into a directed edge indicating the direction of motion of agent a on
e. State s then evolves by advancing a single agent a from its edge ε(a; s) = (v1, v2) in the PDG Ĝ(s) to an edge e′ of195

Ĝ(s) that is (a) incident to vertex v2 and (b) an undirected edge in Ĝ(s).
Let S denote the set of traffic states that can occur in an open, irreversible, dynamically routed, zone-controlled

guidepath-based transport system. Then S is a finite set, and the set Q of all events evolving states of S is a finite set,
as well. Therefore, the traffic dynamics can be represented by a finite-state automaton (FSA) Φ. In the following, we
denote the extended (partial) transition function of Φ by f : S ×Q∗ → S .4 Furthermore, we use sh to denote the home200

state of the automaton, i.e., the state where all agents ofA are located at the home edge h.
The notion of liveness for open, irreversible, dynamically routed, zone controlled guidepath-based transport sys-

tems can now be formally defined as follows [23, 25]:

Definition 2. In the class of open, irreversible, dynamically routed, zone-controlled guidepath-based transport sys-
tems, a traffic state s ∈ S is live if it is co-reachable to state sh in the dynamics of the corresponding FSA Φ; i.e., s is205

live if there exists σ ∈ Q∗ such that f (s, σ) = sh.

Let S l denote the set of all live states of Φ. Then, the corresponding (state-)liveness-assessment problem can be
defined as follows:

Problem 3 (Traffic-State Liveness). Determine whether a traffic state s of an open, irreversible, dynamically routed,
zone-controlled guidepath-based transport system belongs to S l.210

4Q∗ denotes the Kleene closure of the event set Q, i.e., Q∗ is the set of all finite sequences of the elements of Q, including the empty sequence
ε.
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Figure 1: Highlighting the definitions and the technical results of Section 2.3.

As discussed in the introduction, we have developed an algorithm that resolves efficiently this problem for a
class of traffic-states characterized by a certain property that is defined in terms of a digraph induced by the state-
representing PDG Ĝ(s) [31]. In the following, we first review some of the corresponding results, and then, in Sec-
tion 3, we employ and extend these results towards the development of an algorithm that provides efficient liveness
assessment for any traffic state s ∈ S .215

2.3. Representations
In this subsection, we present a series of more compressed representations of a traffic state s that are derived from

the PDG Ĝ(s), and collectively retain the necessary information for resolving the problem whether s is live. These
results first appeared in [31], and we refer the reader to that work for more details. Furthermore, Figure 1, reproduced
from [31], will help us highlight the various concepts and structures presented in the following.220

Given a PDG Ĝ(s) for a traffic state s, a path π in Ĝ(s) is a sequence π = 〈v0, e1, v1, e2, . . . , en, vn〉, n ≥ 0, where (i)
the subsequence 〈vi, i = 0, . . . , n〉 consists of distinct vertices of Ĝ(s), (ii) for all i = 1, . . . , n, ei is an edge connecting
vi−1 and vi, and (iii) if edge ei is directed, then its direction is from vi−1 to vi; that is, the sense of direction of edges in
π is consistent with the direction of motion implied by the ordering of the path vertices. Also, a cycle c of Ĝ(s) has a
structure similar to that of a path, but it contains at least one edge and the starting and the ending vertices, v0 and vn,225

are coinciding.
A joint between two cycles is a path that belongs to both cycles. A pass between two cycles c and c′ is a path π

such that its first vertex lies on c, its last vertex lies on c′, and all edges of π are undirected and do not belong to c, c′,
or any other directed cycle of Ĝ(s).

We highlight the above definitions by means of the top part (part (a)) of Figure 1. This part depicts a state s of230

a guidepath-based transport system with a guidepath graph G = (V, E) corresponding to the undirected graph that is
induced by the depicted PDG Ĝ(s).5 The agents a ∈ A that are not located on the “home” edge h in the considered

5The reader should notice that the “home” edge h has not been depicted in this figure, since its inclusion would complicate the accompanying
discussion without adding anything substantial to it.
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state s are represented by the directed edges of the PDG Ĝ(s); this representation defines, both, the particular edge
that is occupied by the agent in state s and the direction of its motion in this edge.

The considered PDG has five cycles annotated by c1, . . . , c5; the reader can check that these are indeed the only235

closed paths of the PDG Ĝ(s) that preserve the sense of direction for their directed edges. The (directed) edge labeled
as “joint” in the figure constitutes a path belonging to both cycles c4 and c5. The edge marked as “pass” in the figure is
a path that consists of undirected edges only, and links cycles c1 and c2 while possessing no common edges with any
of these two cycles or any other directed cycle of Ĝ(s). On the other hand, the edge of the PDG Ĝ(s) linking cycles c2
and c5 does not constitute a pass for these two cycles because it is directed (i.e., occupied by an agent).240

The concepts introduced in the next definition play a central role in the subsequent developments.

Definition 4. A chain ch of a PDG Ĝ(s) is the subgraph induced by the sequence ch ≡ 〈c1, π2, c2, π3, . . . , πn, cn〉,
n ≥ 1, where, for each i = 1, . . . , n, ci is a cycle and πi is a path that is a joint or a pass between cycles ci−1 and ci.
Two edges e, e′ are chain-connected (or simply chained) if there exists a chain ch that contains both e and e′. Graph
Ĝ(s) is chained if every two edges are chained.245

Each of the cycles c1, . . . , c5 of the PDG Ĝ(s) depicted in part (a) of Figure 1, constitutes also a chain for this
PDG. But the PDG depicted in part (a) of Figure 1 also possesses the additional chains annotated by ch1 and ch3 in
the figure. Chain ch1 consists of cycles c1 and c2 linked by the corresponding pass that was discussed in the previous
paragraphs, and chain ch3 consists of the cycles c4 and c5 which are linked by the annotated joint. On the other hand,
the depicted chain ch2 comprises cycle c3 only, which is the only remaining cycle that is not contained in the other250

two chains.
More generally, chain connectivity is symmetric and transitive. Therefore, we can consider maximal chains.

Subgraphs of Ĝ(s) induced by maximal chains are chained components of Ĝ(s). The next definition introduces a new
PDG induced by Ĝ(s) and the notion of the chained component.

Definition 5. The PDG C(Ĝ(s)) obtained from Ĝ(s) by replacing each chained component by a simple vertex is the255

condensation of Ĝ(s). Vertices of C(Ĝ(s)) that correspond to chained components of Ĝ(s) are macro-vertices, while
the remaining vertices are simple. The capacity ζ(ch) of a chained component ch of Ĝ(s) (or, equivalently, of a
macro-vertex of C(Ĝ(s))) is the number of free edges of ch located on the cycles of the corresponding subgraph (or,
equivalently, the number of free edges of ch that are not bridges in the undirected graph induced by ch).

The chained components of the PDG Ĝ(s) in part (a) of Figure 1 are the previously described chains ch1, ch2 and260

ch3. It can also be checked that ζ(ch1) = 7, ζ(ch2) = 3 and ζ(ch3) = 2. Finally, the condensation C(Ĝ(s)) that results
from the reduction of each of the above three chained components to a single macro-vertex (with the same label), is
the PDG that is depicted in part (b) of Figure 1.

By construction, condensation C(Ĝ(s)) is an acyclic PDG. Furthermore, every path π of C(Ĝ(s)) connecting two
different macro-vertices v1 and v2 contains a directed edge; otherwise, the chains corresponding to the macro-vertices265

v1 and v2 would not be maximal.
The next abstraction, defined on the condensation C(Ĝ(s)), distinguishes the connected subgraphs of C(Ĝ(s)) that

(i) contain no directed edges, and (ii) are connected to the complement part of C(Ĝ(s)) only by directed edges.

Definition 6. An undirected component (or a u-component) of condensation C(Ĝ(s)) is a maximal connected sub-
graph Cu of C(Ĝ(s)) that contains no directed edges. The edges of C(Ĝ(s)) that point to Cu are the inputs of Cu, and270

the edges that point away from Cu are the outputs of Cu. A u-component Cu is a source if it has no inputs, and a sink
if it has no outputs. Finally, Cu is complex if it contains a macro-vertex of C(Ĝ(s)), and simple otherwise.

Part (b) of Figure 1 also highlights the u-components of the depicted condensation C(Ĝ(s)); these u-components
are labelled Cu1, . . . ,Cu4 in the figure. It is important to notice that every u-component of the condensation C(Ĝ(s)) is
an undirected tree and it contains at most one macro-vertex. Furthermore, the set of all u-components of C(Ĝ(s)) is275

partially ordered by the direction of the edges of this condensation.
In the PDG C(Ĝ(s)) depicted in part (b) of Figure 1, it can also be checked that the further compression of each

of the identified u-components into a single node results in a directed multigraph. In particular, the directed edges of
this multigraph will be (Cu1,Cu2) with a multiplicity of 3, (Cu1,Cu4) with a multiplicity of 2, and (Cu3,Cu1) with a
multiplicity of 1. The next definition introduces more formally the reduction of the condensation C(Ĝ(s)) to a directed280

acyclic (multi)graph (DAG).
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Algorithm 1 Determining the maximal chains chi, i = 1, . . . , k, of a PDG Ĝ(s) and their capacities ζ(chi).

Input: The PDG Ĝ(s).
Output: PDGs D̂i, i = 1, . . . , k, corresponding to the maximal chains of Ĝ(s).

1: Convert Ĝ(s) to a digraph D by replacing each undirected edge e with two directed edges e′ and e′′ of opposite
directions;

2: Extract the strongly connected components,D1, . . . ,Dk, ofD;
3: for i := 1 to k do
4: Convert Di to a PDG D̃i by replacing each pair of edges (e′, e′′) introduced in Step 1 with a single undirected

edge e;
5: Remove iteratively all leaves and their incident edges from D̃i, obtaining the PDG D̂i;
6: end for
7: for i := 1 to k do
8: Convert D̂i to the undirected graph Di by replacing each directed edge in D̂i by an undirected edge;
9: Compute the bridges of Di according to [35];

10: Compute the capacity ζ(D̂i) as the number of free edges in D̂i that are not bridges;
11: end for
12: return D̂i and their capacities ζ(D̂i), i = 1, . . . , k.

Definition 7. We denote byU(Ĝ(s)) the DAG obtained from the condensation C(Ĝ(s)) by replacing each u-component
of C(Ĝ(s)) by a single vertex.

In the following, we refer to the vertices of U(Ĝ(s)) as nodes and denote them by n. The node that contains
the home edge h of the guidepath network G is denoted by nh and referred to as the home node. We now associate285

capacity with each node n ofU(Ĝ(s)).

Definition 8. The capacity χ(n) of a node n of DAG U(Ĝ(s)) is defined as follows: If n is a simple vertex of the
guidepath network G or a simple u-component of C(Ĝ(s)), the capacity χ(n) = 0. If n is a complex u-component Cu

of C(Ĝ(s)), the capacity χ(n) = ζ(ch), where ch is the chained component that constitutes the unique macro-vertex of
Cu. We set χ(nh) = ∞.290

Furthermore, unless stated otherwise, the DAGU(Ĝ(s)) is encoded according to the following representation: (I)
We define as the major nodes ofU(Ĝ(s)) those nodes that (i) either correspond to a complex u-component, or (ii) have
their indegree or outdegree greater than 1 (and, therefore, are branching nodes inU(Ĝ(s))). (II) We collapse each path
π that connects a pair (n1, n2) of major nodes and contains only non-major nodes ofU(Ĝ(s)) as interior nodes, into a
single directed edge (n1, n2) weighted by the number of edges in path π; we denote the weight associated with an edge295

(n1, n2) by w(n1, n2).
In our previous work, we provide algorithms for the construction of the weighted DAG U(Ĝ(s)) from the PDG

Ĝ(s), and for the computation of the capacities χ(n) [31]. The computation is reproduced in Algorithm 1 that takes
as input the PDG Ĝ(s) of a traffic state s, and returns the maximal chains chi, i = 1, . . . , k, of the PDG and their
capacities ζ(chi). The DAGU(Ĝ(s)) is obtained from the PDG Ĝ(s) and the outcome of Algorithm 1 according to the300

Definitions 6–8.
The worst-case algorithmic complexity of the entire construction is O(|V | + |E|), where V and E are the vertex set

and the zone set of the guidepath network G, respectively. Thus, the construction of the more compact representation
of a traffic state s introduced above is efficient.

2.4. Inference mechanisms resolving traffic-state liveness305

In this section, we review some further results from [31] that use the above concepts and constructs, and provide
motivation and a theoretical justification for the algorithm developed in Section 3. We start with the following two
propositions.

Proposition 9. If the condensation C(Ĝ(s)) of a traffic state s ∈ S contains a simple sink u-component Cu, then the
agents on the input edges of Cu are heading to an unavoidable deadlock; therefore, state s is not live.310
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Proposition 10. Consider a complex u-component Cu of the condensation C(Ĝ(s)) with a macro-vertex ch, and an
agent a located on an input edge of Cu. Since Cu is a tree, there is a unique path p in Ĝ(s) consisting of free edges
through which agent a can access the macro-vertex ch. Also, let G(ch) denote the subgraph of the guidepath graph G
that is induced by chain ch. Then, the following two statements, based on the capacity of chain ch, are true:

1. If ζ(ch) = 0 and Cu is a sink u-component in C(Ĝ(s)), then, every event sequence σ ∈ Q∗ advancing agent a on315

an edge e of the subgraph G(ch) leads to an unavoidable deadlock.
2. If ζ(ch) ≥ 1, then there exists an event sequence σ ∈ Q∗ advancing agent a on an edge of G(ch) in a way that,

at the resulting state s′, the part of the PDG Ĝ(s′) corresponding to the subgraph G(ch) is chained.

Proposition 9 and the first part of Proposition 10 provide a mechanism for detecting unavoidable deadlocks, infer-
ring, thus, non-liveness for a traffic state. On the other hand, a practical implication of the second part of Proposition 10320

is that when the head node n of an edge e = (n′, n) in DAGU(Ĝ(s̃)) has capacity χ(n) ≥ w(n′, n) – i.e., the number of
agents located on the path p of the underlying PDG C(Ĝ(s)) represented by edge e inU(Ĝ(s̃)) – it is possible to clear
path p from its occupying agents by absorbing these agents in the chain ch of node n. Furthermore, the traffic state s′

that will result from this operation, has a smaller number of chains than the starting state s, and this fact is reflected
by the collapse of nodes n′ and n, and of the interconnecting edge e, into a single new node in the new DAGU(Ĝ(s̃)).325

Hence, in the following, we think of the aforementioned operation as a “merging” operation, or, more briefly, as a
“merger”. The notion of a merger acquires a very central role in the subsequent developments thanks to the following
theorem that is also established in [31] and constitutes an alternative characterization of traffic-state liveness.

Theorem 11. A traffic state s ∈ S of an open, irreversible, dynamically routed, zone-controlled guidepath-based
transport system is live if and only if s is co-reachable to a state s̃, for which the PDG Ĝ(s̃) is chained (or, equivalently,330

for which the DAGU(Ĝ(s̃)) consists solely of the home node nh and no edges).

Theorem 11, together with Propositions 9 and 10, reduce the problem of the assessing the liveness of any given
traffic state s ∈ S of an open, irreversible, dynamically routed, zone-controlled guidepath-based transport system,
to a search for a merger sequence that will lead from state s to a state s̃, for which the PDG Ĝ(s̃) is chained (or,
equivalently, for which the DAG U(Ĝ(s̃)) consists solely of the home node nh and no edges). This search can be335

based on the graphical representations of the traffic state s introduced in Section 2.3, and their nodal capacities. The
corresponding search process starts with the DAG U(Ĝ(s)), and iteratively merges some nodes, in the spirit of the
discussion that preceded the statement of Theorem 11. Every time a merging operation is executed, the current DAG
U(Ĝ(s)) and the underlying condensation C(Ĝ(s)) are updated to reflect the new traffic state, s̃, resulting from the
agent advancements that correspond to this merger. Also, the new condensation C(Ĝ(s̃)) and the corresponding DAG340

U(Ĝ(s̃)) are computed, and a new merger is sought in the DAG U(Ĝ(s)). The entire search process will terminate
with the singular DAG ({nh}, ∅) if and only if the evaluated state s is live.

In the context of the search process that is described in the previous paragraph, Proposition 9 and the first part
of Proposition 10 provide a mechanism for fathoming any particular thread that is pursued by the search process, by
resolving the non-liveness of the state s̃ that has been reached by this thread.345

Furthermore, the outlined search process can provide a polynomial-time algorithm for resolving the liveness of a
traffic state s if (i) the mergers performed in each iteration are identified and executed in polynomial time with respect
to the size of the guidepath network G, and (ii) there is no need for backtracking upon these mergers.

