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Abstract: In a recent work, we introduced a new set of problems in the area of networked
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representation of these problems in terms of Mathematical Programming (MP) formulations,
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the second one to future work.

Keywords: Networked mobile robotic systems; coverage problems; optimal multi-robot path
planning on graphs; combinatorial scheduling; valid inequalities.

1. INTRODUCTION

In a recent work (Reveliotis and Kim (2021)), we have in-
troduced a new class of problems in the area of networked
robotic systems that concerns the employment of robotic
fleets for the support of routine inspection and service
operations taking place in well-structured but constricted
environments. Characteristic examples of such operations
concern inspection and service tasks taking place in water
supply and sewage networks, mines and other underground
excavation sites, and oil and gas pipeline systems. In all
these environments, the deployed robots are confined to
move in narrow aisles that are naturally defined by the
corresponding facilities. Furthermore, the geometry and
the nature of the physical boundaries delineating these
aisles restrict severely the robot communication with each
other and with the command-&-control (C&C-) center
that manages the entire operation.

The aisle narrowness in the aforementioned operations
raises issues of collision avoidance for the traveling robots,
and a need to preserve the robot safety and the traf-
fic integrity. These issues can be addressed through the
imposition of a zoning scheme that splits the underlying
guidepath network into zones of unit buffering capacity,
and grants access to these zones to the contesting robots
through a traffic coordinator. Similar zoning schemes have
been used extensively in automated unit-load industrial
material handling systems (Heragu (2008)), and more
recently they have provided a safety control mechanism
in other mobile robotic applications, as well (c.f. Yu and
LaValle (2016); Parker et al. (2016)).

But in the considered applications, the imposed zoning
scheme must serve the additional objective of keeping
each deployed robot connected to the C&C-center through

the preservation of a multi-hop wireless communication
network that relays messages among the various robots
and the center (c.f. Tardioli et al. (2010); Loizou and
Constantinou (2016)). In order to maintain this com-
munication network, (i) zones must be defined so that
robots located in neighboring zones are within the direct
communication range of each other, and (ii) the robot
advancement through the zones must be further controlled
so that each robot is always connected to the C&C-center
by a path of the underlying guidepath network that has all
of its zones occupied by other robots (and therefore, the
required message-relaying function is always possible).

At the end, an effective traffic controller for the targeted
applications must coordinate the robot traffic in a way
that (i) observes the imposed zoning scheme and the con-
nectivity requirements that were described in the previous
paragraph, and (ii) ensures the expedient execution of the
underlying tasks.

The aforementioned work of Reveliotis and Kim (2021)
(i) positioned the resulting traffic control problem in the
context of the literature on networked robotic systems, (ii)
provided detailed definitions for a number of variations
of this problem and analytical characterizations in the
form of mathematical programming (MP) formulations,
and (iii) established that, in their general positioning,
all these variations are strongly NP-hard combinatorial
optimization problems (Papadimitriou (1995)). In this
work, we establish some new structural results for the
considered problems and their MP formulations presented
in Reveliotis and Kim (2021), that are useful for the
strengthening of these MP formulations and for the further
development of pertinent heuristic solution methods for
these problems. We demonstrate the first usage of the



derived results in this paper, and we highlight the second
possibility in the concluding discussion as part of our
future work.

The rest of the paper is organized as follows: In the next
section, we overview the basic characterizations of the
coverage problems that are considered in Reveliotis and
Kim (2021), and the MP formulations for these problems
that are provided in that work. Section 3 establishes
our main results, and Section 4 demonstrates their usage
for the strengthening of the current MP formulations.
Section 5 concludes the paper and suggests some directions
for future work. Finally, following standard practice in the
robotics community, in the rest of the paper we refer to
the considered robotic systems as multiple mobile robot
systems, or MMRS , for brevity (Parker et al. (2016)).

2. THE CONSIDERED COVERAGE PROBLEMS
AND THEIR MP FORMULATIONS

The considered coverage tasks and the correspond-
ing traffic-management problems: A fleet of mobile
robots must be used to inspect a set of locations of an
underground guidepath network that constitutes a tree.
As discussed in the introductory section, some examples
of such a guidepath network might be a water supply
network, a sewage network, or a network of tunnels in
an underground mine (Tardioli et al. (2010); Loizou and
Constantinou (2016)). The robots are initially located
at a C&C-center of the entire facility, which defines the
root of the tree, and the targeted locations are its leaves.
Furthermore, the tunnels are narrow and the robots have
limited sensing and maneuvering capability. Therefore, for
safety reasons, the robots must be separated through the
imposition of a zoning scheme with unit buffering capacity
for each zone, along the lines that were discussed in the
introductory section.

The robots possess wireless communication capability, but
their communication range is severely limited by their op-
erational environment. Since these wireless communication
links are the only way for each robot to communicate with
its operational environment, the robot motion must be
coordinated in a way that, at any time point, the active
links among the robots define a multi-hop communica-
tion network connecting the robots to each other and to
the C&C-center. As explained in the previous section, a
natural way to ensure this connectivity is by defining the
imposed zones in a way that neighboring zones guarantee
robust connectivity between the robots that occupy these
zones, and further stipulating that, at any time point,
a zone cannot be occupied unless its parent zone in the
underlying tree is also occupied.

