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A strong combinatorial relaxation for the problem of
Min-Time Coverage in Constricted Environments

Young-In Kim and Spyros Reveliotis

Abstract—In a recent work, we introduced a new set of prob-
lems in the area of networked multiple mobile robotic systems
that concern the time-optimal execution of certain coverage tasks
taking place in constricted environments. That work provided
the detailed problem definitions, positioned these problems in
the context of the corresponding literature, formulated them
as Mixed Integer Programs (MIPs), and established their NP-
hardness. The current work introduces a strong combinatorial
relaxation for these problems, and further establishes that the
feasible solutions of these relaxations can be converted to feasible
solutions for the original MIPs with equal or better objective
values than the objective values of the converted solutions. The
new results also enable the development of more efficient solution
methods and heuristic approaches for the considered problems;
this potential is addressed in the last part of the paper.

Index Terms—Networked mobile robotic systems; multi-robot
coordination; coverage problems; combinatorial scheduling; com-
binatorial relaxations of mixed integer programs.

I. INTRODUCTION

In the recent years, there has been an increasing interest
in employing teams of mobile robots – or, more formally,
multiple mobile robot systems (MMRS) – for the execution of
various tasks that are deemed to be too dangerous, physically
challenging or very tedious for the human element [1]. Among
the most celebrated examples of such MMRS applications
are some search-and-rescue operations where teams of robots
have performed successfully various reconnaissance tasks in
environments that are too hazardous for the human respon-
dents [2], [3]. Currently, there is also extensive interest in
the employment of MMRS for the support of more routine
functions evolving in operational environments that are quite
stable and well-managed. Some characteristic examples of
such applications are: (i) the employment of fleets of mobile
robots as the primary material handling devices in many
industrial and warehousing facilities [4], [5]; (ii) the delivery
by drones or mobile robots of groceries and take-out orders
in some residential or rural areas [6], [7]; (iii) the surveillance
of public spaces, like public squares and commercial malls,
with strategically (re-)positioned cameras that are mounted on
mobile robots [8]; and (iv) various other patrolling and data-
gathering functions where the robots must visit or monitor
persistently some critical locations [9], [10], [11], [12].

In this work, we focus on a class of MMRS applications
that concern the employment of mobile robotic teams for the
support of routine monitoring and inspection operations in
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subterranean or other physically constricted structures that are
not easily or safely accessible by the human element. Some ex-
amples of such environments are (a) the water supply, sewage
and other underground utility networks in modern urban areas,
(b) mines and other (e.g., archeological) excavation sites, and
also (c) the pipeline networks that are used for the transport
of oil, gas and other similar commodities over long distances.

During the past decade, these MMRS applications have
received extensive attention by the robotics community [13],
[14], [15], [16], [17], [18]. Furthermore, these applications
have been the focus of a major DARPA challenge known as
the “Subterranean – or SubT – Challenge” [19]. This research
activity has provided the technological capability that enables
(i) stable, flexible and safe motion of the deployed robots in
the spatially constricted, and potentially adversarial, corridors
(i.e., tunnels, pipes, etc.) that support the robotic traffic, and (ii)
reliable communication mechanisms among the robots and the
command-&-control (C-&-C) center that manages the overall
operation.

But the corresponding literature has also recognized that
the effective use of this emerging technological capability in
the targeted MMRS applications requires the development of
a methodological base that will model, analyze and control
the execution of the involved tasks for certain notions of
correctness and efficiency that are defined by various op-
erational specifications and performance metrics. A first set
of results in this direction has been provided in our recent
work of [20]. More specifically, in [20], we have provided:
(i) a systematic introduction of the operational requirements
of the considered MMRS; (ii) a formal characterization of
the traffic management problem that is induced by these
requirements, and the detailed positioning of this problem
in the existing MMRS literature; (iii) a complete analytical
representation of this problem in the form of some mixed
integer programming (MIP) formulations [21]; and (iv) a
worst-case complexity analysis of the decision problems that
underlie these formulations.1

The problems formulated in [20] are hard combinatorial
optimization problems [22]. Hence, there is a further need
for the development of additional methodology for these
problems that will enable a more effective management of their
computational complexity. Such methodology can either seek
to take advantage of any special structure that might be present
in the considered problems, or to develop suboptimal solution
methods able to establish a satisfactory trade-off between (i)

1An overview of the results of [20] that are necessary for the developments
of this work, is provided in the next section.
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the involved computational complexity and (ii) the operational
efficiency of the derived solutions. The results presented in this
paper constitute a significant contribution in this direction.

More specifically, the main contributions of this work can
be summarized as follows:

1) First, we develop some strong combinatorial relaxations
for the MIP formulations of [20]. These relaxations are
MIP formulations themselves that (i) are derived from
the original MIPs of [20] by relaxing the integrality
requirement of a large part of – but not all – the integer
variables that are employed in those formulations, and
(ii) have the same optimal objective value with the
original MIPs.

2) We also show that we can restrict the relaxed MIPs
to a certain subset of their feasible solutions that (i)
preserves optimality, and (ii) possesses the following
additional property: Any feasible solution in this subset
can be algorithmically converted to a feasible solution
for the original MIP with an objective value that is
no worse than the objective value of the starting so-
lution. Furthermore, the corresponding algorithm has
polynomial complexity with respect to any parsimonious
representation of the underlying problem instance.