Recently, we developed a polynomial-time algorithm realizing such an efficient search process for the particular
class of traffic states where the undirected graph induced by the DAGU(Ĝ(s)) is a tree [31].350

In the next section, we develop a new algorithm that resolves the liveness of any traffic state coming from the class
of open, irreversible, dynamically routed, zone-controlled guidepath-based transport systems, and is polynomial with
respect to the size of the guidepath network G. Similarly to our recent algorithm in [31], the new algorithm is a greedy
search for a merger sequence that certifies (non-)liveness of the assessed traffic state. But its development requires a
very significant extension of the concepts and the techniques that provided the corresponding results in [31].355

3. Main results

In this section, we present a polynomial-time algorithm assessing traffic-state liveness in an open, irreversible,
dynamically routed, zone-controlled guidepath-based transport system, together with some experimental results that
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demonstrate the effectiveness and the computational efficiency of this algorithm. We organize this section into four
subsections. The first subsection formalizes the concept of a nodal merger performed in a DAGU(Ĝ(s)), and differ-360

entiates mergers into several types. It also details the execution of a merger through updating the traffic-state represen-
tation introduced in Section 2.3. The second subsection presents a polynomial-time algorithm deciding traffic-state
liveness for the special case where the undirected graph induced by the DAG U(Ĝ(s)) of the evaluated traffic state s
is biconnected. The third subsection extends the results of the second subsection to the general algorithm which is the
main contribution of this work. Finally, the fourth subsection reports the experimental results.365

3.1. Mergers
As explained in Section 2.4, our algorithm is a search process for a sequence of mergers reducing the DAG

U(Ĝ(s)) of the input traffic state s to the singular DAG ({nh}, ∅). In this subsection, we formally define the notion of a
merger, and elaborate this concept to be used in the developed algorithm. We start with the following definition.

Definition 12. An edge (n′, n) of a DAGU(Ĝ(s)) defines a feasible basic merger if

χ(n) ≥ w(n′, n) (1)

The execution of this merger replaces the edge (n′, n) inU(Ĝ(s)) by a new node, n′′, with capacity

χ(n′′) = χ(n′) + χ(n) − w(n′, n) (2)

Definition 12 is motivated and justified by the second part of Proposition 10. As pointed out in Section 2.4,370

Condition (1) is necessary and sufficient to advance the w(n′, n) agents, located on the path p of the condensation
C(Ĝ(s)) represented by the edge (n′, n) in U(Ĝ(s)), into the chain ch of the u-component represented by node n in
U(Ĝ(s)). Emptying path p from its occupying agents establishes a pass linking chain ch to the chain ch′ of the u-
component represented by node n′ inU(Ĝ(s)). Hence, in the state s̃ resulting from the agent advancements, chains ch
and ch′ can be merged into a larger chain ch′′ that is the unique chain of the new node n′′ inU(Ĝ(s̃)).375

The estimation of the capacity χ(n′′) of the new node n′′ in (2) recognizes the following three facts: (i) The
advancement of the w(n′, n) agents into chain ch reduces the original capacity χ(n) of chain ch. (ii) The edges released
by this advancement are on a pass of the newly formed chain ch′′, and hence these edges do not contribute any
additional capacity to chain ch′′. (iii) The newly formed chain ch′′ possesses the original capacity χ(n′) of chain ch′

of node n′.380

Conditions (1) and (2) imply that, for a feasible basic merger corresponding to an edge (n′, n) of a DAGU(Ĝ(s)),

χ(n′′) ≥ χ(n′) . (3)

In the sequel, we acknowledge Condition 3 by saying that the merger (n′, n) is a producer merger with respect to
node n′. A feasible basic merger (n′, n) that is also a producer with respect to node n – that is, χ(n′′) ≥ χ(n) – is a
producer merger. The significance of these merger characterizations in our algorithmic developments is revealed by
the following proposition:

Proposition 13. Let (n̂, n′) and (n′, n) be two feasible basic mergers in a DAG U(Ĝ(s)). Then, (n̂, n′′) is a feasible385

basic merger in the DAGU(Ĝ(s̃)) resulting from the execution of merger (n′, n). If (n′, n) is a producer merger, it also
preserves the feasibility of any feasible basic merger (n̂, n) inU(Ĝ(s)).

Proposition 13 follows immediately from Definition 12. It implies that the execution of a merger that is a producer
for node n preserves all the merging potential of the remaining nodes of the DAG with respect to node n. This
interpretation of the producer merger justifies the greedy execution of certain mergers in the conducted search process,390

and establishes the polynomial-time nature of our algorithm.
In the algorithms presented in the sequel, we also employ mergers that are defined as sequences of basic feasible

mergers, and reduce more complex structures of the processed DAGU(Ĝ(s)) into a single node. We call them macro-
mergers.

Definition 14. LetM = 〈e1, e2, . . . , en〉 be an edge sequence of a DAG U(Ĝ(s)) with the edge set {ei, i = 1, . . . , n}395

inducing a weakly connected sub-DAG inU(Ĝ(s)).
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Figure 2: Some macro-merger types.

1. M is a feasible macro-merger inU(Ĝ(s)) if the basic merger e1 is feasible inU(Ĝ(s)) and every basic merger
ei, i = 2, . . . , n, is feasible in the DAG resulting from the execution of the merger sequence 〈e1, e2, . . . , ei−1〉 in
U(Ĝ(s)).6

2. The node resulting from the execution ofM is denoted by n(M) and the corresponding nodal capacity is denoted400

by χ(n(M)).
3. M is producer with respect to a merged node n if χ(n(M)) ≥ χ(n); M is a producer macro-merger if it is

producer with respect to every merged node n.
4. LetM be a feasible macro-merger inU(Ĝ(s)) andM′ be a feasible macro-merger in the DAG that results from

the execution ofM. Then,M′′ ≡ M +M′ is the macro-merger that is defined in U(Ĝ(s)) and is obtained by405

appending the edge sequenceM′ to the edge sequenceM. This definition extends naturally to sums with more
than two terms.

Clearly, Proposition 13 and its accompanying remarks extend to producer macro-mergers. Next, we present three
particular types of macro-mergers that have a prominent role in the subsequent developments. The graphical structures
that are involved in the definition of these macro-mergers are demonstrated in Figure 2. The first type is exemplified410

in the left part of Figure 2, and it reduces an in-tree of the DAG U(Ĝ(s)) to a single node; therefore, we call it a
(feasible) in-tree-based merger.

Definition 15. A feasible macro-mergerMwhose edges induce an in-tree in the underlying DAGU(Ĝ(s)) is a feasible
in-tree-based merger (or simply a t-merger). The corresponding in-tree is denoted by T (M), and the root node of this
in-tree is denoted by r(M).415

Each basic merger e in a t-merger M establishes a pass between two maximal chains of the underlying PDG
C(Ĝ(s)) as discussed in the explanation of Definition 12. Furthermore, the in-tree structure of the DAG T (M) that is
merged byM, implies that the development of these passes links the involved maximal chains of C(Ĝ(s)) into even
larger chains, but it does not lead to the formation of any new cycles in C(Ĝ(s)). Hence, for a feasible t-mergerM,

χ
(
n(M)

)
=

∑
n′∈T (M)

χ(n′) −
∑

e∈T (M)

w(e) (4)

6The computation of the DAG that results from the execution of a feasible basic merger e or a feasible macro-merger M in a given DAG
U(Ĝ(s)) is an elaborate process that is described at the end of this subsection.
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Eq. 4 further implies that a feasible t-mergerM is a producer macro-merger with respect to r(M) if and only if∑
n′∈T (M)

χ(n′) −
∑

e∈T (M)

w(e) ≥ χ(r(M)) ⇐⇒
∑

n′∈T (M)
n′,r(M)

χ(n′) ≥
∑

e∈T (M) w(e) (5)

The next proposition establishes a necessary condition for the feasibility of a t-mergerM.

Proposition 16. LetM = 〈e1, e2, . . . , en〉 be a feasible t-merger in a DAGU(Ĝ(s)). Then, there exists a permutation
M̂ = 〈e[1], e[2], . . . , e[n]〉 ofM that (i) constitutes another t-merger for T (M), and (ii) is such that e[1] is incident to
the root node r(M) and each edge e[i], i = 2, . . . , n, is incident to the root node of the in-tree that results from the420

execution of the macro-merger 〈e[1], e[2], . . . , e[i−1]〉 in T (M).

Proof. By induction on the number of edges, n, inM. For n = 1, the result holds trivially. Next, suppose that the result
holds for t-mergers involving up to n − 1 edges, and consider a t-mergerM with n edges. Let e[1] = ei =

(
n′, r(M)

)
be the first edge inM that is incident to r(M) in T (M). Definition 12 and the in-tree structure of T (M) imply that
e[1] is a feasible basic merger in T (M). Let T ′ be the in-tree resulting from the execution of e[1] in T (M). Also, set425

M′ = 〈e1, e2, . . . , ei−1, ei+1, . . . , en〉. We claim thatM′ is a feasible t-merger of T ′. To see this, first notice that (i) the
macro-mergerM′′ = 〈e1, e2, . . . , ei−1〉 does not involve node r(M), and, (ii) according to Eq. 3, the basic merger e[1]
is a producer merger with respect to its tail node n′. Hence, the feasibility of the macro-mergerM′′ in T (M) implies
its feasibility in T ′. Furthermore, the execution of the macro-merger M′′ in T ′ results in the same DAG with the
execution of the macro-merger 〈e1, e2, . . . , ei〉 in T (M). Hence, the feasibility of the remaining part ofM′ results from430

the feasibility ofM. SinceM′ contains n − 1 edges, by the induction hypothesis, there exists a permutation M̂′ of
M′ that satisfies the requirement of Proposition 16. The macro-merger 〈e[1]〉 + M̂

′ provides the required permutation
ofM.

Next we focus on sub-DAGs T of a DAG U(Ĝ(s)) with an in-tree structure. It is clear from Proposition 16 that,
for any such in-tree T , the capacity χ

(
r(T )

)
of its root node r(T ) has a significant role for the existence of a feasible435

t-merger M that reduces T into a single node. On the other hand, Eq. 5 implies that this capacity plays no role in
determining the producing nature of any such t-merger with respect to the root node r(T ). These remarks motivate
the following definition.

Definition 17. An in-tree T of a DAGU(Ĝ(s)) is a potential producer with respect to the root node r(T ) if it satisfies
Eq. 5.440

The next lemma and its corollary establish some properties for (i) the class of in-trees in any given DAGU(Ĝ(s))
that are potential producers with respect to their root nodes, and (ii) the complement of this class.

Lemma 18. Consider two potential producer in-trees T and T ′ in a DAG U(Ĝ(s)) with no common edges, and
suppose that T ′ is rooted in a node n of T . The in-tree T ′′ obtained by augmenting in-tree T with in-tree T ′ is a
potential producer with respect to r(T ).445

Proof. Since T and T ′ are potential producers with respect to their root nodes, we have that
∑

n′∈T
n′,r(T )

χ(n′) ≥∑
e∈T w(e) and

∑
n′∈T ′
n′,n

χ(n′) ≥
∑

e∈T ′ w(e). Adding these two inequalities, and considering the fact that T and T ′

have no common edges, we get
∑

n′∈T ′′

n′,r(T )
χ(n′) ≥

∑
e∈T ′′ w(e), which implies that T ′′ is a potential producer with

respect to r(T ).

In the sequel, the in-tree T ′′ defined in Lemma 18 is called the union of the in-trees T and T ′. Also, a sub-tree450

T ′ of an in-tree T , rooted at some node n of T , is characterized as maximal, if for every node n′ , n in T ′, the tree
T ′ also contains all the children of n′ in T . This concept is used in the next corollary of Lemma 18.

Corollary 19. Consider an in-tree T of a DAGU(Ĝ(s)) that is not a potential producer with respect to r(T ). Then,
there exists a node n′ of T and a maximal sub-tree T̂ of T that is rooted at n′ and contains no potential producers
with respect to n′.455
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Proof. If every sub-tree T ′ of T that is rooted at r(T ) is not a potential producer with respect to r(T ), then the
condition of Corollary 19 is true with n′ = r(T ). Otherwise, consider a sub-tree T ′ of T that is rooted at r(T ) and
is a potential producer with respect to r(T ). Since, by the working hypothesis, T is not a potential producer with
respect to node r(T ), there is a node n′ of T ′ and a maximal sub-tree of T rooted at n′ and having no common edges
with T ′. Let us denote this sub-tree by T (n′). If T (n′) satisfies the condition of Corollary 19, then we are done.460

Otherwise, let T ′′ be a sub-tree of T (n′) that is rooted at n′ and is a potential producer with respect to n′. According
to Lemma 18, the in-tree T ′′′ that is the union of T ′ and T ′′ is a potential producer with respect to r(T ). Iterating
the above argument, we can obtain a sequence of in-trees T (0) = T ′, T (1) = T ′′, . . ., each rooted at r(T ), and being
a potential producer with respect to r(T ). Furthermore, the in-tree T (i−1) is strictly contained in the in-tree T (i). But
then, the validity of Corollary 19 results from the working hypothesis and the finiteness of T .465

Next, we define the second type of macro-merger considered in this section.

Definition 20. A feasible path-based merger (or simply a p-merger) is a feasible t-merger where the in-tree T (M) is
a single path π = 〈nl, . . . , n2, e1, n1〉.

The structure of a p-merger is depicted in the middle part of Figure 2. Being a specialization of t-mergers, p-
mergers inherit all the concepts and the properties that were presented for t-mergers. The next proposition is an470

immediate implication of Proposition 16 and Definition 12.

Proposition 21. There exists a feasible p-merger merging path π = 〈nl, . . . , n2, e1, n1〉 into a single node n(π) if and
only if, for all i = 1, . . . , l − 1,

i∑
j=1

χ(n j) −
i∑

j=1

w(e j) ≥ 0 . (6)

Also, the next proposition is useful in the subsequent developments.

Proposition 22. A p-merger merging path π = 〈nl, . . . , n2, e1, n1〉 is producer with respect to node nl.

Proof. According to (4), χ(n(π)) = χ(nl) +
∑l−1

j=1 χ(n j) −
∑l−1

j=1 w(e j). By (6) we have that
∑l−1

j=1 χ(n j) −
∑l−1

j=1 w(e j) ≥ 0,
and hence χ(n(π)) ≥ χ(nl).475

The third type of macro-mergers concerns the reduction to a single node of subgraphs of the DAG U(Ĝ(s)) that
possess the cyclical structure exhibited in the right part of Figure 2. We call them cycle-generating mergers. Each
label pi, i = 1, . . . , 2l, in Figure 2 denotes a directed path inU(Ĝ(s)). The paths are mutually disjoint, i.e., they share
no interior nodes. Suppose that all the paths pi with odd index i are feasible p-mergers. Since the paths are mutually
disjoint, all the corresponding p-mergers can be executed simultaneously. Let s̃ denote the state after the simultaneous480

execution of these p-mergers, and let ni,i+1 denote the node resulting from the execution of the p-merger defined by
path pi. Then, these nodes together with the paths pi with even index i define a directed cycle inU(Ĝ(s̃)). According
to Definition 4, this cycle constitutes a chain inU(Ĝ(s̃)). Therefore, the original structure of the right part of Figure 2
reduces into a single node. The next definition formalizes the notion of the cycle-generating merger.

Definition 23. The sequence ϑ = 〈n1, p1, n2, . . . , n2l, p2l〉 in a DAG U(Ĝ(s)) defines a cycle-generating merger (or485

simply a c-merger) if it satisfies the following conditions:

1. For i = 1, . . . , 2l, ni are distinct nodes ofU(Ĝ(s)).
2. For i = 1, . . . , 2l, pi are mutually disjoint directed paths ofU(Ĝ(s)).
3. For i odd, pi leads from node ni to node ni+1 and defines a feasible p-mergerM(pi) = 〈ei,1, . . . , ei,qi〉.
4. For i , 2l even, pi leads from node ni+1 to node ni; p2l leads from node n1 to node n2l.490

The c-merger defined by ϑ is obtained by the execution of the macro-merger
∑

i oddM(pi) and the further condensa-
tion of the PDG C

(
Ĝ(s̃)

)
of the traffic state s̃ that will result from the execution of this macro-merger. The single node

resulting from the execution of this c-merger is denoted by n(ϑ).

In the following, we use N(ϑ) to denote the set of all nodes of the subgraph of U(Ĝ(s)) corresponding to the
label sequence ϑ; i.e., the set N(ϑ) contains (i) nodes ni, i = 1, . . . , 2l, and (ii) all the interior nodes of the paths pi,495

i = 1, . . . , 2l. The next proposition establishes an important property of c-mergers.

13



Proposition 24. Any c-merger ϑ = 〈n1, p1, . . . , n2l, p2l〉 defined in a DAG U(Ĝ(s)) is a producer merger; that is, for
all n ∈ N(ϑ), χ(n(ϑ)) ≥ χ(n), where χ(n(ϑ)) denotes the capacity of the resulting node n(ϑ).