Finally, following standard practice in the formal study of
the traffic dynamics that are generated by zoning schemes
similar to those considered in this work, we further assume
that zones are defined in a way that they have uniform
traversal time. Then, picking this traversal time as the
time unit, we can study the resulting traffic dynamics in
discrete time. 1

1 Nonuniform traversal times for the system zones can be easily
introduced into our model. But this feature would overload the
employed notation and complicate some details in the pursued

In view of the above description, the considered MMRS
can be formally represented by a tuple M = ⟨R, T ⟩,
where R is the set of the robots and T is a rooted tree
representing the tunnel system. The node set V of T
represents the zones of the tunnel system, and the edge set
E represents the neighboring relation among the zones.

The root node of T – i.e., the initial location of all robots
and the point of command and control for the entire
system – is denoted by o. The set of the leaf nodes of
T is denoted by L. As already stated, each zone v ∈ L
must be visited by some robot for inspection purposes,
and the inspection of a leaf zone can be carried out by
the visiting robot in the time interval corresponding to a
discrete period.

The set of neighbors of a zone v ∈ V is denoted by N (v),
and for any zone v ̸= o, p(v) denotes the parent of v in
T . Let z(r, t) denote the zone v ∈ V occupied by robot r
at period t. Then, z(r, t + 1) ∈ {z(r, t)} ∪ N (z(r, t)); i.e.,
robot r can either remain in the same zone at period t+1,
or advance to a neighboring zone v′ ∈ N (v). Furthermore,
at any period t, a zone v ̸= o cannot contain more than
one robot.

On the other hand, at any period t, a group of robots can
coordinate their advancement over a path of neighboring
zones; i.e., for a group of robots r1, r2, . . . , rn with z(ri, t) ∈
N (z(ri−1, t)), for i = 2, . . . , n, we allow z(ri, t + 1) =
z(ri+1, t), i = 1, . . . , n − 1, provided that robot rn moves
itself to a free zone or to the root zone o at period
t + 1. We characterize such a string of robot moves as
a robot flow occurring at time t, and we shall denote it by
f(z(r1), z(rn); t). The net effect of this flow is the transfer
of a robot from zone z(r1, t) to zone z(rn, t + 1). Also,
the traffic dynamics that were described in the previous
paragraphs imply that two flows f(vo, vd; t) and f(v′o, v

′
d; t)

are conflicting if the supporting paths of these two flows
have a common internal node v ̸= o.

Robots can reverse the direction of their motion within
their zone. This assumption is reasonable in the context
of the considered applications, and furthermore, it is
necessary due to the tree structure of the underlying tunnel
system.

Finally, as observed in the opening part of this section,
the communication connectivity among the robots and
the system controller is established by stipulating that,
for every zone v ̸= o and every period t,

∃ r ∈ R : z(r, t) = v =⇒ ∃ r′ ∈ R : z(r′, t) = p(v) (1)

The above requirement implies that for every zone v
occupied by a robot in period t, all the zones in the path
connecting zone v to the root zone o in tree T are also
occupied by a robot in period t. Furthermore, the root
zone o is always occupied by at least one robot.

We want to determine a plan that will advance the
robots r ∈ R in a way that is consistent with the above
assumptions regarding the robot capabilities and the zone
allocation protocol, and at the end of its execution, each

analysis, without adding anything substantial to the expository value
of this discussion.



leaf zone v ∈ L will have been visited by some robot. 2 Let
P denote the set of feasible plans, and for every P ∈ P
and v ∈ L, let C(v;P ) denote the first period that plan
P places a robot in zone v. We are especially interested in
plans P ∗ such that

P ∗ = arg min
P∈P

max
v∈L

C(v;P ) (2)

or

P ∗ = arg min
P∈P

∑
v∈L

C(v;P ) (3)

Each of Eqs 2 and 3 defines a combinatorial optimization
– or (traffic-)scheduling – problem. The traffic-scheduling
problem defined by Eq. 2 is characterized as theMakespan-
minimization problem, or the M-problem, and the traffic-
scheduling problem defined by Eq. 3 is characterized as
the Total Visitation Time-minimization problem, or the
TVT-problem. Also, in Reveliotis and Kim (2021) it is
shown that these two problems are in a Pareto optimal
relationship (Rardin (1998); Yu and LaValle (2013)); i.e.,
there are MMRS where the sets of optimal plans for these
two problems have no common element. Hence, these two
problems require separate treatments.

MP formulation of the M- and TVT-problems:
Next, we consider the MP formulations for the M- and
TVT-problems of Eqs 2 and 3 that were developed in
Reveliotis and Kim (2021). In the subsequent discussion,
T̄ denotes an upper bound for the completion time of an
optimal plan P ∗ for each problem; one way to obtain such
an upper bound is by considering the completion time of
the plan P that tries to reach one leaf zone at a time, while
scanning the tree T in a depth-first sense.