3) Items #1 and #2 above also suggest an alternative
method for solving the problems that were introduced
in [20]. We detail this method, and we demonstrate and
assess the computational gains that can result from it
through a numerical experiment that is presented in the
last part of the paper.

4) We also show that the developments of items #1 and
#2 enable the testing for traffic plans which attain
pre-specified visitation times for the target zones, by
formulating and solving a linear program [21]. This
capability can be especially useful in the development of
some heuristic approaches for the considered problems.
However, the complete development of such heuristic
methods is a nontrivial issue, and it will be thoroughly
addressed in a sequel paper.

The rest of the current manuscript is organized as follows:
In the next section we review the basic characterizations of
the coverage problems that are considered in [20], and the
MIP formulations for these problems that are provided in that
work. Section III introduces the considered relaxations for the
original MIPs of [20], and establishes some additional proper-
ties for these relaxations that are useful for establishing their
strong nature. The strong nature of the considered relaxations
is established in Section IV. Furthermore, the closing part of
Section IV details a new solution method for the considered
problems that is derived from the theoretical developments
that are presented in its earlier parts. Section V reports
a numerical experiment that demonstrates and assesses the
computational gains resulting from this new method. Finally,
Section VI concludes the paper and suggests some directions
for future work. Also, due to the imposed page limit for
this work, the technical proofs of some results with a more
supportive role to the main results of the paper, and some
details for the experiment of Section V, are provided in a

companion electronic supplement that is accessible through
the publications webpage of the second author.

II. THE CONSIDERED COVERAGE PROBLEMS AND THEIR
MIP FORMULATIONS

In this section we review the min-time coverage problems
that are considered in this work and their MIP formulations,
based on the corresponding developments of [20]. The pro-
vided exposition of this material is the minimum necessary for
the presentation of the main results of this paper. The reader is
referred to [20] for a more expansive treatment of this material.

The considered coverage tasks and the corresponding
traffic-management problems: A fleet of mobile robots must
be used to inspect a set of locations of an underground
guidepath network that constitutes a tree. As discussed in
the introductory section, some examples of such a guidepath
network might be a water supply network, a sewage network,
or a network of tunnels in an underground mine [13], [14].

The robots are initially located at a C&C-center of the
entire facility, which defines the root of the tree, and the
targeted locations are its leaves. Furthermore, the tunnels are
narrow and the robots have limited sensing and maneuvering
capability. Therefore, for safety reasons, the robots must be
separated through the imposition of a zoning scheme that splits
the underlying guidepath network into zones of unit buffering
capacity – i.e., each zone cannot accommodate more than one
robot at any time. The robots are granted access to these zones
through a traffic coordinator.2

The robots possess wireless communication capability, but
their communication range is severely limited by their op-
erational environment. Since these wireless communication
links are the only way for each robot to communicate with its
operational environment, the robot motion must be coordinated
in a way that, at any time point, the active links among the
robots define a multi-hop communication network connecting
the robots to each other and to the C&C-center. This con-
nectivity can be ensured by (i) defining the imposed zones in
a way that any pair of robots occupying neighboring zones
will communicate with each other in a stable manner, and
(ii) further requiring that, at any time point, a zone cannot be
occupied unless its parent zone in the underlying tree is also
occupied.

Finally, following standard practice in the formal study of
the traffic dynamics generated by zoning schemes similar to
those considered in this work, we further assume that zones
are defined so that they have uniform traversal time. Then,
picking this traversal time as the time unit, we can study the
resulting traffic dynamics in discrete time.3

In view of the above description, the considered MMRS can
be formally represented by a tuple M = ⟨R, T ⟩, where R is

2Similar zoning schemes have been used extensively in automated unit-
load industrial material handling systems [4], and more recently they have
provided a safety control mechanism in other mobile robotic applications, as
well [23], [1].

3Nonuniform traversal times for the system zones can be easily introduced
into our model. But this feature would overload the employed notation and
complicate some details in the pursued analysis, without adding anything
substantial to the main results and insights that are presented in this work.
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the set of the robots and T is a rooted tree representing the
tunnel system. The node set V of T represents the zones of the
tunnel system, and the edge set E represents the neighboring
relation among the zones; two zones are neighbors if they
share a common boundary that allows robots to transition from
one to the other.

The root node of T – i.e., the initial location of all robots
and the point of command and control for the entire system
– is denoted by o. The set of the leaf nodes of T is denoted
by L. As already stated, each zone v ∈ L must be visited
by some robot for inspection purposes, and the inspection of
a leaf zone is carried out by the visiting robot in the time
interval corresponding to a discrete period.

The set of neighbors of a zone v ∈ V is denoted by N (v),
and for any zone v ̸= o, p(v) denotes the parent of v in T . Let
z(r, t) denote the zone v ∈ V occupied by robot r at period
t. Then, z(r, t+ 1) ∈ {z(r, t)} ∪ N (z(r, t)); i.e., robot r can
either remain in the same zone at period t+ 1, or move to a
neighboring zone v′ ∈ N (v). Furthermore, at any period t, a
zone v ̸= o cannot contain more than one robot.

