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Min-Time Coverage in Constricted Environments:
Problem Formulations and Complexity Analysis

Spyros Reveliotis and Young-In Kim

Abstract—This work deals with the task allocation and robot
routing problems that arise in a class of networked mobile robot
systems. The defining characteristics of these systems are (i)
the constricting nature of their operational environment and (ii)
the need to coordinate the robot motion in order to maintain
full connectivity of a multi-hop wireless communication network
connecting the robots with each other and a master controller
that supervises the entire operation. These two elements give
rise to resource allocation structures and traffic dynamics that
transcend the state of art of the corresponding theory, and
challenge our current understandings and insights for these
dynamics and their effective management. We provide: (i) a
systematic introduction of the considered problems and of the
elements that differentiate them from similar task allocation and
traffic scheduling problems already studied in the literature;
(ii) complete analytical characterizations of these problems in
the form of mathematical programming formulations; and (iii)
a formal analysis of the worst-case computational complexity
of these problems and of certain factors that determine this
complexity. Furthermore, the presented results define a base
for the development of solution approaches to the considered
problems able to manage effectively and systematically the
identified trade off between the operational efficiency of the
derived solutions and their computational cost.

Index Terms—Networked mobile robotic systems; multi-robot
coordination; combinatorial scheduling; coverage problems

I. INTRODUCTION

The deployment and coordination of multiple mobile robot
systems (MMRS) is a topic that has received extensive at-
tention by many research communities. An excellent account
of all this activity, its current achievements, but also the
remaining challenges, is presented in [1].

In this work, we focus on a particular MMRS class that has
been previously studied in [2], [3]. These two works consider a
fleet of mobile robots that must visit a number of pre-specified
locations. The robots can communicate wirelessly with each
other and with a command and control center that manages the
entire operation. But the target locations are accessible through
a tunnel system that has a dendrite structure and constricts
significantly, both, the robot advancement towards the target
locations and the aforementioned communication. Hence, the
robot motion must be carefully coordinated in a way that guar-
antees (i) their physical safety in terms of collision avoidance,
and (ii) their ability to remain connected to the command and
control center. In the considered operations, physical safety
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is ensured through the imposition of a “zoning” scheme on
the links of the underlying tunnel system, that enforces the
physical separation of the robots. On the other hand, the
connectivity of each robot to the command and control center
is ensured through the preservation of a multi-hop wireless
communication network enabling the exchange of messages
between each robot and the center via the intermediary robots
that are located on the corresponding path in the underlying
tunnel system. More specifically, the robot advancements
through the available zones of the tunnel system must be
further coordinated in order to ensure that every robot remains
connected to the multi-hop communication network.1

MMRS that possess communication capabilities of the type
that is described in the previous paragraph, are characterized
as networked in the corresponding literature. According to
[1], the main body of the research on networked MMRS
concerns the pertinent and efficient acquisition, dissemination,
and processing by the cooperating robots of all the information
that is necessary for the effective execution of their mission.
Some more specific overviews of these endeavors can be
found in [4], [5]. The work of [4] considers the distributed
control of a fleet of mobile robots in order to attain tasks like
rendezvous, formation control and flocking. Hence, from a
control-theoretic standpoint, the problems addressed in [4] are
regulation and tracking problems defined in terms of the entire
fleet, and the efficacy of the presented control schemes is based
on the information exchange taking place between each robot
and the other robots that are located in its vicinity. On the other
hand, the work of [5] introduces a notion of efficiency and
optimization in the control problems that are addressed in it.
The fleet of the mobile robots is perceived as a reconfigurable
sensing and communication network, with the performance of
its sensing and communication functions being dependent on
the spatial distribution of the robots over the covered area. The
undertaken objective is to optimize the employed configuration
with respect to the attained performance, while accounting for
further (re-)configuration costs. Furthermore, a significant part
of the developments in [5] concerns the characterization and
the assessment of the quality of the wireless connectivity that
is provided by each location in the covered area.

When it comes to the coverage tasks addressed in [2],
[3], (re-)configurability issues for the maintained multi-hop
communication network, like those addressed in [5], are prede-
termined by the topology of the underlying tunnel system and
the imposed zoning scheme. On the other hand, an additional

1A detailed, formal description of the considered MMRS and the opera-
tional problems that are addressed in this work are provided in Section II.
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important issue in the context of these operations, is the
expediency of the execution of the corresponding coverage
tasks. This issue can be effectively addressed through 1) a
careful allocation of the various subtasks to the available
robots, and 2) the coordination of the resulting traffic in
a way that ensures a fast execution of these subtasks and
of the overall mission of the entire robot team. In [2], [3],
these two issues are addressed through some simple heuristics
that complement, almost as “after-thoughts”, the technical
developments that are the primary focus of those works.2 Yet,
a more careful consideration of these issues gives rise to some
hard but very interesting combinatorial optimization problems,
involving resource allocation structures and traffic dynamics
that transcend the state of art of the corresponding theory and
our current understanding of this class of problems. This work
seeks to provide a formal characterization of these problems,
and a first analytical investigation of the involved dynamics
and the underlying complexity.

In order to position the considered problems and the in-
tended contribution of this work in the context of the existing
literature on MMRS, next we overview the main developments
of this literature regarding the problems of task allocation and
robot routing, focusing primarily on those results that address
time-based performance objectives and have tried to provide
a rigorous analytical base for these problems.

One of the first works that has tried to provide a theoretical
framework for the task allocation problems arising in MMRS
is that of [8]. More specifically, the work of [8] (i) defined
a taxonomy for these task allocation problems, (ii) mapped
the various elements of this taxonomy to some more abstract
problems that are studied by Operations Research (OR), and
(iii) used these mappings in order to (a) draw some conclusions
about the worst-case computational complexity of the task
allocation problems identified by the developed taxonomy, and
(b) propose some pertinent solution approaches and policies.
The particular features utilized for the problem classification
in the taxonomy of [8] are: 1) the ability of a robot to get
simultaneously involved in more than one tasks; 2) the number
of robots that must be assigned to a task (one vs. many); and
3) the type of the optimization that is pursued by the adopted
criterion (myopic vs. longer-term). It was also observed that (i)
while the existing OR theory suggested optimizing strategies
for some of the identified problem classes, this was not
possible for some of the more complex problem classes of
the taxonomy, and (ii) there are additional task allocation
problems which arise in MMRS and are not even captured
by the proposed taxonomy of [8].

Since the publication of [8], an extensive amount of work
has strengthened the theoretical base for the task allocation
and robot routing problems that arise in the context of the
MMRS applications, and has translated the more theoretical
findings to effective and efficient operational policies. These
endeavors have further pursued and exploited the connections
of the considered task allocation and robot routing problems

2Some further heuristic approaches to the task allocation and robot routing
problems considered in this work, developed in the context of the broader
communication-aware robotic problems that are discussed in [5], can be found
in [6], [7].

with a host of problems that have been investigated by the
disciplines of Operations Research, Theoretical Computer Sci-
ence, Control Theory, and Artificial Intelligence. At the same
time, the identified connections have motivated and defined
further research in all of the aforementioned disciplines.