The decision variables employed by the MP formulations
of Reveliotis and Kim (2021) are as follows:

• State variables
· xv,t, v ∈ V, t ∈ {0, 1, . . . , T̄}: a nonnegative
integer variable indicating the number of robots
in zone v at period t.

• Control variables
· uv,v′,t, v ∈ V, v′ ∈ N (v), t ∈ {1, . . . , T̄}: a non-
negative integer variable representing the number
of robots moving from zone v to neighboring zone
v′ at period t.

• Auxiliary variables
· yv,t, v ∈ L, t ∈ {1, . . . , T̄}: a binary variable for
testing whether leaf zone v has been visited by
period t. 3

2 In more technical terms, a plan is a sequence of distributions,
Dt, t = 0, 1 . . ., of the system robots to the various zones of the
underlying tunnel system. The distribution Dt+1, for period t+1, is
obtained from the distribution Dt by relocating a number of robots
from their zones at period t to some neighboring zone, while abiding
to the introduced assumptions about the maneuvering capabilities
of the robots and the zone allocation protocol. This characterization
is specified further through the MP formulations of the considered
problems that are provided in the second part of this section.
3 Actually, the pricing of the variables yv,t is part of the “infor-
mational state” that drives the underlying decision making process
at period t. We have included these variables in the set of the
auxiliary variables since their values are determined by the values
of the corresponding variable sets {xv,q , q = 1, . . . , t}.

· st, t ∈ {1, . . . , T̄}: a binary variable for testing
whether the entire leaf-node visitation task has
been completed by period t.

The technological constraints employed in the MP formu-
lations for the M- and TVT-problems in Reveliotis and
Kim (2021) are as follows:

xo,0 = |R| (4)

∀v ∈ V \ {o}, xv,0 = 0 (5)

∀v ∈ V, ∀t ∈ {1, . . . , T̄},
xv,t = xv,t−1 +

∑
v′∈N (v)

(
uv′,v,t − uv,v′,t

)
(6)

∀v ∈ V, ∀t ∈ {1, . . . , T̄},
∑

v′∈N (v)

uv,v′,t ≤ xv,t−1 (7)

∀v ∈ V \ {o}, ∀t ∈ {1, . . . , T̄}, xv,t ≤ 1 (8)

∀v ∈ V \ {o}, ∀t ∈ {1, . . . , T̄}, xv,t ≤ xp(v),t (9)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, yv,t ≤
∑

q∈{1,...,t}

xv,q (10)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, st ≤ yv,t (11)

Constraints 4 and 5 define the initial distribution of
the robots by means of the state variables xv,0, v ∈
V . Constraint 6 expresses the evolution of the robot
distribution to the system zones at period t, based on the
control decisions that are expressed by the variables uv,v′,t.
Constraint 7 stipulates that the control decisions at period
t must be feasible with respect to the robot distribution
over the system zones at period t−1. Constraint 8 enforces
the buffering capacity of the zones v ̸= o. Constraint 9
enforces the condition of Eq. 1. Constraint 10 forces the
binary variable yv,t to zero if leaf zone v has not been
visited by period t. Finally, Constraint 11 forces the binary
variable st to zero if there is a leaf zone v that has not been
visited by period t.

The M-problem can be expressed by the following formu-
lation:

max
∑

t∈{1,...,T̄}

st (12)

s.t. Constraints 4 – 11 plus the sign restrictions for the
problem variables specified during the introduction of
these variables.

The TVT-problem can be expressed by the following
formulation:

max
∑
v∈L

∑
t∈{1,...,T̄}

yv,t (13)

s.t. Constraints 4 – 10 plus the sign restrictions for the
problem variables specified during the introduction of
these variables.

The above two formulations are Integer Programming
(IP) formulations (Wolsey (1998)). An optimal solution
for each of these two formulations determines an optimal
plan P ∗ for the corresponding scheduling problem through
the quantities [uv,v′,t − uv′,v,t]

+ for every pair (v, v′) of
neighboring zones and period t. 4

4 We remind the reader that [x]+ = max{x, 0}.



Furthermore, we can relax the integrality requirements of
the variables xv,t, yv,t and st to the following constraints,
turning the above IP formulations into Mixed Integer
Programs (MIPs):

∀v ∈ V, ∀t ∈ {1, . . . , T̄}, xv,t ≥ 0 (14)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, 0 ≤ yv,t ≤ 1 (15)

∀t ∈ {1, . . . , T̄}, 0 ≤ st ≤ 1 (16)

Indeed, as long as we retain the integrality requirement
for the variables uv,v′,t, Constraints 4–6 will ensure the
integrality of the variables xv,t, and this fact subsequently
preserves the mechanism that establishes the correct pric-
ing of the variables yv,t and st in any optimal solution of
the resulting formulation.