Proof. We prove the result by showing that

χ(n(ϑ)) ≥
∑

n∈N(ϑ)

χ(n) . (7)

To see that it is true, first notice that each agent a advanced to clear an odd-indexed path pi is absorbed in the chain
of some node n of pi, reducing the capacity χ(n) by one unit. But the freed edge ε(a; s) belongs to the newly formed500

cycle, and hence it will be part of the capacity χ(n(ϑ)).

In fact, inequality (7) can be strict, since the newly formed cycle might contain additional free edges of the
condensation C(Ĝ(s)) contained in some nodes ofN(ϑ) that are not part of a directed cycle in C(Ĝ(s)). The additional
capacity for the newly formed node n(ϑ) is detectable in the PDG C(Ĝ(s̃)) but it is not traceable in the DAGs that we
use in the algorithm for the identification of the sought mergers. Therefore, we work with both of these representations505

of the traffic states in our algorithm.
More specifically, starting with a traffic state s, our algorithm generates the PDG C(Ĝ(s)) and the DAGU(Ĝ(s)) as

described in Section 2.3. The DAGU(Ĝ(s)) provides the representation of the current state at any major iteration of
the algorithm, and facilitates all the inference of the algorithm taking place during the iteration. However, any merger
determined by this processing is executed in the PDG C(Ĝ(s)) corresponding to the current traffic state s. The PDG510

resulting from this execution is further reduced to its maximal chains by Algorithm 1. The returned PDG C(Ĝ(s̃))
is the condensation of the new state s̃ resulting from the executed merger. The algorithm also generates the DAG
U(Ĝ(s̃)) from the PDG C(Ĝ(s̃)). The complete specification of these iterations is provided in the following.

3.2. Polynomial-time algorithm for a special case

In this subsection, we construct a polynomial-time algorithm deciding traffic-state liveness for the case where the515

DAGU(Ĝ(s)) of the evaluated traffic state s satisfies the following condition.

Condition 25. The undirected graph induced by the DAGU(Ĝ(s)), denoted by Û(Ĝ(s)), is a single bi-block.

We start by showing the following result that applies to any DAG U(Ĝ(s)), irrespective of whether it satisfies
Condition 25 or not, and establishes powerful mechanisms for the processing of these DAGs.

Proposition 26. Consider a node n of the DAG U(Ĝ(s)) that corresponds to the evaluated traffic state s. Then the520

following statements hold true:

1. If node n is a terminal node of the DAGU(Ĝ(s)) and it has no incident edges corresponding to a feasible basic
merger, then the considered state s is not live.

2. If node n is a terminal node of the DAG U(Ĝ(s)) and it has only one incident edge e = (n′, n) corresponding
to a feasible basic merger, then the search process outlined in Section 2.4 can execute this merger without any525

need for backtracking.

Proof. Part 1) results immediately from Proposition 9, the first part of Proposition 10, and the definition of a feasible
basic merger in Definition 12. In order to establish part 2), notice that the basic merger defined by edge e is unavoidable
in any merger sequence that satisfies the liveness criterion of Theorem 11. Since, according to (3), this merger is a
producer with respect to node n′, it can be executed at any point of the search process for the aforementioned merger530

sequence, with no need for backtracking.

Clearly, part 1) of Proposition 26 is a powerful mechanism to detect non-liveness of a traffic state s through the
examination of the DAGU(Ĝ(s)), or the DAGs derived fromU(Ĝ(s)) through a sequence of nodal mergers that can
be executed greedily. On the other hand, part 2) of this proposition, and Propositions 13 and 24, provide some criteria
to identify mergers that are executable in a greedy manner. Next, we strengthen Proposition 26 for the subclass of535

DAGs that satisfy Condition 25. To this aim, we need to introduce new concepts on the considered DAGs.
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Definition 27. For a terminal node n of a DAG U(Ĝ(s)) and an incident edge e, we denote by T (n, e) the subgraph
ofU(Ĝ(s)) consisting of all the maximal directed paths π ofU(Ĝ(s)) that satisfy the following two properties:

1. Every path π leads to node n via edge e.
2. At every interior node n′ of path π, the only edge emanating from n′ inU(Ĝ(s)) is the edge that belongs on π.540

We further denote by T (n) the union of T (n, e) over all edges e that are incident to node n.

The next result summarizes properties of the graph T (n, e).

Proposition 28. Any subgraph T (n, e) of a DAGU(Ĝ(s)) has the following properties:

1. T (n, e) is a DAG, and n is its single terminal node.
2. Every interior node n′ of T (n, e) – i.e., a node with an indegree and an outdegree greater than zero in T (n, e) –545

has an outdegree of one inU(Ĝ(s)).
3. IfU(Ĝ(s)) satisfies Condition 25, then every source node n′′ of T (n, e) – i.e., a node n′′ with indegree equal to

zero in T (n, e) – has an outdegree inU(Ĝ(s)) that is greater than one.

The following proposition will be useful.

Proposition 29. For a terminal node n of a DAG U(Ĝ(s)), the DAG T̃ (n) obtained from T (n) by removing all its550

source nodes is an in-tree rooted at node n.

Proof. By Definition 27, there is a directed path leading from every node n′ of T̃ (n) to n. The definition further
implies that the only nodes shared by two DAGs T (n, e) and T (n, e′), for some e , e′, are source nodes of both of
these DAGs. Since T̃ (n) does not contain source nodes of T (n), Proposition 28 implies that every node n′ of T̃ (n) is
connected to node n by a unique directed path leading from n′ to n. Therefore, T̃ (n) is an in-tree rooted at node n.555

Next, we address the following optimization problem.

Problem 30 (In-tree root capacity maximization). For the in-tree T̃ (n) corresponding to a terminal node n of a DAG
U(Ĝ(s)), let Q(n) denote the class of the feasible t-mergersM in T̃ (n) with the corresponding in-tree T (M) rooted
at n. We want to compute a t-mergerM∗ ∈ Q(n) such that

M∗ = arg max
M∈Q(n)

χ
(
n(M)

)
Since the set Q(n) is finite, Problem 30 is well-defined and possesses a finite set of optimal solutions. Every t-

mergerM∗ that solves Problem 30 is an optimal t-merger. The next proposition establishes some important properties
for the t-mergers that constitute optimal solutions to Problem 30.

Proposition 31. LetM∗ denote an optimal t-merger for Problem 30. Also, let n′ denote a non-zero indegree node of560

T (M∗), e′ denote an edge of T (M∗) leading into node n′, and T (n′, e′;M∗) denote the maximal sub-tree of T (M∗)
that is rooted at node n′ and has edge e′ as the only edge incident to node n′. Then, T (n′, e′;M∗) is a potential
producer with respect to its root node n′.

Furthermore, there is an optimal t-merger M̂∗ with the following additional property: For every edge e′′ of T̃ (n)
that is not in T (M̂∗) and leads into a node n′′ of T (M̂∗), the corresponding maximal sub-tree T̃ (n′′, e′′) of T̃ (n)565

contains no t-merger that is feasible in the in-tree resulting from the execution of M∗ and producer with respect to
node n(M̂∗). An optimal t-merger M̂∗ satisfying this property is structurally maximal.

Proof. We prove the first part of Proposition 31 by contradiction. Hence, letM∗ denote an optimal t-merger with its
in-tree T (M∗) containing a pair (n′, e′) such that the corresponding maximal sub-tree T (n′, e′;M∗) of T (M∗) is not
a potential producer with respect to node n′. By Corollary 19, there is a maximal sub-tree T ′ of T (n′, e′;M∗) that
contains no potential producers with respect to its root node n′′. Then, from Eq. 5, we have∑

ν∈T ′

χ(ν) −
∑
e∈T ′

w(e) < χ(n′′) . (8)
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LetM′ denote the subsequence ofM∗ obtained by removing fromM∗ the edges belonging in the sub-tree T ′. Since
the sub-tree T ′ does not contain any potential producers with respect to its root node n′′,M′ is feasible. Furthermore,
Eqs 4 and 8 imply that χ

(
n(M′)

)
> χ

(
n(M∗)

)
, which contradicts the presumed optimality ofM∗.570

In order to prove the second part of the proposition, letM∗ be an optimal t-merger, and suppose that there exist
(i) a node n′′ of T (M∗) and (ii) an edge e′′ of T̃ (n) not belonging in T (M∗) and leading into node n′′, such that the
maximal sub-tree T̃ (n′′, e′′) of T̃ (n) contains a t-merger m that is feasible in the in-tree resulting from the execution
of M∗ and producer with respect to node n(M∗). Then, the macro-merger M′ = M∗ + m is a feasible t-merger in
T̃ (n) and χ

(
n(M′)

)
≥ χ

(
n(M∗)

)
. This inequality cannot be strict since it would contradict the presumed optimality of575

M∗. But it can hold as equality. Then,M′ is an alternative optimal solution of Problem 30 that subsumesM∗. The
optimal t-merger M̂∗ claimed in the second part of the proposition is obtained through the iterative execution of all
such possible subsumptions.

The next proposition has an inverse role to Proposition 31 and enables an algorithmic construction of structurally
maximal, optimal t-mergers for Problem 30.580

Proposition 32. Consider the in-tree T̃ (n) corresponding to a terminal node n of a DAG U(Ĝ), and a t-merger
M ∈ Q(n) that satisfies the following two conditions:

1. For any non-zero indegree node n′ of T (M) and edge e′ of T (M) leading into node n′, the maximal sub-tree of
T (M) that is rooted at node n′ and has edge e′ as the only edge incident to node n′, T (n′, e′;M), is a potential
producer with respect to node n′.585

2. For every edge e′′ of T̃ (n) not belonging in T (M) and leading into a node n′′ of T (M), the maximal sub-tree of
T̃ (n) rooted at node n′′ and has edge e′′ as the only edge incident to node n′′, T̃ (n′′, e′′), contains no t-merger
that is feasible in the in-tree resulting from the execution ofM and producer with respect to node n(M).

The t-mergerM is an optimal and structurally maximal solution for the instance of Problem 30 defined by T̃ (n).

Proof. It suffices to establish the optimality of M, since, then, its structural maximality results immediately from
Condition 2. We prove this result by contradiction. Hence, let m be a t-merger in Q(n) with

χ
(
n(m)

)
> χ

(
n(M)

)
(9)

From Proposition 16, there is a permutation m̂ of m that is a feasible t-merger in T̃ (n), and since m and m̂ merge590

the same subtree of T̃ (n), from Eqs 4 and 9 we have that χ
(
n(m̂)

)
= χ

(
n(m)

)
> χ

(
n(M)

)
. When combined with

Condition 1, the inequality of (9) implies that m contains at least one edge not belonging inM. LetL = 〈e1, e2, . . . , el〉

denote the subsequence of m̂ consisting of the edges not belonging in M. Next we show that M + L is a feasible
t-merger in T̃ (n).

We establish only the feasibility of the basic merger defined by edge e1 in the in-tree that results from the execution595

of M; the feasibility of the basic mergers ei, i = 2, . . . , l, in the corresponding in-trees, can be argued in a similar
manner. So, let m̂1 denote the subsequence of m̂ preceding edge e1 in m̂. Since m̂ meets the structural condition of
Proposition 16, m̂1 is in Q(n), and e1 is an edge incident to n(m̂1) and defining a feasible basic merger in the in-tree
that results from the execution of m̂1 in T̃ (n). Since every edge appearing in m̂1 is included inM, from Condition 1
we have that χ

(
n(m̂1)

)
≤ χ

(
n(M)

)
, and since the basic merger of e1 is feasible in the in-tree induced by m̂1, it is also600

feasible in the in-tree induced byM.
The t-mergerM + L contains all the edges contained in both sequencesM and m̂. When combined with Eqs 4

and 9, and Condition 1, this fact implies that χ
(
n(M+L)

)
> χ

(
n(M)

)
. But the last inequality contradicts the presumed

Condition 2 forM, and establishes the optimality ofM.

Algorithm 2 takes as input the in-tree T̃ (n) corresponding to a terminal node n of the DAGU(Ĝ(s)), and computes605

a structurally maximal, optimal solution for the corresponding instance of Problem 30. The algorithm returns (a) the
computed t-mergerM∗ and (b) the capacity χ

(
n(M∗)

)
of n(M∗).

More specifically, if the DAG T̃ (n) is a single terminal node n, Algorithm 2 returns its capacity χ(n). Otherwise,
Algorithm 2 goes into an iterative mode, and at each iteration, it searches among all edges incident to the terminal node
ñ of the running in-tree T̃ , for an edge e that is either a producer feasible basic merger, or a non-producer feasible610
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Algorithm 2 Searching the in-tree T̃ (n) of a terminal node n ofU(Ĝ(s)) for a t-mergerM that is rooted at node n and
maximizes χ

(
n(M)

)
.

Input: The in-tree T̃ (n).
Output: An edge-sequence MS EQ defining the sought t-merger, and the capacity CAP of the resulting node.

Procedure: Marco-Merger(T̃ (n))
1: MS EQ := 〈〉;
2: if T̃ (n) consists of node n only then
3: CAP := χ(n);
4: return MS EQ, CAP
5: end if
6: T̃ := T̃ (n);
7: E(ñ) := the set of edges incident to the terminal node ñ of T̃ ;
8: Mark all edges in E(ñ) as ‘UNPROCESSED’;
9: while ∃ unprocessed edge in E(ñ) do

10: e := an unprocessed edge (n′, ñ) in E(ñ);
11: if e is a producer feasible basic merger then
12: MS EQ := MS EQ + 〈e〉;
13: Execute in T̃ the merger specified by e;
14: E(ñ) := the set of edges incident to the terminal node ñ of T̃ ;
15: Mark all edges in E(ñ) as ‘UNPROCESSED’;
16: else if e is a non-producer feasible basic merger then
17: G := a copy of the sub-tree T̃ (n′) of T̃ that is rooted in n′, the tail node of edge e;
18: In G, set χ(n′) := χ(n′) + χ(ñ) − w(e);
19: (M, χ) := Marco-Merger(G);
20: if χ ≥ χ(ñ) then
21: MS EQ := MS EQ + 〈e〉 +M;
22: Execute the merger sequence 〈e〉 +M in T̃ ;
23: E(ñ) := the set of edges incident to the terminal node ñ of T̃ ;
24: Mark all edges in E(ñ) as ‘UNPROCESSED’;
25: else
26: Mark edge e as ‘PROCESSED’;
27: end if
28: else
29: Mark edge e as ‘PROCESSED’;
30: end if
31: end while
32: CAP := the capacity of the terminal node ñ of T̃ ;
33: return MS EQ, CAP
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Figure 3: An example demonstrating the execution of Algorithm 2.

basic merger whose execution will enable a t-merger that is producer with respect to the terminal node ñ of T̃ .
Identified producer mergers are executed immediately and the algorithm starts a new iteration. Also, every producer
(macro-)merger identified by the algorithm is appended to a merger sequence MS EQ that eventually specifies the
sought t-mergerM∗.

In order to assess whether the execution of a non-producer feasible basic merger corresponding to edge e = (n′, ñ)615

will enable a producer t-merger with respect to node ñ, Algorithm 2 uses a recursion that executes on a copy of the
sub-tree T̃ (n′) of the in-tree T̃ that is rooted to node n′. Before running Algorithm 2 on the copy of T̃ (n′), the capacity
of the root node n′ of this sub-tree is updated to the capacity of the node n′′ that results from the execution of the basic
merger defined by edge e.

Algorithm 2 terminates when it is unable to detect an edge incident to the terminal node ñ of the current in-tree T̃620

with the properties discussed above. At this point, the algorithm returns the sequence MS EQ and the capacity χ(ñ).

Example 33. We demonstrate the execution logic of Algorithm 2 by applying it to the in-tree depicted in the top-left
part of Figure 3. The numbers in the nodes of this DAG are the corresponding nodal capacities and the numbers next
to the edges are the edge weights.