On the other hand, at any period t, a group of robots
can coordinate their advancement over a path of neighbor-
ing zones; i.e., for a group of robots r1, r2, . . . , rn with
z(ri, t) ∈ N (z(ri−1, t)), for i = 2, . . . , n, we allow z(ri, t+
1) = z(ri+1, t), i = 1, . . . , n − 1, provided that robot rn
moves itself to a free zone or to the root zone o at period
t + 1. We characterize such a string of robot moves as a
robot flow occurring at time t, and we shall denote it by
f(z(r1), z(rn); t). The net effect of this flow is the transfer of
a robot from zone z(r1, t) to zone z(rn, t+1). Also, the traffic
dynamics that were described in the previous paragraphs imply
that two flows f(vo, vd; t) and f(v′o, v

′
d; t) are conflicting if the

supporting paths of these two flows have a common internal
node v ̸= o.

Robots can reverse the direction of their motion within their
zone. This assumption is reasonable when considering the
types of robots that are used in the considered applications,
and furthermore, it is necessary due to the tree structure of the
underlying tunnel system.

Finally, as observed in the earlier part of this section, the
communication connectivity among the robots and the system
controller is established by stipulating that, for every zone
v ̸= o and every period t,

∃ r ∈ R : z(r, t) = v =⇒ ∃ r′ ∈ R : z(r′, t) = p(v) (1)

The above requirement implies that for every zone v occu-
pied by a robot in period t, all the zones in the path connecting
zone v to the root zone o in tree T are also occupied by a robot
in period t. Furthermore, the root zone o is always occupied
by at least one robot.

We want to determine a plan that will advance the robots
r ∈ R in a way that is consistent with the above assumptions
regarding the robot capabilities and the zone allocation pro-
tocol, and at the end of its execution, each leaf zone v ∈ L

will have been visited by some robot.4 Let P denote the set
of feasible plans, and for every P ∈ P and v ∈ L, let C(v;P )
denote the first period that plan P places a robot in zone v.
We are especially interested in plans P ∗ such that

P ∗ = arg min
P∈P

max
v∈L

C(v;P ) (2)

or
P ∗ = arg min

P∈P

∑
v∈L

C(v;P ) (3)

Each of Eqs (2) and (3) defines a combinatorial optimization
– or (traffic-)scheduling – problem. The traffic-scheduling
problem defined by Eq. (2) is characterized as the Makespan-
minimization problem, or the M-problem, and the traffic-
scheduling problem defined by Eq. (3) is characterized as
the Total Visitation Time-minimization problem, or the TVT-
problem. In [20] it is shown that these two problems are in a
Pareto optimal relationship [24], [25]; i.e., there are MMRS
where the sets of optimal plans for these two problems have no
common element. Hence, these two problems require separate
treatments.

MIP formulations of the M- and TVT-problems: Next,
we consider the mathematical programming (MP) formulation
for the M- and TVT-problems of Eqs (2) and (3) that were
developed in [20]. In the subsequent discussion, T̄ denotes an
upper bound for the completion time of an optimal plan P ∗

for each problem; one way to obtain such an upper bound is
by considering the completion time of the plan P that tries to
reach one leaf zone at a time, while scanning the tree T in a
depth-first sense.

The decision variables employed by the MP formulations
of [20] are as follows:

• State variables

– xv,t, v ∈ V, t ∈ {0, 1, . . . , T̄}: a nonnegative integer
variable indicating the number of robots in zone v
at period t.

• Control variables

– uv,v′,t, v ∈ V, v′ ∈ N (v), t ∈ {1, . . . , T̄}: a
nonnegative integer variable representing the number
of robots moving from zone v to neighboring zone
v′ at period t.

• Auxiliary variables

– yv,t, v ∈ L, t ∈ {1, . . . , T̄}: a binary variable for
testing whether leaf zone v has been visited by period
t.5

4In more technical terms, a plan is a sequence of distributions, Dt, t =
0, 1 . . ., of the system robots to the various zones of the underlying tunnel
system. The distribution Dt+1, for period t + 1, is obtained from the
distribution Dt by relocating a number of robots from their zones at period t
to some neighboring zone, while abiding to the introduced assumptions about
the maneuvering capabilities of the robots and the zone allocation protocol.
This characterization is specified further through the MIP formulations of the
considered problems that are provided in the second part of this section.

5Actually, the values of the variables yv,t is part of the “informational
state” that drives the underlying decision making process at period t. We have
included these variables in the set of the auxiliary variables since their values
are determined by the values of the corresponding variable sets {xv,q , q =
1, . . . , t}.
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– st, t ∈ {1, . . . , T̄}: a binary variable for testing
whether the entire leaf-node visitation task has been
completed by period t.

The technological constraints employed in the MP formu-
lations for the M- and TVT-problems in [20] are as follows:

xo,0 = |R| (4)

∀v ∈ V \ {o}, xv,0 = 0 (5)

∀v ∈ V, ∀t ∈ {1, . . . , T̄},
xv,t = xv,t−1 +

∑
v′∈N (v)

(
uv′,v,t − uv,v′,t

)
(6)

∀v ∈ V, ∀t ∈ {1, . . . , T̄},
∑

v′∈N (v)

uv,v′,t ≤ xv,t−1 (7)

∀v ∈ V \ {o}, ∀t ∈ {1, . . . , T̄}, xv,t ≤ 1 (8)

∀v ∈ V \ {o}, ∀t ∈ {1, . . . , T̄}, xv,t ≤ xp(v),t (9)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, yv,t ≤
∑

q∈{1,...,t}

xv,q (10)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, st ≤ yv,t (11)

Constraints (4) and (5) define the initial distribution of
the robots by means of the state variables xv,0, v ∈ V .
Constraint (6) expresses the evolution of the robot distribution
to the system zones at period t, based on the control decisions
that are expressed by the variables uv,v′,t. Constraint (7)
stipulates that the control decisions at period t must be feasible
with respect to the robot distribution over the system zones at
period t − 1. Constraint (8) enforces the buffering capacity
of the zones v ̸= o. Constraint (9) enforces the condition
of Eq. (1). Constraint (10) forces the binary variable yv,t to
zero if leaf zone v has not been visited by period t. Finally,
Constraint (11) forces the binary variable st to zero if there
is a leaf zone v that has not been visited by period t.