3. THE NEW STRUCTURAL RESULTS FOR THE
CONSIDERED TRAFFIC SCHEDULING PROBLEMS

Preamble: We start the presentation of the main results
of this paper by introducing some further notation and ter-
minology that are necessary for the formal statement and
establishment of these results. Hence, in the subsequent
discussion, we shall denote the unique path connecting
any nodal pair {v1, v2} of tree T by π(v1, v2). Also, the
length of path π(v1, v2) is defined by the number of edges
in it, and it will be denoted by l(v1, v2). Since tree T is
undirected, π(v1, v2) ≡ π(v2, v1) and l(v1, v2) = l(v2, v1).
Finally, a single node can be considered as a path of zero
length.

Also, for any pair of nodes {v1, v2}, a node v of T
that belongs on both paths π(o, v1) and π(o, v2) is a
common ancestor of these two nodes. Let CA(v) ≡ {v′ :
∃ v′′ s.t. v′ is a common ancestor of v and v′′} be the set
collecting all the common ancestors of node v. Similarly,
for a set of nodes V̂ ⊂ V , we define CA(V̂ ) =

⋂
v∈V̂ CA(v).

Finally, for any node v ∈ V , we define its closest common
ancestor (CCA) by

CCA(v) = arg max
v′∈CA(v)

l(o, v′) (17)

An implication of the imposed zoning scheme and
the induced timing of the traffic dynamics: We start
with a proposition that is an immediate implication of (i)
the unit buffering capacity of the zoning scheme employed
by the considered MMRS, and (ii) the traffic dynamics
that determine the robot transitioning among these zones;
c.f. Eqs 6–8.

Proposition 1. In the considered MMRS,

∀v ∈ L, ∀P ∈ P, C(v;P ) ≥ l(o, v) (18)

2

The result of Proposition 1 can be explicitly introduced
in the MIP formulations of the M- and TVT-problems
presented in the previous section, by adding the constraint:

∀v ∈ L, ∀t ∈ {1, . . . , l(o, v)− 1}, xv,t = 0 (19)

Also, similar constraints can be introduced for every
internal node v ∈ V of tree T , based on its distance l(o, v)
from the origin. 5

5 In fact, many of the current MIP solvers may generate constraints
like that of Eq. 19 during a preprocessing stage of the correspond-
ing MIP formulations that were presented in the previous section
(Wolsey (1998)).

Fig. 1. A demonstration of the three cases considered in
the proof of Proposition 2

Focused plans: The next result recognizes redundant
moves in optimal plans. In order to state it formally, we
need the following definition of a focused plan.

Definition 1. A plan P ∈ P for an M- or TVT-problem
instance is characterized as focused if it satisfies the
following condition: For every internal node v of the
corresponding tree T , and every period t ∈ {1, . . . , T̄} such
that xv,t−1 = 0 ∧ xv,t = 1,

(1) K ≡ {v′ ∈ L : v ∈ π(o, v′) ∧ C(v′;P ) > t} ≠ ∅;
(2) ∀τ ∈ {t+ 1, . . . ,minv′∈K C(v′;P )}, xv,τ = 1

Also, a robot move that violates the above condition will
be characterized as unfocused . 2

In plainer terms, a plan P for an M- or TVT-problem
instance is focused if any advancement of a robot to an
internal node v ∈ V \ L of tree T corresponding to a cur-
rently empty zone, is part of an ongoing endeavor to visit a
currently unvisited leaf node v′ ∈ L located in the subtree
of T that is rooted at node v. Condition (1) of Definition 1
stipulates the presence of such unvisited leaf nodes in the
aforementioned subtree of T , and Condition (2) stipulates
that the considered advancement must culminate in the
visit of at least one of these unvisited leaf nodes.

Proposition 2. For any M- or TVT-problem instance,
there exists an optimal plan P ∗ that is focused.

Proof: Consider an optimal plan P ∗ that is not focused.
Then, there is an internal node v of the corresponding
tree T , and a period t ∈ {1, . . . , T̄} such that xv,t−1 = 0∧
xv,t = 1, and either (i) K ≡ {v′ ∈ L : v ∈ π(o, v′) ∧
C(v′;P ) > t} = ∅, or (ii) K ≡ {v′ ∈ L : v ∈ π(o, v′) ∧
C(v′;P ) > t} ≠ ∅ and xv,τ transitions back to 0 at some
period τ ∈ {t+ 1, . . . ,minv′∈K C(v′;P )− 1}.
Consider the first incidence in plan P ∗ of such an unfo-
cused move. Then, the robot advancement to node v at
period t is the result of a robot flow originating either at
the root node o or at some other node v′ of tree T located
on the path π(o, ṽ) of a leaf node ṽ ∈ L with C(ṽ;P ∗) < t.
For further reference, let us denote this flow by f(v′, v; t).
Also, let v′′ denote the node that receives a robot at period
τ as a result of the flow f(v, v′′; τ) that will relocate the
robot placed at node v at that period. In addition, let v′′′

denote the furthest ancestor of node v′′ in tree T that is
not occupied by a robot at period t. Next we show that,
at period t, flow f(v′, v; t) can be redirected away from
node v in a way that maintains the traffic state indented
by plan P ∗ for period τ .



We proceed to establish this result by distinguishing three
cases that are depicted schematically in Figure 1.