At a first level, many of the task allocation and routing prob-
lems arising in MMRS can be referred to the Vehicle Routing
(VR) problem [9], that has been studied extensively by the OR
community. The basic VR problem consists of two primary
subproblems that must be addressed simultaneously: (i) a set
of standing service requests, dispersed over a geographical
area, must be assigned to a set of vehicles that are available
at a “depot”’ location, and (ii) every vehicle must be routed
through the locations of its assigned requests in an optimal
manner. Some typical objectives pursued in the resolution of
these two issues are: 1) The minimization of the completion
time of the entire plan; this completion time is known as
the plan “makespan”, and its minimization is equivalent to
maximizing a notion of “throughput”. 2) The minimization
of the mean waiting time for the serviced requests. 3) The
minimization of the total distance travelled by all vehicles;
this measure constitutes a surrogate for the energy expended
during the considered operation. Strongly related to the VR
problem is the Traveling Salesman Problem (TSP) [10], that
concerns the optimized routing of the system vehicles, and
places the VR problem in the class of NP-Hard problems [10].

Of particular interest in the MMRS applications is the
Dynamic Vehicle Routing (DVR) problem [11], where the
tasks and the corresponding locations that must be serviced
by the system robots are not known a priori, but they appear
dynamically during the system operation. One way to address
this dynamic problem version is by applying to it the theory
of on-line algorithms that has been developed by competitive
analysis [12], [13]. The design and the evaluation of these
algorithms is based on a “worst-case” analysis regarding the
arrival process of the service requests. An alternative approach
to the DVR problem and its manifestation in the MMRS is
presented in [14]. The work of [14] assumes the knowledge
of the stochastic processes that generate the service requests
and their service times, and develops a queueing-theoretic
framework that enables the performance evaluation of a set of
policies under some limiting regimes of the offered load. The
developed theory also supports the accommodation of priority
schemes and of timing constraints for the service requests, and
the decentralization of the employed control logic.

Decentralized approaches for the DVR problems that arise
in the MMRS operations have also been based on auction
mechanisms where the robots compete for the service of the
emerging service requests through a bidding process. The
employed bidding mechanisms are based on concepts and
insights that underlie the modeling and the analysis of the
basic VR problem. A theoretical characterization of these
bidding mechanisms and a worst-case analysis of their relative
performance to the performance of the optimal policy is
provided in [15].

An important limitation of all the developments that were
discussed in the previous paragraphs, is that they do not
account for the presence of (i) obstacles in the operational
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environment, and (ii) the potential conflicts that these obsta-
cles may imply for the determined routes. These problems
become especially prominent in MMRS that possess large
robot fleets or operate in highly constricted environments due
to the presence of extensive cluttering, narrow aisles, etc. For
familiar and structured operational environments, like those
considered in this work, a robust approach to cope with these
complications is by imposing a zoning scheme that partitions
the entire operational environment in a number of zones and
sets a limit to the number of robots that can be simultaneously
present in any zone [16], [17], [18]. In this way, the buffering
capacity of every zone becomes a resource that must be
negotiated by the traveling robots and the system controller
according to a zone allocation protocol [19], [20], [21].

A formal representation of the zoning scheme that was
described in the previous paragraph, is a graph where the nodes
represent the zones and the edges represent the neighboring
structure among the zones. Each node of this graph is assigned
a numerical value that defines the buffering capacity of the
corresponding zone. Furthermore, the nodes and/or the edges
of this graph can be assigned additional weights representing
traversal times, distances, or other elements that define a metric
structure of interest. Then, a typical problem investigated in
the resulting representation is the transport of a set of robots
from their original locations to a set of destinations in a
way that (i) observes the zone buffering capacity and the
corresponding zone allocation protocol, and (ii) optimizes an
objective function that is defined by the robot routes and the
weights of the nodes and edges belonging on these routes.
In the literature, this problem has been characterized as the
problem of Optimal Multi-Robot Path Planning on Graphs
[22], and it will be referred to as the OMRP2G problem in
the following.

The complexity, and even the feasibility, of the OMRP2G
problem depends strongly on a number of factors pertaining
to (i) the structure of the imposed zoning scheme, (ii) the
zone allocation protocol, (iii) the navigational capabilities of
the robots within the zones, and (iv) the substitutability of the
robots in the pursued tasks.

A first formal analysis regarding the feasibility of the
OMRP2G problem appeared in [23], which used permutation
group theory in order to address the (n2− 1)-puzzle problem,
i.e., the problem of rearranging n2 − 1 labeled tokens located
on an n× n grid into a new arrangement through a sequence
of “sliding moves” that use the single free node of the grid.
It was shown that if the supporting grid is non-bipartite,
the original token configuration can be re-arranged to any
target configuration. On the other hand, if the supporting
grid is bipartite, the set of the possible token distributions
on this grid is partitioned into two equivalence classes in
terms of the considered reachability requirement. The results
of [23] were subsequently extended in works like those of
[24], [25], which considered additional graph topologies and
more relaxed conditions for the occupancy of the graph nodes
by the circulating tokens. These works have also provided
polynomial-time algorithms for testing the feasibility of the
considered problem.

More recently, works originating from the robotics com-

munity, like those presented in [22], [26], [27], [28], [29],
[30], have addressed the OMRP2G problem under robot-
coordinating schemes involving the simultaneous advancement
of entire robot groups that occupy neighboring zones, and
potential payload transfers among groups of robots. These
features enhance the feasibility of the resulting versions of the
OMRP2G problem, and enable a more focused investigation of
the optimization part. The vast majority of these optimization
problems are shown to be NP-hard in the aforementioned
works. However, in [26] it is shown that the OMRP2G
problem can admit a polynomial-time solution if the robots are
indistinguishable and they can be matched with the targeted
destinations in an arbitrary manner by the solution algorithm.

There is also a large amount of work that seeks to provide
pertinent heuristic approaches for various instantiations of the
OMRP2G problem. Many of these approaches are based on
local search schemes that seek to effect improvements to
an incumbent routing schedule by identifying and rerouting
robots that determine most drastically the cost of this schedule.
We refer to [30] for a concrete example of such a heuristic
scheme, and for a more systematic survey of the corresponding
literature. Furthermore, in [28], [29] it is shown that the
current commercial solvers can provide optimal solutions to
the mathematical programming (MP) formulations of some
large instantiations of the OMRP2G problem versions that are
studied in those works, in reasonable times.