During its first iteration, Algorithm 2 recognizes edge e1 as a producer feasible basic merger, and the execution625

of this merger leads to the in-tree that is depicted in the top-middle part of Figure 3. This in-tree is processed during
the second iteration of Algorithm 2. Edge e2 is a feasible basic merger but not a producer. Hence, Algorithm 2 must
examine whether the execution of this basic merger can result in a t-merger that is rooted at node AB, it is contained in
the subtree that connects to node AB through edge e2, and it is producer with respect to node AB. The execution of this
test is depicted in the boxed part of Figure 3. Algorithm 2 first generates a copy of the sub-tree that is rooted at C, the630

tail node of edge e2, and updates the capacity of the root node of this sub-tree to the capacity of the node that results
from the execution of the basic merger corresponding to e2. The resulting in-tree is the left in-tree depicted in the
boxed part of Figure 3. Subsequently, Algorithm 2 executes itself recursively on this in-tree, and this execution first
recognizes edge e4 as a producer feasible basic merger among the edges that are incident to the root node ABC. The
execution of this basic merger results in the in-tree depicted in the middle of the boxed part of Figure 3, and, in this635

in-tree, edge e6 is an infeasible basic merger while edge e5 is a producer feasible basic merger. The execution of the
basic merger e5 results in the third in-tree depicted in the boxed part of Figure 3. In this in-tree, edge e6 is an infeasible
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basic merger and edge e7 is a feasible basic merger but not a producer. Hence, the recursion returns at this point, with
a nodal capacity of 4 for the terminal node of the generated in-tree. Since 4 is larger than 3 – i.e., the capacity of the
terminal node AB in the in-tree that originated this recursion – the edge sequence 〈e2, e4, e5〉 constitutes a producer640

t-merger with respect to node AB. The execution of this t-merger results in the in-tree depicted at the top-right part of
Figure 3. In this in-tree, edge e6 is an infeasible basic merger, and edges e7 and e3 are feasible basic mergers but they
cannot generate any t-merger that is producer with respect to the root node ABCEF. Hence, Algorithm 2 completes,
returning MS EQ = 〈e1, e2, e4, e5〉 as the identified t-mergerM∗ and the capacity of the node ABCEF as the value of
CAP.645

Before concluding this example, it is useful to make the following remarks. First, notice that the t-merger defined
by the edge sequence 〈e2, e4〉 is not a producer t-merger with respect to node AB, since the capacity of the terminal
node ABCE of the in-tree resulting from this t-merger is χ(ABCE) = 2 < 3 = χ(AB). On the other hand, the basic
merger e4 is necessary for enabling the producer basic merger e5 that establishes eventually the producer t-merger that
is generated by the executed recursion.650

Also, if the capacity of node ABCEF had ended up being greater than or equal to 5, Algorithm 2 would have
continued its execution, entering the basic edges e6 and e8 in MS EQ as producer basic mergers. Hence, the various
maximal sub-trees of the in-tree T (M∗) are built incrementally, as a union of smaller in-trees, during the computation
of the algorithm. Furthermore, each such smaller in-tree is a potential producer with respect to its root node.

We now establish some properties of the edge-sequence MS EQ computed by Algorithm 2, that also imply the655

correctness of Algorithm 2.

Proposition 34. The edge sequence MS EQ obtained from the execution of Algorithm 2 on an in-tree T̃ (n), has the
following properties.

1. It defines a feasible t-mergerM in T̃ (n) with the corresponding in-tree T (M) rooted at node n.
2. For any non-zero indegree node n′ of T (M) and edge e′ of T (M) leading into node n′, the maximal sub-tree of660

T (M) that is rooted at node n′ and has edge e′ as the only edge incident to node n′, T (n′, e′;M), is a potential
producer with respect to node n′.

3. For every edge e′′ of T̃ (n) not belonging in T (M) and leading into a node n′′ of T (M), the maximal sub-tree
of T̃ (n) that is rooted at node n′′ and has edge e′′ as the only edge incident to node n′′, T̃ (n′′, e′′), contains no
t-merger that is feasible in the in-tree resulting from the execution ofM and producer with respect to n(M).665

4. M is a structurally maximal, optimal solution of the corresponding instance of Problem 30. Also, the returned
value of CAP is the capacity χ

(
n(M)

)
of node n(M).

5. M is a producer macro-merger.

Proof. Property 1 can be established by a simple induction on the depth of the in-tree T̃ (n); we omit the details.
Property 2 results from (i) the tests in lines 10 and 18 of Algorithm 2, which ensure that every basic merger or670

t-mergerM entering the list MS EQ has an in-tree T (M) that is potential producer with respect to its root node, and
(ii) Lemma 18.

To prove Property 3, first notice that in the in-tree resulting from the execution ofM there is no edge e′′ incident
to node n(M) and corresponding to a producer feasible basic merger, since this producer merger would have been
detected and executed by Algorithm 2 during its last iteration. Next, suppose that there is a sub-tree T̃ (n′′, e′′) of675

T̃ (n) with (i) node n′′ being merged into node n(M), (ii) edge e′′ leading into node n(M), and (iii) T̃ (n′′, e′′) itself
containing a t-mergerM′ that is feasible in the in-tree resulting from the execution ofM and producer with respect
to node n(M). According to Proposition 16, there is a permutation ofM′, M̂′, such that each executed basic merger
in M̂′ is incident to the root of the running in-tree. Hence, edge e′′ is a feasible basic merger with respect to χ

(
n(M)

)
,

and Algorithm 2 must have run the part that is defined by Lines 14 to 24 on edge e′′ during its last iteration. The680

recursion executed by this part would have constructed an edge sequence m containing M̂′, possibly interleaved with
other t-mergers that are producers with respect to their root nodes. This sequence would have been added to M in
Line 19, resulting in a different outcome by the algorithm.

The first part of Property 4 results from Properties 2 and 3 and Proposition 32. The second part results from the
fact that Algorithm 2 executes immediately every detected basic merger or t-merger that is appended to MS EQ.685
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To prove Property 5, we must show that, for every node ν in T (M), χ
(
n(M)

)
=

∑
n′∈T (M) χ(n′) −

∑
e∈T (M) w(e) ≥

χ(ν). For any node ν in T (M), let π(ν) denote the path leading from ν to the root node of T (M). Then, the sum∑
n′∈T (M) χ(n′) −

∑
e∈T (M) w(e) can be organized as follows:∑

ν′∈π(ν)

∑
e′ leading into ν′

e′<π(ν)

( ∑
ν′′∈T (ν′ ,e′ ;M)
ν′′,ν′

χ(ν′′) −
∑

e∈T (ν′,e′;M)

w(e)
)

+

( ∑
ν′∈π(ν)

χ(ν′) −
∑

e∈π(ν)

w(e)
)

From Proposition 22,
∑
ν′∈π(ν) χ(ν′) −

∑
e∈π(ν) w(e) ≥ χ(ν). Also, the first term in the above expression is nonnegative

due to Property 2 in Proposition 34 that was already established in this proof. Hence, M is indeed a producer with690

respect to ν. Since ν was arbitrarily chosen, Property 5 has been established.

The next result discusses the complexity of Algorithm 2.

Proposition 35. Algorithm 2 runs in time O(|E(T̃ (n))|2), where E(T̃ (n)) denotes the set of edges of T̃ (n).

Proof. Let E(T̃ (n)) = ν, and notice that every local operation of Algorithm 2 is of complexity O(ν). But to this cost,
we need to add the cost of the recursive call on the in-tree T (n′) that corresponds to the tail node n′ of edge e.695

For T̃ (n) with a single layer of edges, the complexity of Algorithm 2 is bounded by ν + (ν − 1) + . . . + 1 = O(ν2).
For T̃ (n) that is a single path, the complexity of Algorithm 2 is O(ν), since the producer p-merger that maximizes the
capacity of the resulting node, is detected during a single traversal of T̃ (n).

For the general case, let l̄ denote the largest indegree of T̃ (n). Then, the computational cost of Algorithm 2 is
bounded by the solution of the recursion q(ν) = l̄2 · q(ν/l̄) + f (ν), where the term f (ν) = O(ν) and represents the700

cost pertaining to the local processing of the edges that belong in the top layer of edges of the in-tree T̃ (n). The term
l̄2 · q(ν/l̄) accounts for the cost of the recursive invocation of Algorithm 2 during the processing of these edges. Since
f (ν) = O(νlogl̄ l̄2−1), from the part 1) of the Master Theorem in Appendix A, we have that q(ν) is Θ(νlogl̄ l̄2 ) = Θ(ν2),
and therefore, the complexity of Algorithm 2 is O(ν2).

The next definition is useful for the subsequent results.705

Definition 36. A terminal node n of a DAG U(Ĝ(s)) has maximal capacity if the sequence MS EQ returned by
Algorithm 2 applied on T̃ (n) is empty.

For DAGsU(Ĝ(s)) that satisfy Condition 25, the concepts introduced by Definitions 27 and 36, and Algorithm 2,
enable the strengthening of Proposition 26 as follows:

Proposition 37. Consider a DAGU(Ĝ(s)) satisfying Condition 25, and a terminal node n of this DAG having maximal710

capacity. If, for every edge e incident to n inU(Ĝ(s)), there is no feasible t-merger in T (n, e) merging node n with a
source node n′′ of T (n, e), then the underlying traffic state s is not live.

Proof. Consider an edge e incident to n in U(Ĝ(s)). By Proposition 28 and the working assumptions, any maximal
t-merger rooted at node n in T (n, e), leads to a DAG T ′ having a unique terminal node n′, where every edge e′

incident to n′ in T ′ corresponds to an infeasible basic merger. Furthermore, since the considered terminal node n715

has maximal capacity inU(Ĝ(s)), none of these basic mergers can become feasible by injecting further capacity into
the aforementioned terminal node n′ through the execution of a feasible macro-merger defined in the union of the
remaining DAGs T (n, e′′), for e′′ , e; any such macro-merger either (a) would have been identified and executed
by Algorithm 2, when applied to the corresponding in-tree T̃ (n), or (b) would connect node n with a source node of
the DAG T (n), which contradicts the assumptions of Proposition 37. Finally, since edge e was selected arbitrarily,720

it follows that n cannot be merged with any of the source nodes in T (n), and therefore, the underlying traffic state s
cannot be live.

Algorithm 3 tests the condition of Proposition 37 on T (n, e). It first assesses the feasibility of the basic merger
defined by edge e. If e is not a feasible basic merger, then the algorithm deduces the lack of merger sequences over the
nodes of T (n, e) that can merge n with a source node of T (n, e). Otherwise, it executes the basic merger e, resulting725

in the DAG T ′ with the terminal node n′, and checks whether e has merged n with a source node of T (n, e). If so,
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Algorithm 3 Determining the existence of a t-merger merging a terminal node n of maximal capacity inU(Ĝ(s)) with
a source node in T (n, e).
Input: DAG T (n, e).
Output: A binary variable taking the value of 1 if there is a merger sequence with the desired property, and the value
of 0, otherwise.

Procedure: MergingSource(T (n, e))
1: if e is an infeasible basic merger then
2: return 0;
3: end if
4: T ′ := the DAG resulting from the execution of the basic merger defined by e in T (n, e);
5: n′ := the terminal node of T ′;
6: if the nodes merged in n′ include a source node of T (n, e) then
7: return 1;
8: end if
9: T̃ ′ := the in-tree corresponding to the terminal node of DAG T ′;

10: (M, χ) := result of running Algorithm 2 on T̃ ′;
11: T ′′ := the DAG resulting from the execution of the t-mergerM in T ′;
12: for every edge e′′ incident to the terminal node n′′ of T ′′ do
13: if MergingSource(T ′′(n′′, e′′)) = 1 then
14: return 1;
15: end if
16: end for
17: return 0;

the algorithm exits with a positive outcome. Otherwise, it maximizes the capacity of the terminal node n′ in T ′ by
running Algorithm 2 on the corresponding in-tree T̃ ′. The execution of the computed t-merger results in the DAG
T ′′. Subsequently, it recursively searches for a t-merger with the desired property in each of the sub-DAGs T ′′(n′′, e′′)
defined by the DAG T ′′ and the edges e′′ incident to node n′′ in T ′′.730

Example 38. We demonstrate Algorithm 3 on the DAG T (n, e) depicted by solid lines in Figure 4; dashed lines
indicate the connections of this DAG to the rest of the underlying DAGU(Ĝ(s)). The numbers associated with nodes
indicate the capacity of the nodes, and the numbers associated with edges ei, i = 1, . . . , 4, are the corresponding
weights w(ei).

In the DAG T (n, e1), edge e1 defines a feasible basic merger. The execution of e1 results in the DAG T ′ where735

nodes n and n1 are merged into a new terminal node n′ with capacity χ(n′) = 0 + 2 − 1 = 1. Algorithm 2 applied to
T ′ returns the t-merger defined by edge e2. The execution of this t-merger in T ′ results in the DAG T ′′ with terminal
node n′′ of capacity χ(n′′) = 2 and incident edges e3 and e4. At this point, Algorithm 3 proceeds to the execution
of the FOR-loop. The recursive call of Algorithm 3 on the DAG T ′′(n′′, e3) results in a positive outcome, which is
propagated to the original thread of the algorithm. Thus, the algorithm returns a positive outcome for the considered740

DAG T (n, e).
Concluding the example, we point out that the t-merger constructed by Algorithm 3 for the DAG T (n, e) of

Figure 4 is the edge-sequence 〈e1, e2, e3〉. The execution of this t-merger merges node n with the source node n3 of
T (n, e). Indeed, it can be seen in Figure 4 that edges e1 and e3 constitute a path leading from node n3 to node n in
T (n, e). But it is also important to notice that the insertion of the producer merger that corresponds to edge e2 was745

essential for the enablement of the merger defined by edge e3.

The correctness of Algorithm 3 follows from the above discussion and Proposition 16. The next result establishes
the polynomial-time complexity of the algorithm with respect to the size of the input DAG T (n, e).

Proposition 39. Algorithm 3 runs in time O(|E(T (n, e))|2), where E(T (n, e)) is the set of edges of the input DAG
T (n, e).750
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Figure 4: An example DAG T (n, e) for the demonstration of Algorithm 3.

Proof. Let O(|E(T (n, e))|2) = ν, and denote by l̄ the maximum indegree of the input DAG T (n, e). We can bound
the computational cost of Algorithm 3 by the solution of the recursion q(ν) = 1 + cν2 + l̄q(ν/l̄), where the first two
terms correspond to the execution of the basic merger e and the invocation of Algorithm 2 on the resulting DAG,
respectively; in particular, the constant c that appears in the second term expresses the fact that the complexity of
Algorithm 2 is O(ν2). The third term represents the cost that results from the recursive invocation of Algorithm 3. Part755

3) of the Master Theorem in Appendix A implies that q(ν) = Θ(ν2), provided that we have a constant d < 1 such that
l̄ + cν2/l̄ ≤ d(1 + cν2), for a sufficiently large ν. The existence of such a constant d can be shown as follows. First,
notice that smaller values of l̄ render easier the decision problem addressed by Algorithm 3. Hence, we consider ν
larger than some value ν̄1 so that we have l̄ > c. Then, we pick d ∈ (c/l̄, 1). The requirement dcν2 + d ≥ l̄ + cν2/l̄
can be reformulated as cν2(d − 1/l̄) ≥ l̄ − d. By definition, l̄ ≥ 1. Also, from the definition of c, we can assume760

that c ≥ 1.0, which implies that d > c/l̄ ≥ 1/l̄. But then we can satisfy the inequality dcν2 + d ≥ l̄ + cν2/l̄ by
picking ν ≥

√
(l̄2 − dl̄)/(cdl̄ − c) ≡ ν̄2. From the above, it follows that we can have the aforementioned constant d for

ν ≥ max{ν̄1, ν̄2}, and the proof is completed.

Algorithm 3 can be easily modified to return, in the case of a positive outcome, the identified t-merger that led
to this outcome, together with its binary outcome. The details of this modification are similar to the computation of765

MS EQ by Algorithm 2, and they are left to the reader.
For the DAGs U(Ĝ(s)) satisfying Condition 25, Proposition 37 and Algorithm 3 enable the strengthening of the

second part of Proposition 26 according to the following proposition.

Proposition 40. Consider a DAGU(Ĝ(s)) satisfying Condition 25, and a terminal node n ofU(Ĝ(s)) having maximal
capacity. Suppose that there exists only one edge e incident to n in U(Ĝ(s)) with the corresponding DAG T (n, e)770

possessing a feasible t-merger merging node n with a source node n′′ of T (n, e). Then, the search process outlined in
Section 2.4 can execute greedily the basic merger defined by edge e.

Proof. The arguments in the proof of Proposition 37 imply that any merger sequence satisfying Theorem 11 must
contain a t-merger that is defined on the DAG T (n, e) and merges node n with a source node of T (n, e). From
Proposition 16, such a t-merger can start with the basic merger defined by edge e. Finally, the maximal capacity of775

node n in U(Ĝ(s)) implies that the basic merger corresponding to e can be executed immediately by the underlying
search process and with no need for backtracking.

As in the case of Proposition 26, for DAGs U(Ĝ(s)) satisfying Condition 25, Propositions 37 and 40 enable a
greedy advancement of the search for a merger sequence outlined in Section 2.4 by focusing on the terminal nodes
of these DAGs. Next we establish that, for a DAGU(Ĝ(s)) that satisfies Condition 25 and has maximal capacities at780

its terminal nodes according to the criterion of Definition 36, the inability of the results of Propositions 37 and 40 to
provide a greedy advancement of the underlying search process implies the existence of a producer macro-merger in
the DAGU(Ĝ(s̃)). The proof of this result also provides an efficient algorithm for the identification of such a macro-
merger. The producer property of this macro-merger implies that it can be executed greedily by the underlying search
process. Hence, we have a complete efficient algorithm for conducting the search process for the merger sequences785

stipulated by Theorem 11 for any traffic state s with the DAGU(Ĝ(s)) that satisfies Condition 25.
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Figure 5: The path-based decomposition of the DAGU(Ĝ(s)) in the proof of Proposition 41.