In Case 1, flow f(v′, v; t) is redirected to node v′′′ (i.e., it is
substituted with the flow f(v′, v′′′; t)), and this redirection
does not create any conflict with any other flows specified
by plan P ∗ for period t. Then, clearly the considered
redirection is feasible at period t. In addition, any further
flows advancing robots in the subtree emanating from node
v′′′ during the time interval {t + 1, . . . , τ − 1} remain
feasible, and by period τ , the number of robots moved
into this subtree will equal to the number of robots moved
into the subtree by the original plan P ∗. Similarly, this
redirection does not block any flows that might place
robots in the subtree emanating from node v over the
time interval {t + 1, . . . , τ − 1}. Furthermore, since plan
P ∗ removes the robot placed at node v at period τ , any
robot placed on the subtree emanating from node v will
have been withdrawn from this subtree by period τ . Hence,
the state of this subtree at period τ will be consistent with
the state intended by plan P ∗. Finally, it is also clear, that
at period τ , the distribution of robots in every other part
of tree T will have not been altered. Hence, our claim is
proved for this case, and plan P ∗ can continue its execution
at period τ + 1.

In Case 2, the redirection of flow f(v′, v; t) results in
a conflict with another flow, f(vco, v

c
d; t), over a path of

tree T , with the two flows moving in opposite directions
on this path. This problem can be easily addressed by
substituting the original conflicting flows with the two new
flows f(v′, vcd; t) and f(vco, v

′′′; t), as shown in Figure 1.
Then, the rest of the argument for this case proceeds as in
Case 1.

In Case 3, the redirection of flow f(v′, v; t) to node v′′′

results in a conflict with some other flow f(vco, v
c
d; t) over a

path of T , and both flows have the same direction over this
path. In this case, flow f(v′, v; t) is redirected to node vcd,
while flow f(vco, v

c
d; t) is cancelled. Hence, node vcd receives

the robot intended for it at period t, but node v′′′ does not.
This deficit is addressed by trying to advance the robot
that remained at node vco due to the cancelation of flow
f(vco, v

c
d; t) at some subsequent period q ∈ {t + 1, . . . , τ}.

As long as this attempted advancement conflicts with some
other flow f(v1, v2; q) scheduled by plan P ∗, it is deferred
to the next period. On the other hand, the feasibility of
this advancement by period τ can be argued as follows:
The corresponding flow f(vco, v

′′; τ) can be decomposed to
the two flows f(vco, v̂; τ) and f(v̂, v′′; τ) where v̂ is the node
where the path supporting flow f(vco, v

′′; τ) meets the path
supporting flow f(v, v′′; τ) (c.f. Figure 1). The feasibility
of flow f(v̂, v′′; τ) is guaranteed by the presence of flow
f(v, v′′; τ) in plan P ∗. However, flow f(vco, v̂; τ) may be
in conflict with some other flow f(v1, v2; τ). In this case,
first we notice that, due to the presence of flow f(v, v′′; τ)
in plan P ∗, all these conflicting flows evolve on paths
that do not include node v̂. Furthermore, flow conflicts
of the type considered in Case 2 above can be addressed
as discussed in that case. The remaining flow conflicts
are of the type discussed in the current case (i..e., Case
3). Among these conflicts, consider the flow f(v1, v2; τ)
involving the subpath π̃ of the path π(vco, v̂) that is closest
to node v̂. The cancelation of the original flow f(vco, v

c
d; t)

at period t implies that it is possible to advance, in that

Fig. 2. The tree T for a TVT-problem instance where
robots are withdrawn from a subtree before all the
leaf nodes of this subtree have been visited, in order
to be used in the remaining part of T .

Table 1. An optimal plan P ∗ for the TVT-
problem instance that is defined by the tree

T of Figure 2 and |R| = 19.

t Occupied Zones t Occupied Zones

1 1 7 1, 2, 3, 5, 10, 11, 12
2 1, 3 8 1, 2, 3, 5, 6, 10, 11, 13
3 1, 3, 15 9 1, 2, 3, 5, 7, 10, 13, 14, 15
4 1, 3, 15, 18 10 1, 2, 3, 7, 8, 10, 13, 15, 16
5 1, 2, 3, 10, 15 11 1, 2, 3, 7, 8, 9, 10, 15, 16, 17
6 1, 2, 3, 4, 10, 11

period, the robot located at node vco towards the subtree
that is rooted on path π̃ and contains node v2. Hence,
at period τ , flow f(vco, v̂; τ) can be substituted by flow
f(v1, v̂; t), and this case is resolved, as well.

If the suggested redirection of flow f(v′, v; t) towards node
v′′ generates a number of conflicts, we can process them
one at a time, advancing on the corresponding path from
node v′ to node v′′′. As long as the encountered conflicts
are of the type described in Case 2, they can be addressed
as discussed above. On the other hand, the first encounter
of a conflicting flow of the type described in Case 3 will
redirect the robot at node v′ to the destination node of
this conflicting flow, the conflicting flow will be cancelled,
and the robot that is released from this cancelation will
be advanced towards node v′′ in the subsequent periods,
according to the corresponding discussion for Case 3.