Another factor that can complicate substantially the solution
of the OMRP2G problem, is a potential inability of the robots
to reverse the direction of their motion within their current
zone; the corresponding MMRS have been characterized as
irreversible in the corresponding literature. Irreversible MMRS
are susceptible to deadlock and livelock, which necessitates
the deployment of additional control logic for ensuring the
liveness of the generated traffic, i.e., the preservation of the
ability of every robot to access every zone ad infinitum. A
systematic treatment of the liveness preservation problem for
a broad range of MMRS classes is provided in [31], [32].

Also, the works of [30], [33] consider the embedding of
the OMRP2G problem discussed in the previous paragraphs
in a model predictive control (MPC) scheme that enables the
underlying MMRS to address more complex and dynamically
generated sequences of service requirements, and to respond
to any slippages in the execution of the original schedules and
other experienced contingencies through replanning.

Finally, there is a set of works, like those presented in [34],
[35], that have tried to add arbitrary constraints of a more
logical nature to the OMRP2G problem, using representations
and computational tools borrowed from the areas of formal
methods [36] and Discrete Event System (DES) theory [37].
The corresponding theory is very elegant, but the eventual
applicability of the results may be limited by the explosive
size of the employed representations and/or the complexity of
the MP formulations that must be solved for the derivation of
the sought schedules.

In the rest of this document we shall show that the con-
nectivity constraints that must be observed by the networked
MMRS of [2], [3], give rise to task allocation and robot
routing problems with a very different analytical structure
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from the task allocation and robot routing problems that have
been investigated in the forecited literature. Our intention
in this work is to (i) define these problems in a way that
pronounces the most salient elements differentiating them
from the past literature, (ii) provide analytical formulations
for them, and (iii) investigate their worst-case computational
complexity and the factors that determine this complexity.
This analysis also suggests a research plan for developing
pertinent solution methods for these problems. At the same
time, the presented results constitute novel applications and
extensions of the methodological tools of complexity theory
and the combinatorial optimization and scheduling theory that
are used in this work.

The rest of the paper is organized as follows: Section II
provides a systematic introduction of the networked MMRS
considered in this work, and the coverage problems that we
address in the context of these systems. Section III provides
an analytical characterization of these coverage problems in
the form of MP formulations. Section IV presents the results
regarding the computational complexity of the considered
problems. Finally, Section V concludes the paper by discussing
the implications of the presented developments for the further
study of the OMRP2G problems that are considered in this
work, and it also suggests some variations and extensions of
these OMRP2G problems.

II. THE CONSIDERED MMRS

In this section we provide a systematic description of the
MMRS considered in this work. This MMRS is a formal
abstraction of the MMRS described in [3]. A brief description
of the structure of that MMRS and its operation is as follows:

A set of underground locations must be inspected by a fleet
of mobile robots. These locations are connected to the point
where the robots are initially located through a network of
tunnels that constitutes a tree. The initial location of the robots
defines the root of this tree and the targeted locations are its
leaves. Furthermore, the tunnels are narrow and the robots
have limited sensing and maneuvering capability. Therefore,
for safety reasons, the robots must be separated through the
imposition of a zoning scheme with unit buffering capacity
for each zone.

The robots possess wireless communication capability, but
their communication range is drastically limited by their
operational environment. Since these wireless communication
links are the only way for each robot to communicate with its
operational environment, the robot motion must be coordinated
in a way that, at any time point, the active links among the
robots define a multi-hop communication network connecting
each robot to each other and to a command and control center
that is located at the origin. A natural way to ensure this
connectivity is by defining the imposed zones in a way that
neighboring zones ensure the required connectivity between
the robots that occupy these zones, and further stipulating that,
at any time point, a zone cannot be occupied unless its parent
zone in the underlying tree is also occupied.

Finally, following standard practice in the formal study of
the traffic dynamics that are generated by zoning schemes

similar to those considered in this work, we further assume
that zones are defined in a way that they have uniform traversal
time. Then, picking this traversal time as the time unit, we can
study the resulting traffic dynamics in discrete time.3

In view of the above description, the considered MMRS can
be formally represented by a tuple M = 〈R, T 〉, where R is
the set of the robots and T is the rooted tree representing the
tunnel system. The node set V of T represents the zones of the
tunnel system, and the edge set E represents the neighboring
relation among the zones.

The root node o ∈ V is the initial location of all robots and
the point of command and control for the entire system. The
set of the leaf nodes of T is denoted by L. Each zone v ∈ L
must be visited by some robot for inspection purposes. The
inspection of a leaf zone can be carried out by the visiting
robot in the time interval corresponding to a discrete period.

The set of neighbors of a zone v ∈ V is denoted by N (v),
and for any zone v 6= o, p(v) denotes the parent of v in T . Let
z(r, t) denote the zone v ∈ V occupied by robot r at period
t. Then, z(r, t + 1) ∈ {z(r, t)} ∪ N (z(r, t)); i.e., robot r can
either remain in the same zone at period t + 1, or advance
to a neighboring zone v′ ∈ N (v). Furthermore, at any period
t, zones v 6= o cannot contain more than one robot. On the
other hand, a group of robots can coordinate their advancement
over a path of neighboring zones; i.e., for a group of robots
r1, r2, . . . , rn with z(ri, t) ∈ N (z(ri−1, t)), for i = 2, . . . , n,
we allow z(ri, t + 1) = z(ri+1, t), i = 1, . . . , n− 1, provided
that robot rn moves itself to a free zone or to the root zone o
at period t + 1.

Robots can reverse the direction of their motion within
their zone. This assumption is reasonable in the context of
the considered applications, and furthermore, it is necessary
due to the tree structure of the underlying tunnel system.

Finally, as observed in the opening part of this section, the
communication connectivity among the robots and the system
controller is established by stipulating that, for every zone
v 6= o and every period t,

∃ r ∈ R with z(r, t) = v =⇒ ∃ r′ ∈ R with z(r′, t) = p(v)
(1)

The above requirement implies that for every zone v occu-
pied by a robot in period t, all the zones in the path connecting
zone v to the root zone o in tree T are also occupied by a robot
in period t. Furthermore, the root zone o is always occupied
by at least one robot.

We want to determine a plan that will advance the robots
r ∈ R in a way that is consistent with the above assumptions
regarding the robot capabilities and the zone allocation pro-
tocol, and at the end of its execution, each leaf zone v ∈ L

3Nonuniform traversal times for the system zones can be easily introduced
into our model. But this feature would overload the employed notation and
the pursued analysis without adding anything substantial to this analysis.
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Fig. 1: An MMRS where the M-problem and the TVT-problem
have different optimal plans. The tree T for this MMRS is
depicted in the left part of the figure, and it is further assumed
that |R| ≥ 6. The table in the figure provides the objective
values for the resulting M- and TVT-problems under different
priorities for the two subtrees that emanate from node 1. We
can see that the optimal plan for the M-problem gives priority
to the left subtree, while the optimal plan for the TVT-problem
gives priority to the right subtree.

will have been visited by some robot.4 Let P denote the set
of feasible plans, and for every P ∈ P and v ∈ L, let C(v;P )
denote the first period that plan P places a robot in zone v.
We are especially interested in plans P ∗ such that

P ∗ = arg min
P∈P

max
v∈L

C(v;P ) (2)

or
P ∗ = arg min

P∈P

∑
v∈L

C(v;P ) (3)

Each of Eqs 2 and 3 defines a combinatorial optimization
– or scheduling – problem. In the following, we shall refer to
the scheduling problem defined by Eq. 2 as the Makespan-
minimization problem, or the M-problem. The scheduling
problem defined by Eq. 3 will be characterized as the Total
Visitation Time-minimization problem, or the TVT-problem.
Figure 1 shows that these two problems are in a Pareto
optimal relationship [38], [22]; i.e., there are MMRS where
the sets of optimal plans for these two problems have no
common element. Hence, these two problems require separate
treatments.