Proposition 41. Consider a DAG U(Ĝ(s)) satisfying Condition 25, where all of its terminal nodes have maximal
capacities. Also, assume that every terminal node n of U(Ĝ(s)) has at least two incident edges e and e′ with the
corresponding sub-DAGs T (n, e) and T (n, e′) possessing t-mergers that merge node n with a source node of these
sub-DAGs. Then, the DAGU(Ĝ(s)) possesses a producer macro-merger.790

Proof. We prove the result by providing an algorithm for identifying a producer macro-merger in U(Ĝ(s)). The
structure of the identified macro-merger is similar to that of the c-merger depicted in Figure 2. However, the simulta-
neously executed mergers providing this producer merger are not p-mergers as in the case of c-mergers, but t-mergers
constructed by Algorithm 3 for some appropriately selected sub-DAGs T (n, e).

For the specification of the sought producer merger, we employ a path-based decomposition of the DAGU(Ĝ(s))795

as indicated in Figure 5. More specifically, each directed path p recognized by this decomposition starts from some
node n of U(Ĝ(s)) with an indegree of zero or a total degree greater than two, and extends up to a terminal node n′

of U(Ĝ(s)) or a nonterminal node n′′ with a total degree greater than two. The construction of the sought producer
merger starts with any arbitrary path p from the aforementioned decomposition, considered as the path π0 in this
construction, and proceeds by distinguishing the following two cases.800

Case 1: The head node ν1 of path π0 is a nonterminal node ofU(Ĝ(s)) with total degree greater than two. Then,
there exists an edge e1 emanating from node ν1, which defines a new path π1 in the decomposition of U(Ĝ(s)) that
can extend path π0 while preserving the direction of this path. This case is exemplified by the triplet 〈p1, n2, p4〉 in the
DAG depicted in Figure 5.

Case 2: The head node ν1 of path π0 is a terminal node ofU(Ĝ(s)). Then, since every terminal node n ofU(Ĝ(s))805

has at least two incident edges e and e′ with the corresponding sub-DAGs T (n, e) and T (n, e′) possessing a t-merger
that merges node n with a source node of these sub-DAGs, it follows that (a) node ν1 has an incident edge e1 that is
not part of path π0, (b) the corresponding sub-DAG T (ν1, e1) possesses a feasible t-merger that merges node ν1 with
a source node ν2 of T (ν1, e1), and (c) node ν2 has an edge e2 emanating from it that is not part of the aforementioned
merger sequence of T (ν1, e1). Edge e2 is the first edge of a directed path π1 in the path-based decomposition of the810

DAG U(Ĝ(s)), and this path has a consistent sense of direction with the original path π0. Hence, path π0 can be
extended through path π1 in a way that preserves its direction, after executing the aforementioned merger sequence
merging nodes ν1 and ν2.

The second case can be exemplified in Figure 5 by selecting path p4 as the path π0. Then, the role of node ν1 is
played by node n4, and the corresponding sub-DAG T (ν1, e1) is the sub-DAG that consists of the paths p8, p7, and815

p9. Hence, in this example, the source nodes of T (ν1, e1) are nodes n3 and n6. Furthermore, assuming that node
n4 is connected to source node n3 by the merger sequence computed by applying Algorithm 3 on T (ν1, e1), the path
π1 that extends path p4 is path p3. Finally, we notice that the t-merger constructed by Algorithm 3 clears the path
〈n3, p7, n5, p8, n4〉, but it might also contain a sub-path of path p9 which is a producer feasible p-merger with respect
to node n5 and it is necessary for the enablement of the p-merger corresponding to path p7.820

The path-construction defined above can be repeated for the head node of path π1 identified in each of the two
cases. This fact enables the further extension of the constructed path. Since the DAG U(Ĝ(s)) has a finite number
of nodes, this construction continues until we eventually reach a node that is on the already constructed path. At this
point, the constructed path contains a cycle c.

23



In order to demonstrate the formation of this cycle c in the DAG of Figure 5, suppose that we started the construc-825

tion with path p1 as the initial path π0, and advanced through node n2 to path p4. This path leads to node n4, which
is a terminal node, and hence execution of Algorithm 3 on the DAG T (n, e) consistsing of the paths p8, p7, and p9,
provides a t-merger for merging node n4 with node n3. From node n3, the construction advances through path p3. But
path p3 leads to node n2, which was already visited, and therefore, the identified cycle c is defined by the paths p4 and
p3, and the t-merger that was executed when visiting node n4.830

Next, we focus on the set of the macro-mergers that are necessary for the construction of cycle c. As demonstrated
in the above example, these macro-mergers are the t-mergers identified by Algorithm 3 at the visited nodes νi that
satisfy the conditions of Case 2, during the overall construction, and belong on cycle c. From the specification of all
these t-mergers, it is clear that they involve the nodal capacities of non-overlapping subsets of nodes of the underlying
DAGU(Ĝ(s)); therefore, they can be executed simultaneously. We claim that the simultaneous execution of all these835

t-mergers defines a producer macro-mergerM.
The validity of this claim can be established by showing that the basic mergers in M can be partitioned so that

each subset in this partition defines a producer merger. From the above definition of M, each basic merger that is
in M belongs to a t-merger M(νi) merging some terminal node νi belonging to the constructed cycle c to a source
node n′i of one of the sub-DAGs T (νi, e) of νi. According to the discussion of Algorithm 3 that generates the merger840

sub-sequencesM(νi), each edge e′ belonging inM(νi) is either (i) in the directed path p(νi) leading from node n′i to
node νi in T (νi, e), or (ii) in another producer merger of T (νi, e) that is necessary for rendering path p(νi) a feasible p-
merger. Clearly, any edge e′ belonging in the second category satisfies the aforestated condition forM. Furthermore,
the clearance of the paths p(νi), for all the terminal nodes νi belonging in c, together with the paths πi of the above
construction that belong in c, define a c-merger similar to that of Figure 2. Hence, the edges e′ belonging in the paths845

p(νi) are also part of a producer macro-merger, and Proposition 41 has been established.

Algorithm 4 is a complete formal statement of the construction procedure that was used in the proof of Proposi-
tion 41. The next proposition characterizes the complexity of this algorithm.

Proposition 42. Algorithm 4 runs in time O(|E|2), where E is the set of edges of the input DAGU(Ĝ(s)).

Proof. Each path π is constructed by Algorithm 4 through a simple forward-reaching scheme that starts from the850

initial edge e and advances towards its head node. Hence, this construction is performed in time O(|E(π)|), where E(π)
denotes the number of edges in path π. Since the constructed paths π have no common edges, the entire set of these
paths developed by Algorithm 4, is constructed in time O(|E|). From Proposition 39, the construction of the t-merger
m at each visited terminal node ν is performed in time O(|E(T (ν, e′))|2), where E(T (ν, e′)) is the set of edges of the
corresponding DAG T (ν, e′). But since the sub-DAGs T (ν, e′) have no overlapping edges, the entire set of t-mergers855

developed by Algorithm 4, is constructed in time O(|E|2). The thinning of the lists L andM taking place in lines 23 –
30 can be performed through a synchronized forward scanning of these two lists, and it is performed in time O(|N|),
whereN is the set of nodes of the DAGU(Ĝ(s)). But the presumed connectivity of DAGU(Ĝ(s)) implies that |N| is
O(|E|). Hence, the time complexity of the entire algorithm is O(|E|2).

As already noticed, when combined with Propositions 37 and 40, Proposition 41 enables an efficient algorithm for860

assessing the liveness of any traffic state s that satisfies Condition 25; the pseudocode of this algorithm is provided in
Algorithm 5. Algorithm 5 takes as input the PDG Ĝ(s) that represents the evaluated traffic state s. It first computes
the condensation C(Ĝ(s)). If the PDG C(Ĝ(s)) constitutes a single chain, Algorithm 5 deduces the liveness of the
considered state s; cf. Theorem 11. Otherwise, Algorithm 5 iteratively computes the DAG G that corresponds to the
current condensation C, and uses this DAG in order to either infer the non-liveness of state s, on the criteria established865

in Propositions 26 and 37, or identifies a merger in G that is executed in the PDG C maintained by the algorithm. At
each iteration, the selected mergers are such that there is no need for backtracking on them. Finally, the algorithm
exits the WHILE-loop with a positive outcome, if the aforementioned mergers have led to a PDG C that consists only
of a single chain.

The next theorem establishes the correctness of Algorithm 5.870

Theorem 43. When executed on a traffic state s coming from an open, irreversible, dynamically routed, zone-
controlled guidepath-based transport system, and having a DAG U(Ĝ(s)) that satisfies Condition 25, Algorithm 5
terminates in finite time, and returns a correct assessment of the liveness of s.
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Algorithm 4 The macro-merger construction described in the proof of Proposition 41.

Input: A DAGU(Ĝ(s)) with every terminal node n having at least two incident edges e and e′ with the corresponding
sub-DAGs T (n, e) and T (n, e) possessing t-mergers merging node n to a source node of these sub-DAGs.
Output: The constructed macro-mergerM.

1: L := 〈〉; M := 〈〉;
2: ν := A node n ofU(Ĝ(s)) with indegree of 0 or a total degree greater than 2;
3: Append ν to the end of L;
4: e := an edge emanating from ν;
5: π := the directed path of U(Ĝ(s)) starting with e and leading up to the first encountered node that is a terminal

node ofU(Ĝ(s)) or a nonterminal node with total degree greater than 2;
6: ν := the head node of the path π(e);
7: while ν < L do
8: Append ν to the end of L;
9: if ν is a nonterminal node ofU(Ĝ(s)) then

10: e := an edge emanating from ν;
11: π := the directed path ofU(Ĝ(s)) starting with e and leading up to the first encountered node that is a terminal

node ofU(Ĝ(s)) or a nonterminal node with total degree greater than 2;
12: ν := the head node of the path π(e);
13: else
14: e′ := an edge incident to node ν, different from e, and with the corresponding subgraph T (ν, e′) possessing a

t-merger merging node ν with a source node of this subgraph;
15: m := the t-merger returned by Algorithm 3 when applied on T (ν, e′);
16: Add m inM labeled by ν;
17: ν′ := the source node of T (ν, e′) merged with node ν by m;
18: e := an edge emanating from ν′ and not belonging into T (ν, e′);
19: π := the directed path ofU(Ĝ(s)) starting with e and leading up to the first encountered node that is a terminal

node ofU(Ĝ(s)) or a nonterminal node with total degree greater than 2;
20: ν := the head node of the path π(e);
21: end if
22: end while
23: ν′ := first element of L;
24: while ν′ , ν do
25: Remove ν′ from L;
26: if ν′ is a terminal node ofU(Ĝ(s)) then
27: Remove fromM the t-merger m labeled by ν′;
28: end if
29: ν′ := first element of L;
30: end while
31: return M;
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Algorithm 5 Assessing the liveness of a traffic state s coming from an open, irreversible, dynamically routed, zone-
controlled guidepath-based transport system, and having a DAGU(Ĝ(s)) that satisfies Condition 25.

Input: The PDG Ĝ(s) of a traffic state s.
Output: TRUE if and only if the traffic state s is live.

1: C := C(Ĝ(s));
2: while TRUE do
3: if C is a single-chained PDG then
4: return TRUE;
5: end if
6: G := U(C);
7: if ∃ a terminal node n of G with χ(n) < w(n′, n) for every (n′, n) in G then
8: return FALSE;
9: else if ∃ a path π in DAG G leading into node nh then

10: Update C by executing the p-merger corresponding to path π and condensing further the resulting PDG;
11: else if ∃ a terminal node n in G that does not have maximal capacity then
12: Update C by executing the t-merger returned by Algorithm 2 on the in-tree T̃ (n), and condensing further the

resulting PDG;
13: else if ∃ a terminal node n of G s.t. ∀ sub-DAG T (n, e) defined by an edge e that is incident upon n, @ a merger

sequence merging node n with a source node of T (n, e) then
14: return FALSE;
15: else if ∃ a terminal node n of G with only a single incident edge e such that the DAG T (n, e) possesses a merger

sequence merging node n with a source node of T (n, e) then
16: Update C by executing the basic merger corresponding to edge e and condensing further the resulting PDG;
17: else
18: Use Algorithm 4 in order to identify a producer merger in G, execute this merger in C, and condense further

the resulting PDG;
19: end if
20: end while

Proof. At each iteration, Algorithm 5 either exits inferring the liveness or the non-liveness of the considered traffic
state s, or it executes a nodal merger on the current DAG G. Since the number of nodes ofU(Ĝ(s)) is finite, and every875

executed merger reduces at least by one the number of nodes in the DAG G, it follows that the number of iterations
of Algorithm 5 is finite. Also, each operation executed by the algorithm takes place in finite time. Hence, the entire
computation of Algorithm 5 takes place in finite time.

In order to argue the correctness of the outcome of Algorithm 5, first we notice that every merger executed by
Algorithm 5 results in an updated DAG G that satisfies Condition 25; this is true since the executed mergers constitute880

connected sub-DAGs of the current DAG G. But then, the correctness of Algorithm 5 is a straightforward implication
of the propositions established in the previous parts. More specifically, the correctness of the inference that takes place
in the first IF statement of the algorithm is the result of Theorem 11. The correctness of the first part of the second
IF statement is implied by part 1) of Proposition 26. The correctness of the second part in the second IF statement is
implied by the realization that the considered mergers are producer mergers since the capacity of the resulting node885

is ∞, and by Proposition 13. The correctness of the third part in the second IF statement is implied by the producer
nature of the executed t-merger, established by Proposition 34. The correctness of the fourth part in the second IF
statement is implied by Proposition 37 and the prior execution of the third part of this IF statement with a negative
result (since we have advanced to its fourth part). The correctness of the fifth part in the second IF statement of
Algorithm 5 is implied by Proposition 40 and the prior execution of the third part of this IF statement with a negative890

result. Finally, the feasibility of the last part of the second IF statement is implied by Proposition 41 and the prior
execution of all the other parts of this IF statement with negative results.

We now discuss the complexity of Algorithm 5.
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Figure 6: The DAGs G generated and processed by Algorithm 5 in Example 45.

Theorem 44. For a guidepath network G = (V, E), the time complexity of Algorithm 5 is O(|E|2 · |V |).

Proof. The construction and maintenance of the graphs C and G by Algorithm 5 has time complexity O(|V | + |E|) per895

update. Furthermore, since the considered graphs C and G have no isolated vertices, we can restate this expression
as O(|E|). In each iteration, Algorithm 5 tests the feasibility of a basic merger in time O(1), and hence the test in
line 7 has complexity of O(|E|). The search for feasible p-mergers performed in line 9 is of complexity O(|E|), as well.
Propositions 35 and 39 imply that lines 11, 13, and 15 can be executed in time O(|E|2). Finally, from Proposition 42,
the complexity of line 18 is O(|E|2). Altogether, the time complexity of each iteration of Algorithm 5 is O(|E|2). Since900

every iteration reduces the number of nodes of the DAG G by at least one node, the time complexity of Algorithm 5
is O(|E|2 · |V |).

We conclude this subsection with an illustration of Algorithm 5.

Example 45. We start with the DAGU(Ĝ(s)) depicted in the top-left part of Figure 6, and proceed in the clockwise
mode indicated by the arrows. In each of the depicted DAGs, the number next to each node is the capacity of that905

node, while the number next to each edge is the weight of that edge. Node nh indicates the home node with infinite
capacity. The weight M of edge (nh,C) is a sufficiently large value that we use to demonstrate certain effects in the
subsequent discussion.

The initial DAG G has two terminal nodes, namely B and D, with maximal capacity; this is because each of
the corresponding in-trees T̃ (B) and T̃ (D) is a single-node graph. Furthermore, node D has only one incident edge910

e = (E,D) for which the corresponding sub-DAG T (D, e) has a feasible t-merger merging node D with a source node
of the DAG T (D, e). Hence, Algorithm 5 will execute the basic merger (E,D), and this execution results in the second
DAG G depicted in Figure 6.

This new DAG has only one terminal node, B. However, the capacity of B is not maximal. The in-tree T̃ (B)
consists of the single edge (DE, B), and the application of Algorithm 2 on T̃ (B) returns the merger defined by edge915

(DE, B) as the macro-merger that maximizes the capacity of node B. The execution of this merger results in the third
DAG G depicted in Figure 6.