Finally, a focused plan P̃ ∗ can be obtained from the
provided plan P ∗ by removing the unfocused moves from
plan P ∗ one move at a time, starting with the first
occurrence of such a move and working as discussed above.
2

From a more conceptual standpoint, the result of Proposi-
tion 2 implies that, while working towards the satisfaction
of the visitation requirements of the various leaf nodes of
T , there is no need to use the zones of tree T as “temporary
buffers” for the traveling robots.

Furthermore, for a more thorough understanding of the
notion of a focused plan, we emphasize that Condition
(2) of Definition 1 requires that the considered node v



Fig. 3. A maximal set of leaf nodes having the same CCA.

in this definition must remain occupied by a robot until
the first visit of some descendant leaf node of v in the
set K, but not until all the leaf nodes in K have been
visited. As an example to the potential sub-optimality of
this stronger requirement, Table 1 provides an optimal
plan P ∗ for the TVT-problem instance that is defined by
the tree T depicted in Figure 2 and |R| = 19. 6 In plan P ∗,
node v15 is initially occupied by a robot during the periods
3–5 for the visitation of its descendant leaf node v18, but
subsequently, the entire subtree of T that is rooted at node
v15 is divested of any robots during the periods 6–8. All
robots are used to visit some leaf nodes in the remaining
part of tree T during these periods, or they are idling to
the root zone o due to the bottlenecks that are defined by
the unit capacity of the other zones. Robots are returned
to node v15 and its emanating subtree in periods 9–11, for
the eventual visit of the remaining leaf node v17 of this
subtree. More importantly, it can be verified that there is
no optimal plan for the considered TVT-problem instance
that will keep node v15 continuously occupied by a robot
until all its descendant leaf nodes have been visited.

All the plans P considered in the rest of this document
are assumed to be focused. The generation of a focused
plan P ∗ by the MIP formulations of the previous section
can be ensured by adding the term −c ·

∑
v

∑
v′
∑

t uv,v′,t

to their objective function. The cost c associated with the
variables uv,v′,t penalizes unnecessary flows, and it must be
chosen sufficiently small so that it does not compromise the
generated solution with respect to the original objective of
the formulation.

The impact of common ancestors: Next we focus
on maximal subsets of leaf nodes of tree T that have
the same CCA, and this common ancestor is a node
other than the root node of T . Such a maximal subset
V̂ = {v1, v2, . . . , vn} is depicted in Figure 3, where, with a
slight abuse of notation, we denote the common ancestor
of all nodes in V̂ by CCA(V̂ ). Proposition 2, together

with the unit buffering capacity of node CCA(V̂ ), imply
the existence of an optimal plan P ∗ that addresses the
visitation requests that are posed by the nodes in V̂ one
at time; i.e., plan P ∗ will order the nodes in V̂ according
to some total order ⟨v[1], v[2], . . . , v[n]⟩ and it will deploy
the robots that are directed by the plan to the subtree
of Figure 3, first on path π(CCA(V̂ ), v[1])), next on path

6 Table 1 reports the distribution of the system robots to zones
v ̸= o, at each period t of the plan makespan. Robots that are not
used for the occupation of the reported zones, at any period t, are
at node o.

π(CCA(V̂ ), v[2])), and so on, until all the leaf nodes of this
subtree have been visited. This operation implies that for
the considered plan P ∗, and for all nodal pairs {v, v′} in

V̂ ,

|C(v;P ∗)− C(v′;P ∗)| ≥

min
{
l
(
CCA(V̂ ), v

)
, l
(
CCA(V̂ ), v′

)}
(20)

Furthermore, the next proposition establishes that, in the
case of the TVT-problem, the aforementioned ordering of
the nodes of the considered set V̂ that is employed by any
optimal plan P ∗, must be in increasing distance from node
CCA(V̂ ).

Proposition 3. For the TVT-problem, every optimal plan
P ∗ visits the leaf nodes v1, v2, . . . , vn of the subtree struc-
tures depicted in Figure 3, 7 in increasing distance from
their common ancestor CCA(V̂ ).

Proof: It is clear that any optimal plan P ∗ must address
the visitation requirements of the nodes in V̂ one at a time;
i.e., there must exist a total ordering ⟨v[1], v[2], . . . , v[n]⟩ of
the set V̂ , and the plan P ∗ will first deploy robots on
the path π(CCA(V̂ ), v[1])) until node v[1] has been visited,

next on path π(CCA(V̂ ), v[2])) until node v[2] has been

visited, and so on, until all the leaf nodes in V̂ have been
visited.

Among this set of plans, consider a plan P that visits
the leaf nodes v1, v2, . . . , vn of the subtree depicted in
Figure 3 according to a sequence that is not consistent
with the nodal ordering specified in Proposition 3. Also, let
v[[i], v[i+1] be the first nodal pair with l(CCA(V̂ ), v[i]) >

l(CCA(V̂ ), v[i+1]) in the visitation sequence that is em-

ployed by plan P . Next we specify a plan P̃ that swaps
the position of nodes v[[i], v[i+1] in the visitation sequence
that is employed by plan P and has a better performance
than P .