In the rest of this paper we provide complete formulations
for the combinatorial optimization problems that are defined
by Eqs 2 and 3, and we analyze the computational complexity
of these problems. However, before concluding this section,
we provide some further justification for the tree topology
presumed for the tunnel system of the considered MMRS.
For this, first we notice that, according to [2], [3], sewage
networks and other similar public infrastructure facilities, and

4In more technical terms, a plan is a sequence of distributions, Dt, t =
0, 1 . . ., of the system robots to the various zones of the underlying tunnel
system. The distribution Dt+1, for period t + 1, is obtained from the
distribution Dt by relocating a number of robots from their zones at period t
to some neighboring zone, while abiding to the introduced assumptions about
the maneuvering capabilities of the robots and the zone allocation protocol.
This characterization is specified further through the MP formulations of
Section III.

also the tunnel systems deployed in underground operations
like mines and archeological excavation sites, do possess a tree
structure. But trees are also prominent in the studies pertaining
to the connectivity analysis of communication networks and its
enforcement, through the notion of “spanning trees” [39], [1],
[4], [6]. Hence, the restriction of this first investigation of the
considered MMRS to guidepath networks with a tree topology
is in line with the realities of the targeted applications and it
does not compromise the applicability of the results.

III. MP FORMULATION OF THE CONSIDERED PROBLEMS

In this section we provide analytical characterizations for
the M- and TVT-problems in the form of MP formulations.
Besides providing succinct, unambiguous characterizations for
the corresponding problems, the presented formulations also
have practical value, since, as remarked in the introductory
section, the works of [28], [29] have demonstrated the ca-
pability of modern solvers to cope effectively with the MP
formulations of sizable instances of other OMRP2G problems.

In the subsequent discussion, we employ the notation intro-
duced in Section II. We also let T̄ denote an upper bound for
the completion time of an optimal plan P ∗ for each problem.
One way to obtain such an upper bound is by considering the
completion time of the plan P that tries to reach one leaf zone
at a time, while scanning the tree T in a depth-first sense.

The decision variables employed by this formulation consist
of: (i) a set of “state” variables that trace the distribution
of the robots to the system zones over time; (ii) a second
set of “control” variables that determine the evolution of the
robot distribution to the system zones; and (iii) some auxiliary
variables that facilitate the testing and/or the enforcement of
certain conditions on the system behavior, and the formulation
of the objective function. The complete list of the employed
decision variables is as follows:
• State variables

– xv,t, v ∈ V, t ∈ {0, 1, . . . , T̄}: a nonnegative integer
variable indicating the number of robots in zone v
at period t.

• Control variables
– uv,v′,t, v ∈ V, v′ ∈ N (v), t ∈ {1, . . . , T̄}: a

nonnegative integer variable representing the number
of robots moving from zone v to neighboring zone
v′ at period t.

• Auxiliary variables
– yv,t, v ∈ L, t ∈ {1, . . . , T̄}: a binary variable for

testing whether leaf zone v has been visited by period
t.5

– st, t ∈ {1, . . . , T̄}: a binary variable for testing
whether the entire leaf-node visitation task has been
completed by period t.

The technological constraints employed by the MP formu-
lations of the M- and the TVT-problems are as follows:

5Actually, the pricing of the variables yv,t is part of the “informational
state” that drives the underlying decision making process at period t. We have
included these variables in the set of the auxiliary variables since their values
are determined by the values of the corresponding variable sets {xv,q , q =
1, . . . , t}.
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xo,0 = |R| (4)

∀v ∈ V \ {o}, xv,0 = 0 (5)

∀v ∈ V, ∀t ∈ {1, . . . , T̄},
xv,t = xv,t−1 +

∑
v′∈N (v)

(
uv′,v,t − uv,v′,t

)
(6)

∀v ∈ V, ∀t ∈ {1, . . . , T̄},
∑

v′∈N (v)

uv,v′,t ≤ xv,t−1 (7)

∀v ∈ V \ {o}, ∀t ∈ {1, . . . , T̄}, xv,t ≤ 1 (8)

∀v ∈ V \ {o}, ∀t ∈ {1, . . . , T̄}, xv,t ≤ xp(v),t (9)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, yv,t ≤
∑

q∈{1,...,t}

xv,q (10)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, st ≤ yv,t (11)

Constraints 4 and 5 define the initial distribution of the
robots by means of the state variables xv,0, v ∈ V . Con-
straint 6 expresses the evolution of the robot distribution to the
system zones at period t based on the control decisions that
are expressed by the variables uv,v′,t. Constraint 7 stipulates
that the control decisions at period t must be feasible with
respect to the robot distribution over the system zones at period
t − 1. Constraint 8 enforces the buffering capacity of the
zones v 6= o. Constraint 9 enforces the condition of Eq. 1.
Constraint 10 forces the binary variable yv,t to zero if leaf
zone v has not been visited by period t. Finally, Constraint 11
forces the binary variable st to zero if there is a leaf zone v
that has not been visited by period t.

The M-problem can be expressed by the following formu-
lation:

max
∑

t∈{1,...,T̄}

st (12)

s.t. Constraints 4 – 11 plus the sign restrictions for the problem
variables specified during the introduction of these variables.

The TVT-problem can be expressed by the following for-
mulation:

max
∑
v∈L

∑
t∈{1,...,T̄}

yv,t (13)

s.t. Constraints 4 – 10 plus the sign restrictions for the problem
variables specified during the introduction of these variables.

An optimal solution of each of these two formulations de-
termines an optimal plan P ∗ for the corresponding scheduling
problem through the quantities [uv,v′,t − uv′,v,t]

+ for every
pair (v, v′) of neighboring zones and period t.6 Also, these
formulations can be easily adjusted to enforce an arbitrary

6We remind the reader that [x]+ = max{x, 0}.

buffering capacity Cv ≥ 1 for each zone v ∈ V \ {o}; we
leave the relevant details to the reader.