The M-problem can be expressed by the following formu-
lation:

max
∑

t∈{1,...,T̄}

st (12)

s.t. Constraints (4) – (11) plus the sign restrictions for the
problem variables specified during the introduction of these
variables.

The TVT-problem can be expressed by the following for-
mulation:

max
∑
v∈L

∑
t∈{1,...,T̄}

yv,t (13)

s.t. Constraints (4) – (10) plus the sign restrictions for the
problem variables specified during the introduction of these
variables.

The above two formulations are Integer Programming (IP)
formulations [21]. An optimal solution for each of these two
formulations determines an optimal plan P ∗ for the corre-
sponding scheduling problem through the quantities [uv,v′,t −
uv′,v,t]

+ for every pair (v, v′) of neighboring zones and period

t.6

Furthermore, we can replace the original sign restrictions of
the variables xv,t, yv,t and st with the following constraints
that relax the integrality requirements for these variables:

∀v ∈ V, ∀t ∈ {1, . . . , T̄}, xv,t ≥ 0 (14)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, 0 ≤ yv,t ≤ 1 (15)

∀t ∈ {1, . . . , T̄}, 0 ≤ st ≤ 1 (16)

Indeed, as long as we retain the integrality requirement for the
variables uv,v′,t, Constraints (4)–(6) will ensure the integrality
of the variables xv,t, and this fact subsequently preserves the
mechanism that establishes the correct setting of the variables
yv,t and st in any optimal solution of the resulting formulation.

III. THE COMBINATORIAL RELAXATIONS OF THE M- AND
THE TVT-PROBLEMS

The considered relaxations: The combinatorial relaxations
of the M- and TVT-problem considered in this work are
obtained from the linear-programming (LP) relaxations [21]
of their MIP formulations that were introduced in the previous
section, by posing the following additional requirement:7

∀v ∈ L, ∀t ∈ {1, . . . , T̄},
yv,t = 1.0 ⇐⇒

(
yv,t−1 = 1.0 ∨ xv,t = 1.0

)
(17)

This requirement is enforced in the MP formulations that
define the considered relaxations, by (i) treating the variables
yv,t as binary, and (ii) rewriting Constraint (10) by means of
the following two constraints:

∀v ∈ L, yv,1 ≤ xv,1 (18)

∀v ∈ L, ∀t ∈ {2, . . . , T̄}, yv,t ≤ yv,t−1 + xv,t (19)

Hence, the considered relaxation for the M-problem
is the MIP formulation defined by Constraints (4)–
(9), (11), (12), (14), (16), (18), (19), the sign restriction
regarding the binary nature of the variables yv,t, and the
substitution of the integrality requirement for the variables
uv,v′,t with the more relaxed constraint

∀v ∈ V, ∀v′ ∈ N (v), ∀t ∈ {1, . . . , T̄}, uv,v′,t ≥ 0 (20)

The MIP formulation of the considered relaxation for the
TVT-problem is obtained from the MIP formulation for the
combinatorial relaxation of the M-problem by (i) using the
objective function of Eq. (13) instead of that of Eq. (12), and
(ii) dropping Constraints (11) and (16).

6We remind the reader that [x]+ = max{x, 0}.
7This requirement was initially motivated by an effort to cope with the

fact that the LP relaxation of the MIP for the M-problem tries to increase
progressively the variables yv,t, v ∈ L, t ∈ {1 . . . , T̄}, to their upper limit
of 1.0 (c.f. Eq. (15)) by aggregating the amount of fluid that is present at the
corresponding node v over a number of past periods (c.f. Eq. (10)). Because
of this effect, optimal solutions for the LP-relaxation tend to spread out the
initially available fluid at the root node o of tree T to its leaf nodes rather
evenly. The net result of these dynamics is that (i) the optimal objective value
of the LP relaxation constitutes a poor-quality lower bound for the optimal
objective value of the original MIP formulation, and (ii) an optimal solution
of the LP relaxation offers no substantial guidance towards the development
of an optimal solution for the original scheduling problem.
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The integer variables in the above two MIP formulations
are binary, and their number is equal to |L| · T̄ . This number
is much smaller than |V |2 · T̄ , which is the number of
the integer variables in the MIP formulations of Section II.
The computational advantage implied by these comparisons
becomes especially important when considering the strong
property of the relaxing MIPs with respect to the original MIP
formulations, that was outlined in the introductory section. In
the rest of this work, we formally establish this property, and
we employ it to define a new solution method for the M- and
TVT-problems.