In order to define the plan P̃ , first notice that, according
to Proposition 2, the visitation of nodes v[i] and v[i+1]

by P involves a total outflow from node CCA(V̂ ) to-

wards the paths π(CCA(V̂ ), v[i]) and π(CCA(V̂ ), v[i+1])

of l(CCA(V̂ ), v[i]) + l(CCA(V̂ ), v[i+1]) robots. The first

l(CCA(V̂ ), v[i]) of these robots will be directed to node

v[i], and the remaining l(CCA(V̂ ), v[i+1]) will be directed
to node v[i+1]. Furthermore, this robot conveyance will
start at some period τ > C(v[i−1];P ) and will finish at
period C(v[i+1];P ), when leaf node v[i+1] is visited. For
a complete understanding of the involved dynamics, we
also notice that after node v[i] has been reached, and while

robots are conveyed via node CCA(V̂ ) to node v[i+1], some

of the robots located on the path π(CCA(V̂ ), v[i]) might

be directed via node CCA(V̂ ) towards the rest of tree T
(i.e., towards its parent node p(CCA(V̂ ))).

7 The result of Proposition 3 extends straightforwardly to leaf node
sets V̂ ⊆ L with CCA(V̂ ) = o. We leave the relevant details to the
reader.



Fig. 4. For the M-problem instance defined by the depicted
tree T and |R| = 7, the optimal plan P ∗ has a
makespan of 5 periods, and it visits nodes v1 and
v2 in the sequence ⟨v2, v1⟩. Furthermore, any plan
visiting these two nodes in the sequence ⟨v1, v2⟩ has a
makespan of at least 6 periods.

Plan P̃ first will redirect to the path π(CCA(V̂ ), v[i+1])

the first l(CCA(V̂ ), v[i+1]) robots originally destined from

node CCA(V̂ ) to the path π(CCA(V̂ ), v[i]). The next

l(CCA(V̂ ), v[i]) − l(CCA(V̂ ), v[i+1]) originally destined

from node CCA(V̂ ) to the path π(CCA(V̂ ), v[i]) will
still be sent to this path. This first phase of plan
P̃ will finish exactly at period C(v[i];P ), with node
v[i+1] having already been visited. In the remaining

C(v[i+1];P ) − C(v[i];P ) periods, plan P̃ will execute the
corresponding moves of plan P that concern the with-
drawal and/or the placement of robots at the respective

paths π(CCA(V̂ ), v[i]) and π(CCA(V̂ ), v[i+1]), via node

CCA(V̂ ), but now the role of these two paths as robot
providers or recipients will be reversed. This reversal is
consistent with, both, the robot availability and the timing
of the corresponding moves defined by plan P . Also, plan
P̃ will eventually visit node v[i] at period C(v[i+1];P ).

From the above description of plan P̃ , it is clear that:
(i) C(v[i]; P̃ ) = C(v[i+1];P ) (c.f. the closing part of the

previous paragraph). (ii) C(v[i+1]; P̃ ) < C(v[i];P ) (since

l(CCA(V̂ ), v[i]) > l(CCA(V̂ ), v[i+1]) and the conveyance
pattern of the necessary robots for the first phase of
plan P̃ , via node CCA(V̂ ), is the same as in plan P ).

(iii) C(v; P̃ ) = C(v;P ) ∀v ∈ L \ {v[i], v[i+1]} (since

plan P̃ preserves the robot inflow and outflow patterns,
via node CCA(V̂ ), towards the rest of tree T ). Hence,∑

v∈L C(v; P̃ ) <
∑

v∈L C(v;P ), and Proposition 3 has
been proved. 2

Let ⟨v[1], v[2], . . . , v[n]⟩ be a total ordering of the nodes of
the subtree depicted in Figure 3 in increasing length of the
corresponding paths π(CCA(V̂ ), vi), i = 1, . . . , n; nodes
with paths of equal length are ordered arbitrarily. Then,
in the case of the TVT-problem, Proposition 3 enables the
strengthening of Equation 20 as follows:

∀i = 1, . . . , n− 1,

C(v[i+1];P
∗)− C(v[i];P

∗) ≥ l
(
CCA(V̂ ), v[i+1]

)
(21)

On the other hand, Figure 4 provides a counter-example
to a possible extension of Proposition 3 to the M-problem.
However, we notice that, from a computational standpoint,

even in the case of the M-problem, it is beneficial to
(i) impose an arbitrary total ordering on every subset
of leaf nodes in the subtree of Figure 3 that have equal
distance from node CCA(V̂ ), and (ii) introduce in the
corresponding MIP formulation a set of constraints similar
to that of Eq. 21 for each such nodal subset and its
specified ordering. This practice will break the symmetry
with respect to these nodes in the generated solutions by
the MIP solver, and can expedite significantly the overall
computation.