Finally, an additional very important remark from a com-
putational standpoint, is that we can replace the original sign
restrictions of the variables xv,t, yv,t and st with the following
constraints that relax the integrality requirements for these
variables:

∀v ∈ V, ∀t ∈ {1, . . . , T̄}, xv,t ≥ 0 (14)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, 0 ≤ yv,t ≤ 1 (15)

∀t ∈ {1, . . . , T̄}, 0 ≤ st ≤ 1 (16)

Indeed, it can be easily checked that, as long as we retain the
integrality requirement for the variables uv,v′,t, Constraints 4–
6 will ensure the integrality of the variables xv,t, and this
fact subsequently preserves the mechanism that establishes the
correct pricing of the variables yv,t and st in any optimal
solution of the resulting formulation.

IV. COMPLEXITY ANALYSIS

This section establishes that the M- and TVT-problems
are NP-hard [10]. However, the last part of the section also
shows that for specific structures of T , these problems may
admit polynomial solutions that even take the convenient form
of priority rules similar to those used in other applications
of combinatorial scheduling theory [40]. Besides defining a
boundary between hard and easy cases for the considered class
of OMRP2G problems, results of the last category are useful
for developing pertinent suboptimal solutions for the harder
cases.

We start with establishing the NP-hardness of the M-
problem.

Theorem 1: The M-problem defined in Section II is strongly
NP-hard.

Proof: We prove the result of Theorem 1 in three stages.
First, we consider a modified version of the M-problem that
does not require the presence of a robot at the root zone o, and
we show that the decision version of the modified M-problem
can provide a representation of the Bin Packing problem [41].
Next, we use this result in order to obtain a strong NP-hardness
proof for the modified M-problem from the NP-hardness proof
of [41] for the Bin Packing problem. Finally, we adapt the NP-
hardness proof for the modified M-problem to the original M-
problem that stipulates the presence of at least one robot at
zone o.

We start by specifying the decision version of the considered
M-problem. This version does not seek a plan P ∗ that is
optimal according to the criterion of Eq. 2, but for any given
instance M = 〈R, T 〉 and some constant K, it asks whether
there exists a plan P ∈ P with maxv∈L C(v, P ) ≤ K.

Also, the Bin Packing problem can be stated as follows [41]:
Given a set A = {a1, a2, . . . , aN} of N positive integers (the
items), and two more integers, C (the capacity) and B (the
number of bins), determine whether set A can be partitioned
into B subsets, each of which has a total sum of at most C.

In the semantics of the modified M-problem, the given set
of items {a1, a2, . . . , aN} is represented by the tree that is
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Fig. 2: The tree representing the N items of the Bin Packing
problem used in the proof of Theorem 1.

TABLE I: The item sizes employed in the proof of [41].

Item Size
Marked item cor. to bi 10M4 + iM + 1
Other items cor. to bi 11M4 + iM + 1
Marked cor. to gj 10M4 + jM2 + 2
Other items cor. to gj 11M4 + jM2 + 2
Marked cor. to hk 10M4 + kM3 + 4
Other items cor. to hk 8M4 + kM3 + 4
Triplet (bi, gj , hk) ∈ T 10M4 + 8− iM − jM2 − kM3

depicted in Figure 2. The leaf nodes in the subtree representing
item I can be visited by a team of four robots in aI periods
in a way that, at period aI , one robot will have returned at the
root zone o and the other three robots will be located at zones
vI,1, vI,2 and vI,3. Furthermore, the arrangement of the robots
at period aI enables them to start the visitation of the subtree
corresponding to another item J at the next period. Hence,
considering a team of four robots as a bin, and assuming that
this bin is allocated the item set I ⊆ A, we can see that the
corresponding robot team is able to visit all the leaf nodes
of the subtrees representing these items in

(∑
I∈I aI

)
− 1

periods.7

Next we use the correspondences that were established
in the previous paragraph, in order to adapt the strong NP-
hardness proof for the Bin Packing problem that is provided
in [41], to a strong NP-hardness proof for the decision version
of the modified M-problem. The proof of [41] is based on
a polynomial reduction of the 3D-Matching problem (also
known as the Tripartite Matching problem) to the Bin Packing
problem. Next, we introduce the 3D-Matching problem, and
we overview the main points of the proof of [41].

In the 3D-Matching problem, we are given three noninter-
secting sets B = {b1, b2, . . . , bn}, G = {g1, g2, . . . , gn} and
H = {h1, h2, . . . , hn}, of common cardinality n, and also a
set of triplets T = {t1, t2, . . . , tm} ⊆ B×G×H , and we are
asked whether there is a subset of n triplets in T such that
each element from each set B, G and H is contained in one
of the n triplets.

7For the subtree to be processed last, there is no need to return a robot to
the root node. We also notice that the item representation of Figure 2 cannot
represent items I with aI < 5. But this representational capability is not
necessary in the context of this proof.

For a given instance of the 3D-Matching problem, the proof
of [41] constructs an instance of the Bin Packing problem
that contains N = 4m items: one for each triplet and one for
each occurrence of the elements bi, gi and hi, i = 1, . . . , n,
in T . Furthermore, among the set of items corresponding to
the occurrences of bi (resp., gi or hi) one is singled out as
“marked”.

The N items are assigned the sizes indicated in Table I. The
parameter M that appears in Table I is a sufficiently large
number that is polynomially related to the dimensions n,m
of the 3D-Matching problem instance.8 Hence, the unitary
representation of the item sizes quoted in Table I through the
tree of Figure 2 results in a tree size that is polynomially
related to n,m. The specification of the induced Bin Packing
problem is completed by setting C = 40M4 +15 and B = m.

In [41] it is shown that there exists a solution for the induced
Bin Packing problem if and only if there is a 3D-matching for
the original 3D-Matching problem. In that case, the solution of
the Bin Packing problem will employ m full bins, with each
bin containing exactly four items. These four items will be
(i) an item corresponding to a triplet (bi, gj , hk) of T , (ii) an
item corresponding to one of the occurrences of bi, (iii) an item
corresponding to one of the occurrences of gj , and (iv) an item
corresponding to one of the occurrences of hk. Furthermore,
the last three items in this list will either be all marked or none
of them will be marked. Finally, the triplets containing the
marked items define a solution for the 3D-Matching problem.

In view of the correspondence between the Bin Packing
problem and the modified M-problem that was established in
the earlier parts of this proof, the developments of [41] can
provide a polynomial reduction of the 3D-Matching problem
the modified M-problem as follows:

For each item defined in the proof of [41], the new reduction
employs a subtree with the structure depicted in Figure 2. Also,
the reduction employs 4m robots working in 4-robot teams for
the satisfaction of the visitation requirements that are defined
by any item-representing subtree. Taking into consideration
Footnote 7, the bound K for the induced instance of the
modified M-problem is set equal to K = C−1 = 40M4 +14.
Then, clearly, a feasible instance of the 3D-Matching problem
induces a feasible instance of the modified M-problem. To
see that an infeasible instance of the 3D-Matching problem
induces an infeasible instance of the modified M-problem, it
suffices to show that there is no feasible plan for the modified
M-problem instance that visits the leaf nodes of an item-
representing subtree in an intermittent manner. But this claim
is true because a plan possessing such an intermittent visitation
pattern would visit the corresponding nodes vI,1, vI,2, vI,3
more than once, and this is not affordable under the time
budget defined by K (remember the correspondence between
the item sizes and the representation of these sizes by the
visitation time of the corresponding subtrees by a robot team,
that was discussed in the first part of this proof).