The third DAG of Figure 6 has node BDE as its single terminal node. Node BDE has maximal capacity, since the
corresponding in-tree T̃ (BDE) has no edges. The edge e = (C, BDE) of weight 1 is the only edge incident to node
BDE that constitutes a feasible merger, and the sub-DAG T (BDE, e) consists only of the edge e since node C has a920

parallel edge f = (C, BDE) of weight 4. Hence, Algorithm 5 proceeds to execute the merger defined by edge e.
The execution of this basic merger results in a cycle in the underlying PDG C, that is defined by (i) the undirected

path connecting the chains of C that are contained in nodes C and BDE, and corresponding to the cleared edge e, and
(ii) a second directed path that connects the same chains and corresponds to edge f . The newly formed cycle possesses,
as part of its capacity, all the nodal capacity consumed by the mergers corresponding to the edges (E,D), (DE, B) and925

e = (C, BDE), since these previously released edges are part of the newly formed cycle. This is recognized by the
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Figure 7: The block-based decomposition of the DAGU(Ĝ(s)) that is used by Algorithm 6.

further condensation of the maintained PDG C, after the execution of the basic merger e = (C, BDE) in C. Therefore,
the capacity of node BCDE resulting from the last merger is at least 4 (it might be even higher if there are additional
free edges in the newly formed cycle that constitute part of the trees that define the u-components corresponding to
the nodes B, C, D, and E of the initial DAG G depicted in top-left part of Figure 6).930

In the next iteration, the algorithm processes the fourth DAG G of Figure 6. This DAG has node BCDE as its
single terminal node. The corresponding sub-DAG T (BCDE) consists of (i) the two edges leading from node A to
node BCDE, and (ii) the edge leading from node nh to node BCDE. Suppose that M > χ(BCDE). Then, node BCDE
has maximal capacity, but it fails the tests of Propositions 37 and 40, since both of the edges leading from node A to
node BCDE constitute the corresponding sub-DAGs T (BCDE, ·) and define feasible mergers. Hence, Algorithm 5935

executes line 18. One possible execution of this part is to start with the path that is defined by edge (nh, A), extend
this path at node A by one of the two edges that emanate from it, and use the second of these edges at node BCDE for
determining the macro-merger that advances the pursued construction. But this last step leads back to node A, and to
the detection of the c-merger that is defined by the two edges connecting nodes A and BCDE.

The execution of this c-merger leads to the fifth DAG G of Figure 6. The unique terminal node is ABCDE, and940

the corresponding in-tree T̃ (ABCDE) consists of this node only; hence, node ABCDE has maximal capacity. If
M > χ(ABCDE), then the edge e with weight 4 is recognized as the only edge incident to the terminal node ABCDE
and its corresponding DAG T (ABCDE, e) possesses a feasible t-merger merging node ABCDE with a source node
of this DAG. The execution of the corresponding basic merger turns the second edge of the DAG into a self-loop in
the node that results from this merger, and the condensation of the corrresponding PDG results in the single-node945

DAG depicted in the last part of Figure 6. If, on the other hand, M ≤ χ(ABCDE), the terminal node ABCDE has,
for both of its incident edges, the corresponding DAGs T (ABCDE, e) possessing a feasible t-merger merging node
ABCDE with one of their source nodes. Hence, in this case, Algorithm 5 advances according to Proposition 41, and
the detected macro-merger is the c-merger defined by the two DAG edges. The execution of this c-merger again leads
to the single-node DAG depicted in the last part of the figure.950

Concluding this example, we also notice that if the weight of the edge (C, B) in the top-left DAG G was equal to
2, instead of 1, then we would end up with the third DAG G depicted in Figure 6 having a single terminal node (node
BDE) with all its incident edges corresponding to infeasible basic mergers. Hence, in this case, Algorithm 5 would
terminate at this point with a negative outcome for the evaluated state s.

3.3. The general algorithm955

In this section, we present a polynomial-time algorithm assessing the liveness of any traffic state s coming from an
open, irreversible, dynamically routed, zone controlled guidepath-based transport system. This algorithm is enabled
by (i) the developments in the previous parts, and (ii) the tree decomposition of any connected undirected graph to its
blocks. Recall that the blocks of a connected undirected graph are its bridges and its maximal biconnected subgraphs.
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Algorithm 6 Assessing the liveness of an arbitrary traffic state s coming from an open, irreversible, dynamically
routed, zone-controlled guidepath-based transport system.

Input: The PDG Ĝ(s) of traffic state s.
Output: Boolean variable LIVE indicating whether the evaluated traffic state s is live.

1: C := C(Ĝ(s));
2: while TRUE do
3: if C is a single-chained PDG then
4: LIVE := TRUE;
5: return LIVE.
6: end if
7: G := U(C);
8: if ∃ a terminal node n of G with χ(n) < w(n′, n) for every edge (n′, n) in DAG G then
9: LIVE := FALS E;

10: return LIVE.
11: else if ∃ an edge e in DAG G that defines a producer feasible basic merger then
12: Update C by executing this basic merger and condensing further the resulting PDG;
13: else if ∃ a path π in DAG G leading into node nh then
14: Update C by executing the p-merger corresponding to path π and condensing further the resulting PDG;
15: else
16: Compute the block-based decomposition of the undirected graph Ĝ induced by the DAG G (e.g., using the

algorithm of [34]), and the corresponding block-cutpoint tree ∆;
17: Mark every block node in ∆ as “UNPROCESSED”;
18: while TRUE do
19: B := a leaf node of ∆, or a block non-leaf node with all its children blocks marked as “PROCESSED”;
20: Process block B based on its classification according to Cases I-V;

/* Every time the processing of such a block identifies and executes a (macro-)merger, a new iteration
starts for the entire algorithm. Also, detection of non-liveness, and, therefore, a negative terminating
decision by Algorithm 5 becomes a negative terminating decision for Algorithm 6.*/

21: end while
22: end if
23: end while

These blocks are connected through shared cut vertices. Furthermore, the block connectivity through the cut vertices960

can be represented by a tree known as the block-cutpoint tree.
Figure 7 demonstrates the concepts introduced in the previous paragraph, and furthermore, it highlights the way

these concepts are used in the subsequent developments. In particular, part (a) depicts a DAGU(Ĝ(s)) and the block-
based decomposition of the induced undirected graph. Part (b) presents the block-cutpoint tree that represents the
block-based decomposition depicted in part (a). As discussed in section 2.1, the node set of this tree consists of965

two distinct subsets: the first subset corresponds to the articulation nodes of DAG U(Ĝ(s)), and the second subset
corresponds to its blocks. The edges of this tree connect a node ni of the first subset with a node B j of the second
subset; in particular, the edge corresponding to a pair {ni, B j} is in the block-cutpoint tree if and only if the articulation
node ni belongs in block B j. Furthermore, we treat the block-cutpoint tree induced by a DAG U(Ĝ(s)) as a rooted
tree. The root is the tree node that corresponds to the home node nh of the DAGU(Ĝ(s)), if node nh is an articulation970

node; otherwise, the root is the tree node corresponding to the unique block that contains node nh.
As already noticed, the lack of isolated vertices in the considered U(Ĝ(s)) DAGs implies that their blocks are

either bridge-blocks or bi-blocks. The following definition establishes another classification of these blocks.

Definition 46. A block B of a DAGU(Ĝ(s)) that is not the root node of the block-cutpoint tree, is type-I if its parent
articulation node is a terminal node of the corresponding sub-DAG GB; otherwise, block B is characterized as type-II.975
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With all the above concepts in place, we now proceed to the presentation of the algorithm. A pseudo-code of this
algorithm is provided in Algorithm 6. The basic logic of the algorithm can be outlined as follows:

Similar to Algorithm 5, Algorithm 6 conducts a greedy search for a feasible merger sequence that can lead the
underlying traffic system from the evaluated traffic state s to another traffic state s′ for which the corresponding PDG
Ĝ(s′) is chained. Hence, in more operational terms, the algorithm takes as input the PDG Ĝ(s) of the evaluated traffic980

state s, computes the condensation C(Ĝ(s)) of this PDG, and enters an iterative mode where the algorithm (i) either
determines the liveness of the assessed state s, if the maintained PDG C has been reduced to a single chain; (ii) or
determines the non-liveness of the assessed state s, if it can infer an inability to further merge certain parts of the
currently processed PDG C and the corresponding DAG G; (iii) or identifies a feasible (macro-)merger in the current
DAG G that can be executed in the maintained PDG C.985

A particular test employed by Algorithm 6 early in each of its iterations for the support of a type-(ii) decision, is
the presence of a terminal node n in the evaluated DAG G with all of its incident edges corresponding to infeasible
basic mergers. Also, some mergers that are easily identifiable and can be executed greedily by the algorithm in any
of its iterations, are: (a) basic mergers that are producers, and (b) feasible p-mergers that involve the home node nh,
since any such merger results in a node with infinite capacity, and therefore it is a producer merger.990

On the other hand, if Algorithm 6 goes through all the aforementioned easy checks during a given iteration without
any success, then, it must employ the block-based decomposition of the current DAG G described above. During this
stage of the algorithm execution, blocks are processed from the leaf nodes of the block-cutpoint tree towards its root,
and the processing of each block B is differentiated on the basis of the following three attributes:

1. Whether it is (i) the root node or a child of the root node of the block-cutpoint tree, or (ii) any other node of this995

tree; i.e., this attribute considers the position of block B in the block-cutpoint tree.
2. Whether it is a bridge-block or a bi-block; i.e., this attribute considers the topological structure of the corre-

sponding DAG GB.
3. Whether it is a type-I or type-II block, according to Definition 46; this attribute essentially defines a sense of

orientation for block B, in the context of the block-cutpoint tree.1000

In agreement with the overall logic that drives the computation of Algorithm 6, the processing of a block B may
(i) determine the non-liveness of the assessed state s, if it can infer an inability to further merge certain parts of the
considered block, or (ii) identify a feasible (macro-)merger in the corresponding sub-DAG GB that can be executed
greedily. Both of these two outcomes advance the underlying search process; the first one by terminating the search
process while inferring the non-liveness of the evaluated state s, and the second one by bringing the search process1005

to a new traffic state s′ and initiating a new iteration of Algorithm 6 that is performed on the DAG U(Ĝ(s̃)). But
there is a third possible outcome for a block processing: in this case, no merger is currently possible in the considered
block B, but further merging in this block can take place if additional capacity is conveyed to the block via its parent
articulation node in the block-cutpoint tree. The mechanism for this capacity conveyance are the mergers that might
take place during the processing of the blocks that are located on the path that links block B to the root of the block-1010

cutpoint tree. This realization further implies that the processing of each block B must occur in a way that will not
compromise the successful processing of the blocks that are located in that upper part of the block-cutpoint tree (with
respect to the considered block B).

The insights and the remarks that are provided in the previous paragraph, are further operationalized through the
integration of the following four rules in the logic of Algorithm 6:1015

Rule 47. The current DAGG is processed on a block-by-block basis, and this processing advances from the leaf blocks
of the block-cutpoint tree towards its root. In particular, a block that constitutes an internal node of the block-cutpoint
tree, is picked for processing only after all the descendant blocks of this node have been processed.

Rule 48. A block B with its descendant blocks already processed, is processed in a way that either (i) detects a
permanent inability to merge certain parts of the considered block, which further implies the non-liveness of the1020

evaluated state s; or (ii) executes some basic merger that is unavoidable for the merging of the considered DAG G
into a single node and can be executed at the current stage of the computation without any negative repercussions
for the merging potential into a single node of the remaining nodes of block B; or (iii) tries to inject the maximum
possible capacity to the articulation node n that is the parent node of block B in the block-cutpoint tree, in a way that
does not compromise the potential of the sub-DAG corresponding to block B to be merged into a single node.1025
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Rule 49. Every time that the capacity of an articulation node n is increased due to an executed merger, the entire
sub-tree of the block-cutpoint tree that emanates from this node must be reprocessed, since this capacity increase
might enable further developments in this sub-tree that might result in the injection of further capacity into node n.

Rule 50. The execution of a merger triggers the initiation of a new (major) iteration by Algorithm 6.

As already noticed, the detailed implementation of the processing logic that is stipulated by Rules 47–50, during1030

the processing of any given block B, is dependent upon the classification of block B in terms of the three attributes that
are determined by the topological structure of the corresponding DAGGB, and the position and the orientation of block
B in the block-cutpoint tree. The processing of bridge-blocks is strongly defined by the role of the corresponding edges
as cut-edges of the underlying guidepath network G. On the other hand, the processing of the bi-blocks leverages the
results and the insights that led to the development of Algorithm 5 in Section 3.2. Finally, for blocks B that are either1035

the root node of the block-cutpoint tree or children of the root of this tree, the third part of Rule 48 can be relaxed,
and this fact is reflected in the processing logic for this block class.7

Next, we detail the processing of the block classes in the aforementioned classification scheme that have a distinct
role in the computation of Algorithm 6; these classes are discussed in increasing conceptual complexity of the involved
processing.1040

I) Processing a type-II bridge-block B: The processing of a type-II bridge-block B that has all its descendant
blocks already processed, evolves according to the following logic:

If the single edge that constitutes this block is a feasible basic merger, then this merger can be executed imme-
diately, since (i) this is the only way to merge the sub-DAG corresponding to the sub-tree of the block-cutpoint tree
rooted to block B, to the rest of the DAG G, and (ii) a basic merger is always a producer merger with respect to the1045

tail node of the corresponding edge (hence, this merger is consistent with the requirements of Rule 48).
On the other hand, if the single edge that constitutes the considered block B is an infeasible basic merger, then the

merging of the aforementioned two parts of the DAG G cannot take place, and the algorithm terminates indicating the
non-liveness of the assessed traffic state s.

II) Processing a type-I bridge-block B: If the basic merger that corresponds to this block is infeasible, then, the1050

block is characterized as “PROCESSED” and the algorithm proceeds to the processing of another block, in expectation
that the considered merger eventually becomes feasible if more capacity is injected to the parent articulation node of
block B.

On the other hand, Rule 48 stipulates that the execution of a feasible basic merger corresponding to a type-I
bridge-block B with all its descendant blocks already processed, must take place only if this merger does not decrease1055

the capacity of the articulation node n that is the parent of block B in the block-cutpoint tree.
Indeed, if node n is mergeable with the home node nh without the execution of the basic merger represented by the

considered block B, then, the merger represented by block B is still feasible after nodes n and nh have been merged.
On the other hand, if the basic merger corresponding to block B reduces the capacity of the articulation node n, this
reduction can have an adversarial effect on the merging potential of the blocks of the DAG G that do not belong in the1060

sub-tree of the block-cutpoint tree that is rooted at block B. Hence, it is advantageous for the overall objective of the
algorithm to postpone the execution of this merger.

However, since a basic merger is always a producer merger with respect to its tail node, Rule 49 implies that
a proper assessment of the basic merger of block B as a producer or a consumer with respect to its parent node n,
must take into consideration the repercussions of the execution of this merger for the sub-DAG of the DAG G that1065

corresponds to the sub-tree rooted to the unique child node n′ of block B in the block-cutpoint tree. More specifically,
if χ(n) > w(n′, n), then, the merger of the nodes n and n′ may enable further mergers in this sub-DAG, that eventually
lead to a capacity increase of the articulation node n′′ that results from the merger of n and n′.

Practically, this possibility can be assessed through a simulation performed on a copy of the sub-tree of the block-
cutpoint tree rooted at node n′, where the original capacity χ(n′) of node n′ has been increased by χ(n)−w(n′, n). The1070

effect of this increase is assessed first on those blocks that are children of the articulation node n′ in the block-cutpoint

7A DAGU(Ĝ(s̃)) requiring a block-based processing by Algorithm 6, does not have any edges leading into the home node nh, since the presence
of these edges would have led to the identification of a producer merger before the algorithm reached this stage of its computation. The realization
of this fact further implies that the differentiation of the block processing on the basis of their position in the block-cutpoint tree concerns primarily
blocks of the bi-block type.
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tree. But the processing of these blocks might result in a capacity increase of other articulation nodes that belong
to these blocks, and this development triggers the processing of all the additional blocks that share these articulation
nodes, according to the requirement that is posed by Rule 49. Repeating the previous remark to this new set of
processed blocks, we can see that the effects of the original capacity increase at node n′ propagates through the entire1075

DAG that corresponds to the sub-tree of the block-cutpoint tree that is rooted at node n′.
Eventually, the contemplated merger defined by the edge (n′, n) is executed on the original DAG G only if the

re-evaluation of the aforementioned sub-tree, according to the logic described above, results in a new capacity value
for node n′ that exceeds the current capacity χ(n) of the articulation node n.8

III) Processing a type-II bi-block B that is (i) neither the root of the block-cutpoint tree, (ii) nor a child of the root1080

of this tree, if this tree is rooted at node nh: According to Definition 46, the parent articulation node n of block B is a
non-terminal node of the sub-DAG GB corresponding to block B. Block B is processed by running on it an adaptation
of Algorithm 5, that is defined by the following modifications of the original algorithm:

A) According to Rule 50, each iteration of Algorithm 5 resulting in a merger in block B triggers a new iteration of
Algorithm 6.1085

B) Node n (i.e., the parent articulation node of B) is treated by Algorithm 5 as possessing at least two emanating
edges. In particular, if n has an outdegree of one in the DAG GB, we assume the presence of a fictitious edge ẽ that
emanates from node n and leads to some dummy node ñ. Node ñ does not appear in the performed computation. But
the assumption of the edge ẽ ensures that node n is a source node for the sub-DAG T (n′) of any terminal node n′ that
includes node n.1090

Treating node n as a source node for the sub-DAGs T (n′), through the above modification, ensures that the
identification of a lack of mergeability (and therefore, a non-liveness outcome) during the execution of Algorithm 5
on block B, is not rectifiable through the injection of further capacity in the articulation node n.