4. STRENGTHENING THE MIP FORMULATIONS

The quantity C(v;P ∗) − C(v′;P ∗) appearing in the left-
hand-side of Equation 21 can be expressed in the MIP

formulations of Section 2 by the sum
∑T̄

t=1(yv′,t − yv,t);
i.e., we can introduce Eq. 21 in the MIP formulation of
Section 2 for the TVT-problem, by adding the constraint:

∀i = 1, . . . , n− 1,

T̄∑
t=1

(yv[i],t − yv[i+1],t) ≥ l
(
CCA(V̂ ), v[i+1]

)
(22)

In this section, we report some computational results that
highlight the ability of Constraint 22 to expedite the
solution of the presented MIP formulation for the TVT-
problem. These results are tabulated in Table 2.

More specifically, in the experiment that underlies the
results of Table 2, we chose randomly 10 instances of the
TVT-problem, and formulated and solved the correspond-
ing MIP of Section 2 without and with the addition of
Constraint 22. Columns ‘|V |’, ‘|R|’ and ‘|L|’ in Table 2
report, respectively, the number of nodes of tree T , the
number of robots, and the number of leaf nodes for the
corresponding problem instance. Collectively, the values
reported in these three columns characterize the “size” of
the corresponding problem instance, and define a degree
of difficulty for it. The formulated MIPs for these problem
instances were run for up to 2 hours (or 7,200 secs),
and Column ‘Obj. Value’ reports the best objective value
obtained during this computation. Column ‘MIP gap (%)’
reports the optimality gap assessed by the employed MIP
solver for the best reported objective value; in particular,
this percentage is computed through the formula: (Best
Upper Bound - Best Obj. Value ) / Best Obj. Value.
Finally, the column ‘Comp. Time (sec)’ reports the compu-
tational time involved. All the involved formulations were
solved by CPLEX in Python, on a laptop with i7-8850H
2.6GHz CPU, 16 GB RAM, and running Mac OS.

It is clear from the values reported in Table 2 that,
in all 10 cases, the addition of Constraint 22 to the
MIP formulation led either to a faster acquisition of an
optimal solution (cases 1–5), or to solutions of improved
quality compared to the solutions obtained during the
same computational time by the original MIP of Section 2.
This quality improvement is obvious for cases 6, 7, 8 and 9
when juxtaposing the corresponding objective values. But
even in case 9, where the objective values are equal, we
can see that the inclusion of Constraint 22 enabled a more
accurate assessment of the corresponding optimality gaps.



Table 2. The computational results that are discussed in Section 4.

Instance |V | |R| |L| Constr. 22 Obj. Value MIP gap (%) Comp. Time (sec)

1 25 17 12 NO 122 0.00 35.46
YES 122 0.00 15.11

2 25 18 13 NO 135 0.00 43.00
YES 135 0.00 19.00

3 50 28 19 NO 225 0.00 1318.61
YES 225 0.00 304.54

4 50 26 29 NO 215 0.00 12.32
YES 215 0.00 9.70

5 75 36 39 NO 299 0.00 540.87
YES 299 0.00 480.47

6 75 38 38 NO 697 19.86 7200.00
YES 687 17.23 7200.00

7 100 51 44 NO 1442 46.98 7200.00
YES 1289 40.69 7200.00

8 100 47 49 NO 1108 47.25 7200.00
YES 758 25.15 7200.00

9 125 59 64 NO 1869 44.53 7200.00
YES 1869 40.60 7200.00

10 125 58 72 NO 1616 29.93 7200.00
YES 1615 29.89 7200.00

Closing the discussion of this section, we notice that a
similar experiment has highlighted the value of symmetry-
breaking constraints for the M-problem that were dis-
cussed in the closing part of Section 3. We might also
consider the inclusion of the constraints of Eq. 20 in the
MIP formulation for the M-problem. But the linearization
of this constraint requires the introduction of a new binary
variable ζv,v′ with ζv,v′ indicating whether C(v;P ∗) >
C(v′;P ∗) or not. Hence, in this case, the inclusion of the
information that is provided by Eq. 20 to the correspond-
ing MIP formulations might not be able to expedite the
solution of these formulations.

5. CONCLUSIONS

In this work, we have provided some structural results for
the M- and TVT-problems, and their optimal plans, that
were recently introduced in Reveliotis and Kim (2021).
We have also demonstrated how the derived results can
expedite the solution of the MIP formulations of the
considered problems that were developed in Reveliotis and
Kim (2021), and / or enhance the quality of any partial
results that are derived through these formulations.

On the other hand, Reveliotis and Kim (2021) has also
established the NP-hardness of the M- and the TVT-
problems, and this fact is further manifested in the results
of Table 2; as it can be seen in this table, the solution
of the employed MIP formulations for larger problem
instances is a challenging task, even after the inclusion
of the information that is provided by the new results
developed in this paper.

Hence, in our future work, we shall also seek the develop-
ment of pertinent heuristic methods for the M- and the
TVT-problem, adapting some related ideas and methods
that are provided by combinatorial optimization theory
(Papadimitriou and Steiglitz (1998); Aarts and Lenstra
(2003)). The results developed in this work are expected to
have a significant role in the shaping of the solution spaces
and in the further structuring of the search processes to
be developed in these endeavors.
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