A flow-based interpretation of the considered relax-
ations: In the following discussions, it is useful to perceive
the values of the variables xv,t as an amount of fluid located
at node v at period t. The values of the entire set of variables
{xv,t : v ∈ V }, at any period t ∈ {0, 1, . . . , T̄}, defines a fluid
distribution at period t. Also, the values of the set of variables
{uv,v′,t : v ∈ V, v′ ∈ N (v)}, at any period t ∈ {0, 1, . . . , T̄},
defines a flow F (t) at period t, and a sequence of flows
F = ⟨F (1), F (2), . . . , F (T̄ )⟩ defines a flow plan. The set of
flow plans that constitute feasible solutions for the considered
relaxations will be denoted by F .

By analogy with the corresponding definitions for the orig-
inal M- and TVT-problems, we consider the fluid amount of
1.0 as a “target” fluid level that must be attained by any leaf
node v ∈ L. Also, for any feasible flow plan F and any leaf
node v ∈ L, we set

C(v;F ) ≡ min
{
t ∈ {1, . . . , T̄} : xv,t = 1.0

}
.

Finally, in the sequel, the unique path connecting any nodal
pair {v1, v2} of tree T is denoted by π(v1, v2), and the length
l(v1, v2) of path π(v1, v2) is defined by the number of edges
in it. Since tree T is undirected, π(v1, v2) ≡ π(v2, v1) and
l(v1, v2) = l(v2, v1). Also, a single node can be considered as
a path of zero length.

Some useful properties of the considered relaxations: In
the remaining part of this section, we establish some properties
for flow-plan set F of the considered relaxations that will be
useful for establishing the strong nature of these relaxations
in Section IV. The next definition is necessary for the formal
statement of the first of these properties.

Definition 1: A flow plan F ∈ F for the combinatorial
relaxation of the M- or TVT-problem considered in this work is
characterized as focused if it satisfies the following condition:
For every internal node v of the corresponding tree T , and
every period t ∈ {1, . . . , T̄} such that xv,t > xv,t−1,

1) K ≜ {v′ ∈ L : v ∈ π(o, v′) ∧ C(v′;F ) ≥ t} ≠ ∅;
2) ∀τ ∈ {t, . . . ,minv′∈K C(v′;F )}, xv,τ ≥ xv,t

A flow F (t) involving fluid transfer that violates the above
condition, is characterized as unfocused.

The significance of focused plans is revealed by the follow-
ing proposition.

Proposition 1: For the combinatorial relaxation of the M-
or TVT-problem considered in this section, there always exists
an optimal flow plan F ∗ that is focused.

In [26], we have established a result similar to that of
Proposition 1 for the plan set P , and the integral flows defined

by the variable sets {uv,v′,t : v ∈ V, v′ ∈ N (v)}, that corre-
spond to the original M- and TVT-problems. The arguments
establishing that earlier result extend straightforwardly to the
result of Proposition 1, when realizing that any flow F (t) in
a feasible flow plan F for the considered relaxations, can be
perceived as a superposition of a number of more pointed flows
that transfer certain amounts of fluid between some nodal
pairs (v, v′) of the underlying tree T . Hence, for the sake
of brevity, we omit a formal proof of Proposition 1, referring
the interested reader to the corresponding proof of Proposition
2 in [26].

The generation of a focused flow plan F ∗ for the considered
relaxations can be ensured by adding the term

−c ·
∑
v∈V

T̄∑
t=1

δv,t (21)

to the objective function of the corresponding MIPs, and the
constraints

∀v ∈ V, ∀t ∈ {1, . . . , T̄}, δv,t ≥ xv,t − xv,t−1 (22)
∀v ∈ V, ∀t ∈ {1, . . . , T̄}, δv,t ≥ xv,t−1 − xv,t (23)

In the derived solutions, δv,t = |xv,t − xv,t−1|, and the
cost c associated with the variables δv,t penalizes unnecessary
fluctuations of the fluid content of the nodes v ∈ V . The
value of c must be chosen sufficiently small so that it does not
compromise the generated solution with respect to the original
objective of the formulation. Also, Equations (21)–(23) induce
the following notion of “structural minimality” for the flow
plans F ∈ F .

Definition 2: A flow plan F ∈ F is structurally minimal
if it is optimal with respect to the objective function of
Equation (21), within the set of flow plans that have the
same value with F for the primary objective functions of
Equations (2) and (3).

From a more conceptual standpoint, the result of Proposi-
tion 1 implies that there is no essential need to use the zones
of tree T as “temporary buffers” for the fluid transfers that
are performed by an optimal flow plan F ∗. Furthermore, for a
more thorough understanding of the notion of a focused flow
plan, we emphasize that Condition (2) of Definition 1 requires
that the considered node v in this definition must not have its
fluid level reduced until some descendant leaf node v′ of v
– i.e., a leaf node v′ in the set K of Definition 1 – reaches
its target fluid level of one unit; but the fluid content of v
can be reduced after that period, even if there are additional
leaf nodes in K that have not attained their target fluid level
of one unit.8 The next proposition establishes some additional
conditions that must hold in the case of such an early fluid
withdrawal from some internal node v of T .