More specifically, if Algorithm 5 comes up with a non-liveness outcome during the execution of its current iteration
on block B, the problematic terminal node n′ that has incurred the non-liveness decision of Algorithm 5, must be1095

different from the parent articulation node n of block B since node n is a non-terminal node of block B. Furthermore,
the above modification of the algorithm execution implies that node n is not in the in-tree T̃ (n′) of the problematic
node n′. Therefore, the injection of any additional capacity in node n is not able to rectify the experienced mergeability
problems of node n′, and Algorithm 6 exits correctly with a negative outcome for the evaluated state s.

Furthermore, we notice that the above modification does not compromise the actual merging potential, in the1100

context of the DAG GB, of any node n′ that has its corresponding DAG T (n′) affected by this modification. This is
true because the introduced modification preserves the merging potential of any such node n′ with node n, and any
connectivity of the node n′ in the context of the DAG GB that seems to be ignored by the effected pruning of the paths
of the original DAG T (n′) at node n, will be recognized in the subsequent iterations of the algorithm.

On the other hand, we must ensure that the presence of the fictitious edge ẽ does not confound the construction1105

process defined in the proof of Proposition 41. This can be easily attained by stipulating that any invocation of the
aforementioned construction always starts with an edge, and the corresponding path π0, that emanates from node
n. Since node n is a nonterminal node of DAG GB, such an edge always exists. Furthermore, any return of the
construction to node n will result in a cycle detection, and therefore, there is no need for using the fictitious edge.

IV) Processing a type-I bi-block B that is (i) neither the root node of the block-cutpoint tree, (ii) nor a child of the1110

root node of this tree, if this tree is rooted at node nh: According to Definition 46, the parent articulation node n of
this block is a terminal node of the corresponding sub-DAG GB. Block B is processed by a call of another adaptation
of Algorithm 5, that is defined as follows:

A) Similar to the case of type-II bi-blocks, the execution of an iteration of Algorithm 5 resulting in a merger in
block B triggers a new iteration of Algorithm 6.1115

B) For this block type, a case that needs special attention is that where Algorithm 5 must execute the next-to-
last case in the second ‘IF’-statement of its pseudo-code, and the parent articulation node n of block B is among the
candidate nodes. Let e denote the unique incident edge upon node n, in block B, with the corresponding DAG T (n, e)
possessing a merger sequence that merges node n to a source node of this DAG.

8The outlined simulation resembles the logic that is effected in Algorithm 2 for the identification of producer macro-mergers enabled by the
initial execution of a feasible basic merger.
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The aforementioned complication arises from the fact that edge e is not producer with respect to node n, since1120

otherwise this merger would have been executed at an earlier stage of the current iteration of Algorithm 6. Hence,
if Algorithm 5 proceeds to the execution of this basic merger but eventually fails to merge the entire block B into a
single node, it is possible that the incurred reduction to the capacity of the parent articulation node of block B has an
adversarial effect to the processing of the subsequent blocks that must be processed by Algorithm 6. In order to avoid
such an adversarial effect, we stipulate the following:1125

B1) Algorithm 5 considers the basic merger defined by edge e as the merger to be executed, only if it has no other
similar choice defined by another terminal node n′ of block B.

B2) Furthermore, if edge e must be picked for processing, then the corresponding basic merger must be tested first
in order to prevent a reduction in the capacity of the parent articulation node of block B, due to the reason discussed in
the previous paragraphs. This test can be carried out by running a simulation of the further execution of Algorithm 61130

on the sub-tree of the block-cutpoint tree rooted at block B, after the execution of the considered merger, as in the case
of the processing of type-I bridge-blocks.

B3) The considered basic merger is executed by the algorithm, only if the aforementioned simulation results in no
decrease of the capacity of the parent articulation node of block B. Otherwise, this merger is not executed, block B
is characterized as “PROCESSED”, and Algorithm 6 proceeds to the processing of another block of the underlying1135

block-cutpoint tree.
C) If Algorithm 5 comes up with a non-liveness outcome during the execution of its current iteration on block B,

then we must discern two cases:
C1) If the set of the problematic terminal nodes that has incurred the non-liveness decision of Algorithm 5, includes

a node n′ that is different from the parent articulation node n of block B, then, the situation is similar to the non-liveness1140

outcomes of Case III above, and, therefore, the entire execution of Algorithm 6 will terminate with a negative outcome.
C2) On the other hand, if the problematic terminal node is the parent articulation node n of block B, then it is pos-

sible that the current mergeability problems of this node will be resolved through the injection of further capacity into
node n, at a later stage of the overall execution of Algorithm 6. Hence, block B is characterized as “PROCESSED”,
and Algorithm 6 proceeds with the processing of another block.1145

Furthermore, we notice that, upon the termination of the execution of Algorithm 5 on block B along the lines of
case C2), the capacity of the parent node n of this block is maximal according to Definition 36, and it is not possible
to inject further capacity to this node through any additional mergers executed in block B. Hence, the specified
processing of the considered block B is completely in agreement with the stipulations of Rules 47–50.

V) Processing a bi-block B that is (i) the root node of the block-cutpoint tree, or (ii) a child of the root node of1150

this tree, if this tree is rooted at node nh: In this case, block B is processed through a straightforward application of
the original logic of Algorithm 5. More specifically, the requirement that the execution of a merger by Algorithm 5
in block B triggers a new iteration of Algorithm 6, still applies in order to abide by Rules 49 and 50. But there is no
need for any further modifications of Algorithm 5 in this case. Furthermore, a non-liveness inference by Algorithm 5
is accepted unconditionally by Algorithm 6, since the above specifications for the processing of the remaining nodes1155

of the block-cutpoint tree ensure that this conclusion was reached under the maximal possible injection of additional
capacity in the children articulation nodes of block B.

Before we proceed with the analysis of Algorithm 6, we provide an example that demonstrates its logic.

Example 51. Consider a traffic state s with its DAG U(Ĝ(s)) depicted in the top left part of Figure 8. The numbers
within the nodes report the nodal capacities, and the numbers next to each edge are the corresponding edge weights.1160

The DAG U(Ĝ(s)) has node F as its only terminal node, and edge (D, F) is a feasible basic merger. Hence, Algo-
rithm 6 cannot infer non-liveness for state s during its first iteration. Proceeding further in this iteration, the algorithm
identifies edge (C, A) as a producer basic merger; in fact, this is the only such merger in this first DAG.

Executing the merger (C, A), we get the second DAG of Figure 8. On this new DAG, Algorithm 6 executes the
merger defined by edge (B, nh) as a maximal p-merger that leads into the home node nh.1165

During its iteration on the third DAG of Figure 8, that results from the execution of the basic merger (B, nh) on the
second DAG, Algorithm 6 has to resort to the block-based decomposition of this DAG discussed above. The resulting
blocks are highlighted in red in Figure 8. Also, the figure provides the corresponding block-cutpoint tree ∆.

The leaf block B3 of this block-cutpoint tree consists of the single edge (E,D) and it is a type-I bridge-block.
Since the basic merger defined by this edge is not a producer with respect to node D, this merger is not executed,1170
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Figure 8: The DAGs generated and processed by Algorithm 6 in Example 51.

block B3 is marked as “PROCESSED”, and Algorithm 6 proceeds to the processing of block B4, which is the second
leaf block of ∆.

Block B4 is a type-II bi-block. Executing the variation of Algorithm 5 defined in Case III-B, the edge (D, F) of
this block defines the unique sub-DAG T (n, e), for the single terminal node F of block B4, that possesses a merger
sequence merging node F with a source node of this sub-DAG (which is the articulation node D, under the algorithm1175

modification introduced in Case III-B).
The execution of the basic merger (D, F) leads to the fourth DAG G of Figure 8. Again, the processing of this

DAG requires its block-based decomposition provided in Figure 8. The processing of the leaf block B3 proceeds as
in the processing of this block during the previous iteration. On the other hand, the new leaf block B4 is a type-I
bi-block, and its processing by Algorithm 5 reveals that the unique terminal node DF of this block has no incident1180

edge defining a feasible basic merger. But since this terminal node is the parent articulation node of block B4, the
block is marked as “PROCESSED”, and Algorithm 6 proceeds to the processing of the block B2, which has both of
its children blocks marked as “PROCESSED” by now.

Block B2 is a type-II bridge-block, and the edge (AC,DF) that constitutes this block, is a feasible basic merger.
Hence, this merger is executed immediately by Algorithm 6, providing the fifth DAG G in the depicted figure. In this1185

new DAG, both edges leading from node nhB to node ACDF define producer feasible basic mergers. The execution
of any of these two and the further condensation of the resulting PDG leads to the sixth DAG G depicted in Figure 8.
All edges of this new DAG constitute paths leading into the home node nh, and the execution of the corresponding
mergers leads to the single-node DAG depicted in the last part of the figure. At this point, Algorithm 6 terminates
with a positive outcome for the evaluated state s.1190

The next theorem establishes the correctness of Algorithm 6.

Theorem 52. When applied on any traffic state s coming from an open, irreversible, dynamically routed, zone-
controlled guidepath-based transport system, Algorithm 6 terminates in finite time, and returns a correct assessment
of the liveness of s.

Proof. Each iteration of Algorithm 6 either exits inferring liveness or non-liveness of traffic state s, or it executes a1195

nodal merger on the current DAG G. Also, the scanning of the block-cutpoint tree performed by the second WHILE-
loop of Algorithm 6 is a finite operation. Hence, the finiteness of the computation of Algorithm 6 results from the
finiteness of the number of nodes of the DAG U(Ĝ(s)), and the fact that every executed merger reduces at least by
one the number of nodes in the resulting DAG G.
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The correctness of Algorithm 6 results from (i) the correctness of the various operations invoked by it, established1200

in the previous parts of this work, and (ii) the fact that a negative outcome regarding the liveness of the evaluated
state s based on the processing of some block node B of the underlying block-cutpoint tree ∆ occurs only when block
B has the capacity of all its critical articulation nodes maximized by a previous processing of the sub-trees of the
tree ∆ rooted at these articulation nodes. The last fact should be clear from the specification of Algorithm 6 through
Rules 47–50 and the further specialization of these rules to the processing of the various block types discussed in1205

Cases I-V.

Finally, the next theorem establishes that the complexity of Algorithm 6 is polynomial with respect to the size of
the elements that define the underlying guidepath network G.

Theorem 53. For a guidepath network G = (V, E), the time complexity of Algorithm 6 is O(|E|5 · |V |2).

Proof. The construction and the maintenance of the graphs C and G employed by Algorithm 6 requires time O(|V | +1210

|E|). Also, the complexity of the algorithm in [34] that computes the block-based decomposition is O(|E|2). The
processing of the conditions that appear in the first three parts in the second IF-statement in the external WHILE-loop
of Algorithm 6 needs time O(|E|). Also, during a single iteration of Algorithm 6, the processing of a bridge-block
needs time O(1), while the processing of a bi-block corresponds to a single iteration of Algorithm 5, which, according
to the proof of Theorem 44, needs time O(|E|2). Hence, the local processing within a block that takes place during a1215

single iteration of Algorithm 6 needs time O(|E|2).
But we must also account for the cost of the simulation that is executed during the processing of a type-I block.

Under the top-down processing of the block-cutpoint tree suggested for these simulations, the number of blocks to be
processed at the first pass is O(|E|), since, in the worst case, every edge of the DAG G might define a separate block.
Furthermore, the identification of an executable merger during such a simulation, might trigger the re-processing of1220

the remaining blocks, and therefore, the total number of block processings that can take place during a simulation
is O(|E|2). From Theorem 44, we can characterize the complexity of the processing of a single block during these
simulations as O(|E|2 · |V |). Hence, the complexity of running an entire simulation is O(|E|4 · |V |), and this cost
dominates the above cost of O(|E|2) that pertains to the local processing taking place within any given block.

Furthermore, during a single iteration, Algorithm 6 might have to process a number of blocks of the current block-1225

cutpoint-tree until it either identifies an executable merger or determines the non-liveness of the considered state s,
and, as discussed above, the number of blocks in the block-cutpoint tree is O(|E|).

Finally, considering that every non-terminating iteration reduces the running DAG G by at least one node, the
above remarks suggest the time complexity for Algorithm 6 of O(|E|5 · |V |2).

3.4. Some experimental results1230

In this subsection, we report results from two numerical experiments that (i) assess the empirical performance
of Algorithm 6 with respect to the required computational times, and (ii) highlight the mechanisms that provide the
algorithm efficiency.

In the first experiment, we ran Algorithm 6 on traffic states s having a PDG Ĝ(s) that was constructed as follows:
For each state s, we started with an n × n grid and removed a certain percentage p of its edges while ensuring that the1235

resulting graph was connected and of minimal degree at least 2. We also chose another percentage q of the remaining
edges in this graph, and turned them into directed edges, choosing each of the possible two directions for each edge
with probability 0.5. Finally, we placed the home zone h either in the middle of the grid or at one of the four corners.
The resulting graph is a planar graph, and its overall topological structure is consistent with the zoning schemes that
define the edges and their connectivity in the guidepath networks G that are encountered in the targeted applications.1240

During the overall experiment, we let n range from 5 to 100 with a step of 5, p ∈ {0.0, 0.1, 0.2, 0.3, 0.4},9 q ∈
{0.25, 0.50, 0.75}, and for each possible parameterization of the tuple (n, p, q, home zone location), we ran 10 replica-
tions. Table 1 reports some indicative results regarding the performance of Algorithm 6 on the generated cases. More

9An n× n grid has 2n(n− 1) edges. Also, among the connected graphs that are defined on the n2 grid nodes and have a minimal degree of 2, the
ones possessing the minimal number of edges are the cycles going through all these nodes. Such a cycle has n2 edges. These facts imply an upper
bound for p of p̄(n) = n2/(2n2 − 2n), with limn→∞ p(n) = 0.50.
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Table 1: Results from the execution of Algorithm 6 on some of the traffic states generated in the first reported experiment.

n p q Home # chains # iterations LIVE? Comp. Time (secs)
5 0.0 0.50 Corner 3 3 YES 0.000342
5 0.3 0.50 Corner 8 1 NO 0.000273
5 0.3 0.75 Middle 2 2 YES 0.000415
25 0.0 0.50 Corner 3 3 YES 0.031004
25 0.3 0.25 Middle 9 8 YES 0.05449
25 0.4 0.50 Middle 158 1 NO 0.007561
50 0.0 0.50 Corner 24 21 YES 1.96478
50 0.2 0.25 Corner 19 18 YES 1.68667
50 0.4 0.25 Middle 221 1 NO 0.034963
75 0.0 0.25 Corner 5 5 YES 2.86839
75 0.1 0.25 Middle 19 18 YES 8.73625
75 0.4 0.50 Middle 1161 1 NO 0.088312

100 0.0 0.25 Middle 5 4 YES 7.62654
100 0.1 0.25 Corner 24 24 YES 37.7072
100 0.3 0.50 Middle 1041 1 NO 4.02736

specifically, for each reported case, Table 1 first reports, in its first four columns, the tuple (n, p, q, home zone location)
that characterizes the corresponding configuration of the underlying transport system. The remaining four columns1245

of Table 1 respectively report: (i) the number of chains in the corresponding condensation C(Ĝ(s)); (ii) the number
of the primary iterations executed by Algorithm 6; (iii) the outcome of Algorithm 6 regarding the liveness of the
corresponding traffic state; and (iv) the computational time of the algorithm.

Some interesting findings in our experiments, that are also reflected in the data reported in Table 1, are as follows:
First, it is clear from the provided data that Algorithm 6 runs very fast even on transport system configurations1250

involving many thousands of zones and traveling agents. Characteristically, the largest execution time reported in
Table 1 is 37.7 secs, and the corresponding configuration involves a guidepath network of 2×100×99×0.9 = 17, 820
zones and 17, 820 × 0.25 = 4, 455 agents circulating in this network.

Also, the column “# chains” of Table 1 reveals the drastic compression of the input data that is effected through
the computation of the condensed PDG C(Ĝ(s)) at the very first iteration of the algorithm.1255

In addition, this condensed representation of the traffic state allows the algorithm to detect very easily agent
formations that imply unavoidable deadlocks, and therefore, the non-liveness of the evaluated state s.