Next we modify the above NP-hardness proof for the
modified M-problem in order to establish the strong NP-
hardness of the original version of the M-problem that was

8Quoting [41], we can think of M as 100n, for a more concrete example.
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defined in Section II. In this case, the M-problem induced by
the input 3D-Matching problem is specified similarly to the
modified M-problem that was considered in the previous part
of the proof, but the new MMRS has 4m + 1 robots. Robots
work in teams of four as in the previous case, and an extra
robot is kept at the root zone o.

Suppose that a 4-robot team is currently occupied with
the visitation of the subtree representing some item I . Then,
thanks to the availability of the additional robot at the root
zone, the system can initiate the visitation of the subtree
representing another item J as soon node vI,aI−1 has been
visited. This remark further implies that the total (discrete)
time required for the visitation of the subtrees corresponding
to the four items included in a single bin in the proof of [41],
can be reduced by up to three periods.9

Clearly, the potential reductions of the bin processing times
that are discussed in the previous paragraph, preserve the
previously established fact that the induced M-problem in-
stance is feasible if the original 3D-Matching problem instance
is feasible. Next, we argue that the potential reductions of
the “bin processing times” are not able to turn an infeasible
instance of the modified M-problem into a feasible instance for
the original M-problem. Hence, the provided construction still
resolves effectively the feasibility of the input 3DM-matching
problem instance, and therefore, the original M-problem is
strongly NP-hard.

In order to establish the necessary result, first we notice
that from the item sizes that are reported in Table I and
the employed C and K values, it is clear that any plan for
the M-problem instance having a chance to be feasible with
respect to employed bound K, cannot assign more than 4 item-
representing subtrees to any robot team. And since there are
N = 4m such subtrees and m robot teams, it follows that any
viable assignment will assign exactly four item-representing
subtrees to each team. Hence, even in the case of infeasible
3D-Matching problem instances, meaningful reductions of the
total time required for a team assignment cannot be more than
3 periods. This potential time gain cannot turn an infeasible
modified M-problem instance into a feasible instance for
the original M-problem version, due to the following two
reasons: (a) The addition of any extra robots to a four-robot
team cannot expedite the processing of an item-representing
subtree, due to the “bottleneck” role of the corresponding zone
vI,3 in this process. (b) Furthermore, it takes four periods
to reach a leaf node in an item-representing subtree that
is not currently processed. Hence, the early completion of
a robot team assignment by 3 periods, cannot increase the
processing capacity of another team within the time-horizon
that is defined by K. �

The modified M-problem used in the proof of Theorem 1
has a strong conceptual affinity to the classical scheduling
problem of minimizing the makespan of the processing of
a set of tasks by a set of identical parallel machines. The
employed teams of robots play the role of the machines, and

9The incurred reduction for certain bins might be less than three periods
if there is a simultaneous completion of the processing of two or more item-
representing subtrees by the robot teams working on them. In this case, only
one new subtree will be started by the robot currently available at the origin.

Fig. 3: The tree T used in the proof of Theorem 2.

the subtrees corresponding to the different items define the
tasks to be processed by these machines. This conceptual
analogy can be useful when contemplating various properties
of the considered MMRS. On the other hand, this analogy
cannot support an NP-hardness proof for the M-problem (e.g.,
through a polynomial reduction from the Partitioning problem
[10]), because in the tree of Figure 2, the task durations
have a unitary representation by the number of nodes in the
corresponding subtree.

The proof of Theorem 1 also highlights the fact that the
concurrent advancement of the robots towards the leaf nodes
of T is constrained by two different problem elements: (i) the
size |R| of the robot fleet, and (ii) the unit buffering capacity
of the various zones, which constrains the flow of the available
robots towards the various parts of T . The next result shows
that the M-problem remains strongly NP-hard even if we avail
of an arbitrarily large fleet of robots.

Theorem 2: The M-problem defined in Section II remains
strongly NP-hard even if |R| ≥ |V |, i.e., even if we have more
robots than the number of zones in the underlying guidepath
network.

Proof: The proof of this theorem is based on a polynomial
reduction from the 3D-Matching problem that is built upon
the reduction used in the proof of Theorem 1. Furthermore,
the notation and the terminology that is used in this proof
are similar to the notation and the terminology that were
introduced in that previous proof.

The tree T employed in the new reduction is depicted in
Figure 3. The subtree of T that is rooted at node o′ and consists
of the N subtrees labeled ‘Item 1’, . . . , ‘Item N’ plays a role
similar to the role of the tree that was used in the proof of
Theorem 1. This subtree of T is constructed in exactly the
same manner with the corresponding tree of Figure 2, except
for the fact that the item-representing subtrees have a depth of
5 instead of 4; this modification is explained in the following.

The new tree T has (m − 1) additional item-representing
subtrees that are rooted at node o′. The specific structure and
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the role of these subtrees are also explained in the following.
Finally, tree T has an additional part that consists of the

path 〈o, p, o′〉 and the path 〈(B, 1), . . . , (B,K)〉 that should be
perceived as a subtree rooted at node p. This subtree contains
K = 40M4 + 14 nodes.

The number of robots, |R|, is picked as any number that
satisfies the condition of Theorem 2.

Similar to the case of the reduction of Theorem 1, we assign
5m+1 robots to work on the visitation of the leaf nodes of the
subtrees corresponding to items 1, . . . , N . These robots are
advanced to the corresponding subtree rooted in node o′ in
the first part of the employed plan, and they are expected to
work as m teams of 5 robots per team for the visitation of the
leaf nodes in this subtree, while an extra robot will be located
at node o′, providing the necessary connectivity between the
various teams and the root zone o.

However, in the current case, the first team of robots will
start working on its assigned items with a lag of two periods,
that corresponds to the traversal of the path 〈p, o′〉. The second
team will experience an additional lag of 5 periods in the
initiation of its assignment, that results from the advancement
of the first team in the subtree rooted at o′. Similarly, every
other robot team will start working on its assignment with a
lag of 5 periods compared to the previous robot team. Hence,
the last team will start its assignment with a lag of 2+5(m−1)
periods. For this reason, we set the target makespan equal to
K ′ = K+5m−3, where K is the target makespan in the proof
of Theorem 1; i.e., eventually we set K ′ = 40M4 + 5m+ 11.