Proposition 2: Consider a structurally minimal, optimal flow
plan F ∗ ∈ F , and further suppose that, in plan F ∗, xv,t <
xv,t−1 for node v ∈ V \ L, while there is some descendant

8The work of [26] provides a concrete example of a fluid withdrawal from
an internal node v of T before all the descendant leaf nodes of node v in
T have attained their target level of one unit of fluid, in the context of the
discrete robotic flows that are investigated in that paper.
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leaf node ṽ of v in tree T with C(ṽ;F ∗) > t. Then, for all
nodes v̂ ∈ V with p(v̂) = v, xv̂,t = 0.

The proof of Proposition 2 is provided in the companion
electronic supplement of the paper. Furthermore, when com-
bined with Constraint (9), Proposition 2 implies that the entire
subtree that emanates from the considered node v is empty of
any fluid at period t.

We conclude this section with the next proposition which
is also necessary for establishing the main results of the
next section. The proof of this proposition is provided in the
companion electronic supplement of the paper.

Proposition 3: For the combinatorial relaxations of the
M- and TVT-problems considered in this section, there is a
structurally minimal, optimal flow plan F ∗ ∈ F where9

∀v ∈ V \ L,
T̄∑

t=1

∑
v′∈V :p(v′)=v

uv,v′,t ∈ Z+ (24)

Furthermore, given an instance of the considered relax-
ations and a structurally minimal, optimal flow plan F ∗ that
violates the integrality condition of Equation (24), we can
obtain another structurally minimal, optimal flow plan F̃ ∗

that satisfies the integrality condition of Equation (24), by (i)
setting T̄ = maxv∈L C(v;F ∗), and (ii) solving the following
LP:

min
∑
v∈V

T̄∑
t=1

δv,t (25)

s.t. Constraints (4)–(9), (14), (20), (22)–(23), and the addi-
tional constraints

∀v ∈ L, xv,C(v;F∗) = 1.0 (26)

∀v ∈ V \ L, ∀v′ : p(v′) = v,

T̄∑
t=1

uv,v′,t =

⌊ T̄∑
t=1

u∗
v,v′,t

⌋
(27)

IV. THE STRONG NATURE OF THE CONSIDERED
RELAXATIONS

Preamble: This section establishes the following two im-
portant properties for the combinatorial relaxations of the
M- and TVT-problems that were introduced in the previous
section:

1) For any given problem instance M = ⟨R, T ⟩ of the
M- or the TVT-problem, the optimal value of the corre-
sponding combinatorial relaxation of Section III is equal
to the optimal value of the original MIP of Section II.

2) Let F ∈ F denote a feasible flow plan for the combi-
natorial relaxation of item #1, and further assume that
F is structurally minimal and satisfies the integrality
property of Equation (24). Then, F can be converted
to a feasible plan P ∈ P for the given M- or TVT-
problem instance with an objective value that is no worse
than the objective value of flow plan F . Furthermore,
this conversion can be performed in time polynomial
with respect to |V |, i.e., the number of nodes of the
underlying guidepath network T .

9Z+ denotes the set of strictly positive integers.

The aforementioned results are developed in two major
steps:

I) In the first step it is shown that any feasible flow plan
F for the considered relaxations can be represented as a
static flow FS for a transshipment problem, TSH(F ), that is
induced by F and constitutes an “unfolding” of the dynamics
of this flow plan on a spatiotemporal network NS(F ).

Transshipment problems are a well-defined class of prob-
lems in graph theory and operations research [22], [27].
Furthermore, it is well known that under some integrality
conditions for the data elements that define an instance of these
problems, the corresponding set of the feasible static flows
constitutes a polytope with its extreme points being integral
flows. In the TSH(F ) context, an integral static flow F̃ can
be directly translated into a plan P̃ for the underlying M- or
TVT-problem instance, with an objective value equal to the
objective value of the problem-defining flow F .

II) In view of the last remark in the previous paragraph, the
second step in the subsequent developments establishes that
for any feasible flow plan F of the considered relaxations that
is structurally minimal and satisfies the integrality property
of Equation (24) (i.e., it possesses the additional properties
specified in item #2 at the beginning of this section), it is
possible to derive, in polynomial time with respect to |V |,
another feasible flow plan F̂ with the following two properties:
(i) The performance of flow plan F̂ is no worse than the
performance of F , and (ii) the corresponding transshipment
problem instance, TSH(F̂ ) ≡ T̂ SH(F ), satisfies the integral-
ity conditions for its defining data that guarantee the integrality
of its extreme solutions.

The last part of the section also discusses the implications
of the aforementioned developments for the design of more
efficient solution methods and some heuristic algorithms for
the M- and the TVT-problems. The computational power of
some of these methods is further explored numerically in
Section V.

A flow plan F as a static flow FS for an induced
transshipment problem TSH(F ): We start this part by
providing a working definition of the transshipment problem
that is adequate for the needs of the subsequent developments.