Finally, an interesting finding in this experiment was the difficulty of generating any live states as the values of p
and q were progressively increased beyond the first few possible values for them. Furthermore, this difficulty was even
more prominent as n itself was increasing to its higher values. A natural explanation of this effect is as follows: PDGs1260

Ĝ(s) generated by the aforementioned parameterizations will contain a considerable number of paths p connecting
to the rest of the PDG Ĝ(s) through their endpoints only, and possessing a considerable number of directed edges.
Unless all these directed edges have the same orientation, rendering p a directed path, a deadlock is unavoidable and
the corresponding traffic state s is not live.

Our second experiment tested the empirical performance of Algorithm 6 on guidepath networks that contain1265

many bridge edges, and therefore, Algorithm 6 must resort to the block-based decomposition of the processed DAGs
U(Ĝ(s)) and the hierarchical processing of the identified blocks according to the logic that was defined in Section 3.3.
More specifically, each state s considered in this experiment had a DAGU(Ĝ(s)) that possessed the structure depicted
in Figure 9, for some k ∈ {10, 20, 30, . . . , 90, 100}.

In the DAG depicted in Figure 9, each node is labeled by nx or nx,y while the number annotated within the node is1270

the nodal capacity. Also, the numbers annotated next to each edge e are the corresponding weights w(e). In addition, it
is easy to see that edge (nh, nc) and all edges (ni, nc), i = 1, . . . , k−1, are bridge blocks of the depicted graph, while the
k − 1 subgraphs induced by the node tuples (ni,1, ni2 , ni,3, ni,4), for i = 1, . . . , k − 1, are bi-blocks. Furthermore, each of
these bi-blocks can be merged into a single node by executing the feasible basic mergers (ni,2, ni.4), and (ni,3, ni,1). Let
the single node that will result from each of these mergers be denoted by ni. Then, assuming that the corresponding1275
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Figure 9: The structure of the DAGsU(Ĝ(s)) used in the second experiment.

Table 2: The obtained results from the second experiment

k # nodes Comp. Time (secs)
10 38 0.047083
20 78 0.274091
30 118 0.888688
40 158 1.97876
50 198 3.58787
60 238 6.12361
70 278 9.9691
80 318 14.4825
90 358 20.4735

100 398 28.4893

bi-block does not contain any hidden capacity in the nodes ni,1 and ni,4, we have χ(ni) = χ(ni,1) + χ(ni,4) = i + 1.
But the bridge edge (ni, nc) has a weight of i + 2, and therefore, the corresponding basic merger is feasible but not a
producer merger. Hence, none of these mergers can increase the capacity of node nc, and the basic merger (nh, nc)
remains infeasible, even after the aforementioned mergings of the DAG bi-blocks into single nodes. Therefore, all
traffic states s having a DAGU(Ĝ(s)) belonging in the set of DAGs that are represented by the DAG of Figure 9, are1280

not live.
In order to recognize the nonliveness of these states, Algorithm 6 must process thoroughly and systematically all

the blocks of the DAG U(Ĝ(s)), according to the order that is defined by the corresponding block-cutpoint tree and
the algorithm logic. Table 2 reports the computational time of the execution of Algoprithm 6 on ten states s where
the corresponding DAGs U(Ĝ(s)) are defined by the DAG of Figure 9 with the parameter k set to the corresponding1285

values reported in the first column of the table. Also, the column “# nodes” of Table 2 reports the total number of
nodes in the corresponding DAG U(Ĝ(s)). We can see that the required computational times of Algorithm 6 remain
very small even for some very large instantiations of the considered DAG.

Finally, the reader should also notice that the DAG used in this experiment represents the considered state s after
the compression of the original PDG Ĝ(s) to the condensed PDG C(Ĝ(s)) and the DAGU(Ĝ(s)). Each of the macro-1290

nodes appearing in the DAG U(Ĝ(s)) can be a maximal chain of the original PDG Ĝ(s), and these chains can be

37



arbitrarily large. Nevertheless, except for the overhead of converting the original PDG Ĝ(s) first to the condensed
PDG C(Ĝ(s)) and subsequently to the DAGU(Ĝ(s)), the execution time of Algorithm 6 will remain the same for all
the input PDGs Ĝ(s) that are compressed to the same graphs C(Ĝ(s)) andU(Ĝ(s)).

4. Conclusions1295

We showed that the problem of assessing the liveness of traffic states coming from open, irreversible, dynamically
routed, zone-controlled, guidepath-based transport systems can be resolved in polynomial time with respect to the
size of the underlying guidepath network. Our result is very remarkable since the considered problem is equivalent to
a reachability problem defined in the corresponding state space, and most reachability problems involving discrete-
event dynamics similar to those that are addressed by this work, possess super-polynomial complexity with respect to1300

the size of the underlying discrete-event system.
The polynomial nature of our result can be attributed to: (i) the graph-theoretic structures that we used for a

compact representation of the traffic state s and of the discrete-event dynamics that evolve this state; (ii) the notion
of the producer merger that enabled a greedy approach in the search for liveness certificates of the evaluated traffic
states; and (iii) the ability to trace these mergers efficiently in the aforementioned graphs. Furthermore, it is worth1305

mentioning that the notion of the producer merger was inspired by the seminal paper of Gold [36], who employed
a similar concept in the development of efficient algorithms for assessing state liveness in the context of sequential
resource allocation.

The theoretical developments of the work were complemented with some experimental results that highlight the
ability of the developed algorithm to assess the liveness of traffic states coming from some very large instantiations of1310

the considered transport systems with extremely small computational times.
Finally, our work also has significant implications for the additional problem of traffic-state liveness assessment

that is defined in the context of closed, irreversible, dynamically routed, zone-controlled, guidepath-based transport
systems. The work of [13] has shown that, for these transport systems, traffic-state liveness is characterized by a
result similar to that of Theorem 11; more specifically, as long as the underlying transport system satisfies some struc-1315

tural conditions necessary for exhibiting live behavior, a given traffic state s is live if and only if it is co-reachable
to a traffic state s′ that is chained (according to Definition 4). But then, for closed, irreversible, dynamically routed,
zone-controlled, guidepath-based transport systems with a guidepath network G that satisfies Condition 25, the cor-
responding decision problem of assessing the liveness of any given traffic state s can be resolved by Algorithm 5,
once the part that involves the detection of p-mergers defined on paths leading to the home node nh has been removed.1320

Indeed, no other parts of Algorithm 5 and its supporting developments make a substantial use of the home node nh and
its infinite capacity, which is the structural element differentiating the considered classes of open and closed transport
systems in the context of the employed representations. On the other hand, the presence of the home node nh plays a
more central role in the specification of Algorithm 6, and therefore, the potential adaptation of this algorithm to closed
transport systems is a more complicated issue that needs further investigation.1325

Another issue that can be an interesting subject for further investigations, concerns the potential enhancement of
the main iteration of Algorithms 5 and 6 with additional efficient searches for producer mergers, that might expedite
even more the identification of such mergers, and result in even faster empirical execution times.

Finally, at a more general level, it is also interesting to explore (i) the possibility of explaining the polynomial-
time nature of the presented result based on certain features of the underlying decision problem that might pertain to1330

the broader theory of (DES-theoretic) reachability analysis and algorithms, and (ii) the potential that the presented
developments might hold for other similar applications. All the aforementioned issues are part of our future endeavors
in this area.

Appendix A. The Master Theorem of Complexity Theory

This appendix provides a statement of the Master Theorem in complexity theory [33].1335

Theorem 54. Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let T (n) be defined on the nonnegative
integers by the recurrence

T (n) = aT (n/b) + f (n),

38



where we interpret n/b to mean either bn/bc or dn/be. Then, T (n) can be bounded asymptotically as follows.

1. If f (n) = O(nlogba−ε) for some constant ε > 0, then T (n) = Θ(nlogba).
2. If f (n) = Θ(nlogba), then T (n) = Θ(nlogbalog2n).
3. If f (n) = Ω(nlogba+ε) for some constant ε > 0, and if a f (n/b) ≤ c f (n) for some constant c < 1 and all sufficiently

large n, then T (n) = Θ( f (n)).1340

Appendix B. Some important notation, concepts and terminology used in the manuscript

• A : The set of the agents circulating in the considered transport system. A generic element of A typically is
denoted by a.

• G = (V, E ∪ {h}, ξ) : A multigraph defining the guidepath network of the considered transport system. Elements
of E correspond to zones of the guidepath network that can accommodate no more than one agent at a time.1345

h is a self-loop that represents the home zone of the guidepath network; this zone has infinite accommodating
capacity. A generic zone other than the home zone is typically denoted by e. Also, a generic vertex of G is
denoted by v, while vh is the particular vertex that is the terminal vertex for h.

• Σa = 〈ei ∈ E \ {h}〉 : A list of edges specifying the (remaining) visitation requirements for agent a ∈ A at some
arbitrary time point.1350

• Φ : The finite state automaton (FSA) abstracting the traffic dynamics of the considered transport system for the
needs of the paper developments.

• S : The state set of Φ. A generic element of S is denoted by s. A state s ∈ S is defined by (i) the agent
distribution on the edges (or zones) of the guidepath network G, and (ii) the orientation of the agent motion on
these edges (but since h is a self-loop, the agent orientation on it is indifferent).1355

• ε(a; s) : The edge occupied by agent a in state s.

• Q : The event set of Φ. An event q ∈ Q corresponds to the advancement of a single agent from its current zone
ε(a; s) to a zone e′ that is incident to the head of ε(a; s) and it is free in state s.

• Q∗ : The Kleene closure of Q, i.e., the set containing all the finite sequences of elements of Q. A generic
element of Q∗ is denoted by σ.1360

• f : The extended transition function of Φ defined on S × Q∗.

• sh : The home state of Φ; .i.e., the state where all agents are located at the home zone h.

• S l : The set of live states of Φ; i.e., states for which there exists an event sequence σ ∈ Q∗ such that f (s, σ) = sh.

• Ĝ(s) : The partially directed graph (PDG) representing state s.

• A path π in Ĝ(s) is a sequence π = 〈v0, e1, v1, e2, . . . , en, vn〉, n ≥ 0, where (i) the subsequence 〈vi, i = 0, . . . , n〉1365

consists of distinct vertices of Ĝ(s), (ii) for all i = 1, . . . , n, ei is an edge connecting vi−1 and vi, and (iii) if
edge ei is directed, then its direction is from vi−1 to vi; that is, the sense of direction of edges in π is consistent
with the direction of motion implied by the ordering of the path vertices. Also, a cycle c of Ĝ(s) has a structure
similar to that of a path, but it contains at least one edge and the starting and the ending vertices, v0 and vn, are
coinciding. A joint between two cycles is a path that belongs to both cycles. A pass between two cycles c and1370

c′ is a path π such that its first vertex lies on c, its last vertex lies on c′, and all edges of π are undirected and do
not belong to c, c′, or any other directed cycle of Ĝ(s).

• ch : A chain of the PDG Ĝ(s); c.f. Definition 4 for a complete characterization of this concept.

• C(Ĝ(s)): The condensation of the PDG Ĝ(s); i.e., the PDG induced by Ĝ(s) by collapsing each maximal chain
in it to a single node. Sometimes, a generic instance of such a condensed PDG is denoted by C.1375
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• u : A u-component of the PDG C(Ĝ(s)); i.e., a maximal connected subgraph Cu of C(Ĝ(s)) that contains no
directed edges.

• U(Ĝ(s)) : The directed acyclic graph (DAG) obtained from the condensation C(Ĝ(s)) by collapsing each single
u-component of C(Ĝ(s)) to a single vertex. The vertex set ofU(Ĝ(s)) is denoted byN , its elements are referred
to as “nodes”, and they are denoted by n. The edge set of U(Ĝ(s)) is denoted by E. Furthermore, the finally1380

employed version of U(Ĝ(s)) is a labeled DAG that is obtained by (i) reducing each maximal path π of the
original DAG U(Ĝ(s)) leading from some n′ to some node n and containing no branching nodes in it, into
single directed edge e = (n′, n), and (ii) assigning the length of path π as a label w(e) to edge e. Sometimes, a
generic instance ofU(Ĝ(s)) is denoted by G.

• nh : The node of the DAGU(Ĝ(s)) corresponding to the subgraph of the guidepath network G that contains the1385

home zone h.

• ζ(ch) : The capacity of chain ch of C(Ĝ(s)); i.e., the number of free edges that belong on cycles of the subgraph
of the PDG Ĝ(s) corresponding to chain ch.

• χ(n) : The capacity of node n of the DAGU(Ĝ(s)); this notion is induced from the notion of the chain capacity
ζ(ch) according to Defintiion 8.1390

• An edge e = (n′, n) of the DAGU(Ĝ(s)) defines a basic merger according Definition 12. This merger is feasible
if χ(n) ≥ w(e), and its execution collapses edge e to a single node n′′ with capacity χ(n′′) = χ(n′) + χ(n)−w(e).

• A (feasible) macro-merger M = 〈e1, e2, . . . , en〉 defined in the DAG U(Ĝ(s)) is a sequence of edges that (i)
induce a weakly connected sub-DAG of U(Ĝ(s)), (ii) edge e1 defines a feasible basic merger in the DAG
U(Ĝ(s)), and (iii) every other edge ei, i = 2, . . . , n, is a basic feasible merger in the DAG G(e1, . . . , ei−1) that1395

is obtained from the execution of the basic mergers e1, . . . , ei−1. The node resulting from the execution of
macro-mergerM is denoted by n(M). M is a producer merger if χ(n(M)) ≥ χ(n) for every node n of the DAG
U(Ĝ(s)) that is merged into node n(M).

• M +M′ : The macro-merger obtained from the concatenation of the edge sequences that define the macro-
mergersM andM′.1400

• t-mergers, p-mergers and c-mergers are macro-mergers where the merged subgraphs of the DAGU(Ĝ(s)) are,
respectively, in-trees, single paths or possessing the circular structure that is depicted in the right part of Figure 2.
Also, c.f. Definitions 15, 20 and 23.

• T (n, e) : A sub-DAG of the DAG U(Ĝ(s)) that is induced by a terminal node n of U(Ĝ(s)) and an edge e that
is incident to node n. T (n, e) consists of all the maximal paths of U(Ĝ(s)) that lead to node n via edge e, and1405

have interior nodes with an out-degree of one.

• T (n) : A sub-DAG of the DAGU(Ĝ(s)) that is induced by a terminal node n ofU(Ĝ(s)) by taking the union of
the DAGs T (n, e) for all the edges e incident to node n.

• In-tree T̃ : A rooted tree T with directed edges that point towards the root.

• T̃ (n) : The in-tree obtained from the DAG T (n) by removing all its source nodes.1410

• Û(Ĝ(s)) : The undirected graph that is induced by the DAGU(Ĝ(s)).

• A component of the graph Û(Ĝ(s)) is a maximal connected subgraph.

• Û(Ĝ(s)) − n : The graph obtained from Û(Ĝ(s)) by removing node n and all the edges incident to n. Node n

is an articulation node of Û(Ĝ(s)) if the graph Û(Ĝ(s)) − n has more components than the graph Û(Ĝ(s)). We
extend the characterization of an articulation node to the nodes of the DAGU(Ĝ(s)).1415
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• Û(Ĝ(s)) − e : The graph obtained from Û(Ĝ(s)) by removing edge e from it. Edge e is a bridge (edge) of

Û(Ĝ(s)) if Û(Ĝ(s)) − e has more components than the graph Û(Ĝ(s)). We extend the characterization of a
bridge edge to the edges of the DAGU(Ĝ(s)).

• A block B of the DAGU(Ĝ(s)) : A maximal connected subgraph of the undirected graph Û(Ĝ(s)) that has no
articulation vertex. We extend this concept to the DAG U(Ĝ(s)). The blocks B of U(Ĝ(s)) are either bridge1420

edges, characterized as bridge blocks, or biconnected subgraphs, characterized as bi-blocks.

• The block-cutpoint tree of the DAGU(Ĝ(s)) : A tree representing the decomposition of the the DAGU(Ĝ(s))
to its blocks. The nodes of this tree are the blocks of the DAGU(Ĝ(s)) and its articulation nodes, and the edges
link each block with its articulation nodes. Hence, the block-cutpoint tree is a bipartite graph. This concept is
demonstrated in Figure 7 and the accompanying discussion. Also, the block-cutpoint tree of the DAGU(Ĝ(s))1425

is treated as a rooted tree, with the root being either the home node nh itself, if this node is an articulation node,
or the block that contains node nh, otherwise.

• GB : The sub-DAG corresponding to block B of DAG G.

• A block B of DAG G is further classified as type-I, if its parent articulation node n is a terminal node of GB.
Otherwise, it is type-II.1430
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