Furthermore, the insertion in the new tree T of the subtrees
labeled ‘item 1′’ to ‘item (m − 1)′’ intends to occupy the
robot teams that start early and therefore will finish their
assignment earlier than some other teams. In particular, the
completion of the task labeled ‘item 1′’ accounts for the lag
of 5(m−1) periods between the start by the first robotic team
that is advanced to the subtree that is rooted at o′ and the start
by the last robotic team to reach this subtree. Similarly, the
task labeled ‘item (m− 1)′’ accounts for the lag of 5 periods
between the team starting next to last and the team starting
last. The remaining (m− 3) subtrees are defined in a similar
manner. Then, it is clear that no team can interfere with the
work of the other teams due to the experienced lags. On the
other hand, it is also true that, in the new regime, every team
except for the last will process 5 item-representing subtrees,
instead of 4 that was the case in the proof of Theorem 1.
This fact necessitates the increase of the depth of the item-
representing subtrees by one node, in order to avoid possible
interference among the robot teams due to presence of the
extra robot at node o′; c.f. the relevant discussion in the last
part of the proof of Theorem 1.

The above discussion implies that when provided with
5m + 1 robots, the subtree that is rooted at node o′ can
resolve the feasibility of the input 3D-Matching problem
instance in a way similar to the corresponding mechanism
that was established in the proof of Theorem 1. The fact that
this mechanism will not be jeopardized by the provision of
additional robots to this subtree is ensured by the presence of
the path 〈(B, 1), . . . , (B,K)〉, that is rooted at node p. More
specifically, after the 5m + 1 robots have been provided to

Fig. 4: The tree T ′ used in the proof of Theorem 3.

the subtree rooted at node o′, and the last of the m teams has
started working on its assignment, the unit buffering capacity
of node p must be used during the remaining time until
the end of the provided time horizon of K ′ periods, for the
advancement of the necessary robots for the visit of the leaf
node (B,K).

Hence, the constructed M-problem instance satisfies the
assumptions of Theorem 2, and it is equivalent to the input
3D-Matching problem instance in terms of their feasibility.
The proof concludes by further noticing that the size of the
constructed M-problem instance is polynomially related to the
dimensions of the 3D-Matching problem instance. �

The next theorem establishes the strong NP-hardness of the
TVT-problem.

Theorem 3: The TVT-problem defined in Section II is
strongly NP-hard.

Proof: We provide a polynomial reduction of the 3D-
Matching problem to the TVT-problem, by showing that the
M-problem instance constructed in the proof of Theorem 2
can be polynomially reduced to a TVT-problem instance. In
the following, we shall respectively denote these two problem
instances by (M,K) and (M′,K ′).10 Also, we shall use the
notation M = 〈R, T = (V,E)〉 and M′ = 〈R′, T ′〉, and we
shall denote the set of the leaf nodes of tree T by L, and the
entire set of leaf nodes in T ′ by L′.

The tree T ′ of the induced TVT-problem instance is de-
picted in Figure 4. Tree T ′ is obtained from the tree T depicted
in Figure 3, by adding to that tree the new subtree that is
depicted in Figure 4. It is important to notice that by setting
the length of the internal path of the new subtree equal to
|R′| − 2, we ensure the accessibility of the leaf nodes of the
new subtree, but we also ensure that the visits of the leaf
nodes in the original tree T and in the new subtree cannot
occur simultaneously.

Next we discuss the specification of |R′|. The key require-
ment that drives the specification of this quantity is that an
optimized plan for the resulting TVT-problem will always visit
the leaf nodes of the original tree T before visiting any leaf
node of the new subtree. This requirement can be satisfied by
setting

|R′| ≥ K̄Y + 2 ≥ |R| (17)

10The reader should notice that the value of K in the current proof is the
value of K′ in the proof of Theorem 2.
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where K̄ is a polynomial upper bound to the makespan of an
optimal plan for the input M-problem.11

Indeed, under the left inequality of Eq. 17, the visit of a
leaf node of the new subtree before the completion of the
processing of tree T will increase the visitation time of at
least one leaf node in T by |R′| − 1 periods. On the other
hand, the increase in the total visitation time of the nodes of
the new subtree that will result by the earlier processing of
tree T is upper-bounded by K̄Y .

The right inequality of Eq. 17 ensures that |R′| ≥ |R|,
and since |R| ≥ |V | (c.f. Theorem 2), the potential increase
of the number of robots in the induced TVT-problem that
is implied by Eq. 17, does not alter the optimal makespan
for the processing of tree T (which should take place before
the processing of the new subtree, for the reasons that were
discussed in the previous paragraph).

The proof of Theorem 2 has established that any competitive
plan for the corresponding M-problem instance will keep
pumping robots from the root node o to the rest of the tree T
for the entire time interval {1, . . . ,K}. Hence, when operating
under any of these plans for the visitation of the leaf nodes
v ∈ L of the tree T ′, at period K, there will be K robots
located in the subtree of T ′ that is rooted at node p. If it also
holds that

K̄Y + 2 ≥ 2K + 1 (18)

then, any competitive plan for the considered TVT problem
instance will also have deployed K robots on the path of
the |R′|-2 nodes in the new subtree of T ′ by period K, and
therefore, the number of the additional robots needed to reach
any of the leaf nodes of this subtree is |R′| − 1−K.

The rest of the proof exploits all the above remarks in order
to price the parameters Y and K ′ of the induced TVT-problem
instance in a way that establishes the equivalence of this TVT-
problem instance to the input M-problem instance.

Hence, suppose first that the input M-problem instance
(M,K) is feasible. Then, there exists a plan P for this
problem instance with maxv∈L{C(v;P )} ≤ K. Consider the
plan P ′ for the TVT-problem instance that executes plan P
initially, and subsequently it visits the leaf nodes of the new
subtree, one node at a time. Then, under the assumptions of
Eqs 17 and 18,∑
v∈L′

C(v;P ′) ≤ |L|K +

Y∑
j=1

(
K + (|R′| − 2−K) + j

)
= |L|K + Y (|R′| − 2) +

Y (Y + 1)

2
(19)

We set

K ′ = |L|K + (|R′| − 2)Y +
Y (Y + 1)

2
(20)

and in the following we shall set Y so that there is no plan
P ′ with

∑
v∈L′ C(v;P ′) ≤ K ′ for infeasible M-problem

instances.
Consider an input M-problem instance (M,K) that is

infeasible, and recall that any optimized plan P ′ for the
induced TVT-problem instance will process the original tree

11E.g., K̄ can be set to 2 · |L|· (the depth of T ).

T before visiting any leaf nodes of the new subtree. For any
such plan P ′, it will hold∑
v∈L′

C(v;P ′) > K +

Y∑
j=1

(
K + 1 + (|R′| − 2−K) + j

)
= K + Y (|R′| − 1) +

Y (Y + 1)

2
(21)

The first term in the right-hand-side of the first row of Eq. 21
acknowledges the fact that, due to the infeasibility of the input
M-problem instance, at least one leaf node v ∈ L in tree
T will have a visitation time higher than K (and this also
justifies the strict inequality in the first part of the equation).
The summation appearing in the same part of the equation is
a lower bound for the total visitation time of the leaf nodes
in the new subtree. This lower bound results from the facts
that (i) these nodes will be visited after the completion of the
processing of tree T , and (ii) due to the infeasibility of the
input M-process instance, the completion of T will not take
place before period K + 1.