Definition 3: For the needs of this work, a transshipment
problem instance, TSH , is formally defined by: (a) network
NS = (VS , ES); (b) two functions that are defined on the
edge-set ES of NS and assign, respectively, directions and
capacities to these edges; and (c) two additional functions that
are defined on the node-set VS of NS and assign, respectively,
nodal supplies and demands. The problem seeks the speci-
fication of a static flow FS on NS that satisfies the nodal
demands by means of the available supplies while respecting
the directions and the capacities of the edges of NS .10

The feasibility of a transshipment problem instance depends
on the adequacy of the available supplies with respect to the

10Usually, the complete specification of a transshipment problem also
involves a set of unit-flow costs associated with the edges of NS , and the
sought flow FS must minimize the incurred total cost. Such a transshipment
problem is also known as a “min-cost” flow problem [27]. Since in this work
we are only interested in feasible flows for the formulated transshipment
problems, we have opted to ignore this problem aspect in the provided
definition.
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Fig. 1: The left part of this figure presents an optimal flow plan, F ∗, for the combinatorial relaxation of the M-problem that
is defined by the tree T and the robot availability that are depicted in the left-top part of the figure. The right part presents
the modifications to the flow plan F ∗ that are effected by the procedure ADJUST which is presented in the later parts of this
section.

posed demand, but also on the ability to match the available
supply with the occurring demand under the connectivity and
the edge-capacity constraints of the corresponding network
NS . For feasible transshipment problem instances, the set of
feasible flows, FS , constitutes a polytope representable by
numbers of variables and constraints that are polynomial with
respect to the size of the underlying network NS . Furthermore,
if the problem data are integral, all the extreme points of
this polytope constitute integral flows FS [27]; as already
pointed out, this property is instrumental for the presented
developments.

Next, we present (i) the transshipment problem TSH(F )
that is induced by a flow plan F ∈ F for the considered
relaxations of the M- or TVT-problem, and (ii) the corre-
sponding static flow FS that constitutes a feasible solution
for this problem, using a particular example that is provided
in Figures 1 and 2.

The left part of Figure 1 depicts an optimal flow pan F ∗ for
the combinatorial relaxation of the M-problem defined by (i)
the tree T depicted at the top-left part of the figure, and (ii)
a presumed availability of 8 robots at node o at period t = 0.
The optimal makespan is 4, and the fluid content of each node
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Fig. 2: The static flow F ∗
S corresponding to the flow plan F ∗ that is depicted in the left part of Figure 1, and the transshipment

problem T̂ SH(F ∗) that is obtained from the application of procedure ADJUST to F ∗.

v of T , at each period t ∈ {0, . . . , 4}, is reported next to the
node; the absence of such a label implies a fluid content of
zero. The values of the variables uv,v′,t, for every neighboring
nodal pair {v, v′} and every period t, is reported next to the
corresponding edge; again, the absence of a reported value
implies a value of 0.0.

The static flow F ∗
S corresponding to the flow plan F ∗

is provided in the left part of Figure 2. The network NS

supporting this static flow consists of the replications of
tree T for each period t ∈ {1, . . . , 4}, together with some
additional edges (the green ones) that enable the transfer of
the available fluid among different periods. The replications of
T are depicted in black in Figure 2. The edges of these trees
are undirected and are implicitly assumed of unit capacity.
The nodes of all these trees define the set of nodes, VS , of the
network NS . A node of NS corresponding to a node v ∈ V
in the replication of the tree T corresponding to period t, will
be denoted by (v, t).

The small green arrows in Figure 2 represent the “nodal
supply” for the defined static flow F ∗

S , with the labels of
these arrows reporting the corresponding volume of fluid.
These nodal supplies are defined by the following elements
in the input flow plan F ∗: (i) The fluid corresponding to the
presence of the eight robots at node o at period t = 0, after
discounting for the permanent presence of a robot at the root
node throughout the entire makespan M(F ). (ii) Any fluid
concentration in any node v ∈ V that, at some period t, is
conveyed by plan F ∗ towards nodes outside of the subtree
of T that is rooted in v. For structurally minimal flow plans
F , nodal supplies of the second type result either from (a) the
attainment of the target concentration level of one unit of fluid
by some leaf node v ∈ L, or from (b) a fluid redirection along
the lines that are considered in Proposition 2. The flow plan
F ∗ depicted in Figure 1 is structurally minimal and it does
not involve any fluid redirection along the lines discussed in
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Proposition 2. Therefore, the nodal supplies appearing in nodes
(v, t) ∈ VS with v ̸= o are due to the attainment of unit fluid
concentration by some leaf node; this fact can be verified by
juxtaposing (a) the distribution of the small green arrows at
the nodes of the network NS in Figure 2, with (b) the timing
of the satisfaction of the leaf node requirements in Figure 1.

The directed green edges in network NS spanning across
replications of tree T that correspond to different periods,
enable the consumption of the fluid supplies located at their
tail nodes (v, t) in subsequent periods. The capacity of these
green edges is equal to the available supplies at their tail nodes
(v, t), and therefore, part or even the entire amount of these
supplies can be consumed in some period t′ > t.

Finally, the red arrows in Figure 2 define “nodal demand”.
In particular, a red arrow connected at some node (v, t) of NS

implies an increase, in the flow plan F ∗, of the fluid content
xv,t of node v at period t, from its value xv,t−1 at period t−1.
This increase is equal to the arrow label.

Since, the makespan M(F ) of any competitive flow plan F
is no higher than |V |, the size of the network NS of Figure 2
is polynomially related to the size of the input data of the
underlying M- or TVT-problem instance. Also, it should be
clear from the above discussion that the network NS depicted
in Figure 2, its edge capacities, and the nodal supplies and
demands for the flow F ∗

S , can be determined, by parsing the
input plan F ∗, in time polynomial with respect to the size of
the input data.