In view of Eqs 19–21, in order to establish the sought
equivalence between the input M-problem instance and the
induced TVT-problem instance, Y must satisfy the following
inequality:

K + Y (|R′| − 1) ≥ |L|K + (|R′| − 2)Y =⇒
Y ≥ K(|L| − 1) (22)

Picking Y as specified by Eq. 22 also meets the requirement
of Eq. 18. The proof is completed by setting

Y ≥ max
{
K(|L| − 1),

(
|R| − 2

)
/K̄
}

(23)

so that it satisfies the right inequality in Eq. 17, as well. �
Currently, we do not have a result similar to that of The-

orem 2 that would characterize the worst-case computational
complexity of the TVT-problem in the case that we have a
very large fleet of robots. But in the rest of this section, we
use this particular problem version to demonstrate (i) how
the presence of special structure in tree T can enable the
development of efficient solution algorithms for the considered
OMRP2G problems, and also (ii) how the relevant analysis
can be further facilitated by referring these problems to some
classical problems of combinatorial scheduling theory.

The special structure for the tree T considered in the
following discussion is depicted in Figure 5. It consists of
a path of length P0 leading from the root zone o to zone p,
and there are k subtrees rooted at node p possessing what
we shall call a “claw” structure. More specifically, each of
these subtrees consists of an internal path of some length
Pi, i = 1, . . . , k, and the last node of this path, qi, has Qi

additional paths emanating from it and having equal length
Ri. We want to come up with a visitation plan P for the leaf
zones of tree T that minimizes the total visitation time for
these zones. Furthermore, we assume that |R| ≥ |V |, where
|V | is the number of zones of the considered tree T .

The assumption |R| ≥ |V | implies that there is no need to
reuse the robots directed to any claw for the visitation of the
leaf nodes of some other claw. Also, the unit capacity of each
zone qi implies that the robots that must be directed to the i-th
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Fig. 5: A tree T with a “claw” structure.

claw for an expedient visitation of its leaf nodes, is exactly
(Pi + Ri). On the other hand, the path from o to p implies
that, at each period, we can advance a robot from the origin to
only one claw; i.e., this path serializes the service of the claws.
Hence, eventually the considered OMRP2G problem reduces
to the determination of an optimal sequence for forwarding to
each claw the required robots.

In order to determine such an optimal sequence, let [i], i =
1, . . . , k, denote the claw that is in the i-th position of this
sequence. Then, it is easy to see that the total visitation time
for the leaves of this claw is equal to

Q[i]∑
j=1

{
P0 +

i−1∑
l=1

(
P[l] + R[l]

)
+ P[i] + (j ×R[i])

}
=

Q[i]−1∑
j=0

{
P0 +

i∑
l=1

(
P[l] + R[l]

)
+ (j ×R[i])

}
=

Q[i]P0 + Q[i]

i∑
l=1

(
P[l] + R[l]

)
+

R[i]Q[i](Q[i] − 1)

2
(24)

The breakdown of the claw TVT according to the right-
hand-side of Eq. 24 implies that, in order to minimize the
total visitation time over all claws, it suffices to minimize the
quantity

k∑
i=1

Q[i]

i∑
l=1

(
P[l] + R[l]

)
This quantity is reminiscent of the problem of minimizing

the weighted flow time of k jobs on a single server. The
quantities (Pi + Ri), i = 1, . . . , k, correspond to the job
processing times, and the quantities Qi, i = 1, . . . , k, cor-
respond to the job weights. It is well known that for this
single-machine scheduling problem, an optimal sequence is
provided by the “Weighted Shortest Processing Time (WSPT)”
rule: Jobs are processed in increasing ratios of their processing
times over their weights [40]. When translated in the context

of the considered TVT-problem, this result implies that the
k claws must be processed in increasing order of the ratios
ri ≡ (Pi+Ri)/Qi. Hence, the considered version of the TVT-
problem is resolved very efficiently.

V. CONCLUSIONS

This paper introduced a new class of OMRP2G problems
that are characterized by the fact that the underlying robot
fleet must observe some “connectivity” requirements while
trying to reach a set of target locations. Also, due to the
particular attributes of the applications that have motivated
these problems and the nature of the imposed “connectiv-
ity” requirements, the guidepath network that supports the
robot traffic is a tree. We have provided formal characteriza-
tions and complete mathematical programming formulations
for these problems, and we have analyzed their worst-case
computational complexity. In their general positioning, the
considered OMRP2G problems are NP-hard. But we have also
demonstrated that it is possible to construct computationally
efficient solutions for some instantiations of these problems,
by identifying and exploiting special structure in the tree T
that defines the guidepath network.

The presented developments have also revealed that the
combinatorial structure that underlies the considered OMRP2G
problems, and defines their computational complexity and the
prospective structure of their solution algorithms, is substan-
tially different from the corresponding structure that underlies
the OMRP2G problems studied in the past literature. The
new OMRP2G problems present a stronger affinity to various
machine scheduling problems than to the vehicle routing and
the traveling-salesman problems that have been associated
with the earlier OMRP2G problems. At the same time, the
interaction of the resources involved in this new class of
problems – i.e., the robots and the zone buffering capacities –
together with the imposed “connectivity” requirements gener-
ate a richer and much more complex set of resource allocation
patterns and dynamics than those encountered in the more
classical scheduling theory.

Our future work will seek to further analyze and understand
these dynamics and their association to the existing scheduling
theory. It will also employ the results and the insights that
will be provided by this analysis, towards the development
of solutions to the considered OMRP2G problems able to
manage systematically and effectively the need for a trade-
off between operational and computational efficiency that was
established by the results of Section IV of this paper. A third
research task concerns the extension of the aforementioned
developments to MMRS with guidepath networks of a more
general topology.12 Similarly, one can consider the extension
of the methodological developments and the insights to be
obtained from the aforementioned investigations, in order to
support the expedient execution of coverage tasks that might
evolve in less familiar and/or less structured environments,
establishing, thus, a bridge between the research program

12Of course, all the complexity results of Section IV carry over immediately
to this broader class of problems. But the corresponding MP formulations must
account for the additional choice that is defined by the more general topology
of the underlying guidepath network.
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that has been specified in this work and some other research
lines on networked robotic systems that were discussed in
the introductory section. Another possible extension concerns
the detailed specification and investigation of similar min-
time coverage problems where, however, each robot has a
distinct identity and role in the executed task. Finally, the
aforementioned endeavors will not only provide a pertinent
and powerful theory for the considered class of OMRP2G
problems, but they will also extend the boundaries of the
current combinatorial scheduling theory.
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