The transshipment problem T̂ SH(F ) and the procedure
ADJUST: Next, we focus on flow plans F ∈ F , for the con-
sidered relaxations of the M- and TVT-problem instances, that
are structurally minimal and satisfy the integrality condition
of Equation (24). For this class of flow plans, we provide a
procedure that when inputted with a flow plan F from this
class, it constructs a transshipment problem T̂ SH(F ), which,
in general, will be different from TSH(F ). Transshipment
problem T̂ SH(F ) is feasible, and its solutions induce flow
plans F̂ for the considered relaxation with a performance
that is equal to – and in certain cases, even better than –
the performance of the flow plan F . Furthermore, in the
transshipment problem T̂ SH(F ), all the supplies and demands
are integral, and therefore, there exists an integral feasible
static flow F̂S for this problem that can be obtained efficiently
by formulating and solving an LP (or by the application of
even faster network-flow algorithms) [27]. The integrality of
the static flow F̂S implies that the flow plan F̂ induced by
this static flow for the underlying relaxation is also a feasible
plan P̂ for the original M- or TVT-problem instance. In
particular, if the input flow plan F is an optimal flow plan
for the combinatorial relaxation under consideration, the plan
P̂ derived by the presented procedure is an optimal plan for
the original M- or TVT-problem instance. For reasons that
will become clearer in the following, the presented procedure
is named ADJUST.

From a more operational viewpoint, the basic ideas that un-
derlie the construction of the transshipment problem T̂ SH(F )
by ADJUST, are the following: ADJUST modifies the “for-
ward” flows shipped by the input plan F from each node

Algorithm 1 Procedure ADJUST – INITIALIZATION

Inputs:
An instance ⟨R, T ⟩ of the M- or TVT-problem
A feasible flow plan F with makespan M(F )

Outputs:
The network NS , the edge capacities, and the
nodal supply and demand of the transshipment
problem T̂ SH(F )

I := {1, . . . ,M(F )};
∀t ∈ I, ADD a replicate of T to NS ;
ADD a supply of |R|− 1 to node (o, 1) and directed edges
((o, 1), (o, t)) of capacity |R| − 1, ∀t ∈ I \ {1};
∀t ∈ I ∪ {0}, x̂o,t := 1; x̂v,t := 0,∀v ∈ V \{o};
∀v ∈ V, ∀v′ ∈ N (v), ∀t ∈ I, ûv,v′,t := 0;
∀v ∈ V, ∀v′ ∈ N (v), dv,v′,0 := 0;

Ṽ := ordered list of the nodes in V in increasing distance
from root node o;

v ∈ V towards its children, so that these flows transfer “unit
parcels” of fluid among these nodes, while observing the
Constraints (6)–(9) of the underlying MIP formulation. Hence,
these modified flows are integral flows and they also result in
an integral fluid content xv,t for every node v ∈ V and period
t. On the other hand, ADJUST assumes that the external sup-
plies for these modified flows are the corresponding supplies
that are provided by the original flow plan F . This assumption
is justified in the following by showing that, thanks to the
assumed properties of the input plan F , the “forward” flow
plan F̂ that results from the aforementioned modifications,
attains, for each leaf node v ∈ L, a fluid concentration of
one unit no later than flow plan F . Therefore, the fluid that is
released by these target attainments, is as available – in terms
of, both, volume and time – to support the needs of flow plan
F̂ as in the original flow plan F .11 Finally, the aforementioned
result regarding the timing of the attainment of the target fluid
levels of one unit by the leaf nodes v ∈ L under flow plan
F̂ , also implies that flow plan F̂ retains or even improves the
performance of the original plan F in terms of the objective
of the underlying MIP formulation.

The detailed logic executed by ADJUST is presented in the
pseudo-code of Algorithms 1 and 2. In the presented pseudo-
code, the variables uv,v′,t represent the flows of the input flow
plan F , while the variables ûv,v′,t represent the integral flows
that define the modified plan F̂ returned by ADJUST. Also,
the variables x̂v,t trace the nodal fluid concentrations that are
maintained by flow plan F̂ . All the ûv,v′,t variables and the
variables x̂v,t for v ̸= o are initialized to zero. On the other
hand, for all t in the considered time horizon, the variables
x̂o,t are set equal to one, since any feasible plan must always
maintain a robot at the root node o. During its initializing

11A particular issue that needs some further attention, concerns the fluid
supplies in flow plan F that result from the redirection of fluid from some
node v ∈ V while there are descendant nodes of v that have not attained their
target fluid levels of one unit (c.f. Proposition 2 and the discussion provided
in its proof). This case is addressed explicitly by the presented procedure, in
a way that guarantees the integrality and the feasibility of the resulting flows.
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Algorithm 2 Procedure ADJUST – MAIN PART

for t ∈ I do
for ∀v ∈ Ṽ do

if v = o then
âo,t := |R| − x̂o,t +

∑t
τ=1

∑
v′∈N (o) uv′,o,τ

−
∑t−1

τ=1

∑
v′∈N (o) ûo,v′,τ ;

if âo,t ≥ 1 then
∀v′ ∈ N (o),

do,v′,t := do,v′,t−1 + uo,v′,t − ûo,v′,t−1;

Ñ (o) := ordered list of N (o) in decreasing
deficit;
while do,v′,t ≥ 1 ∧ âo,t ≥ 1 do

v′ := HD(Ñ (o)); Ñ (o) := Ñ (o)\v′;
ûo,v′,t := 1; âo,t := âo,t − 1;

end while
end if

else if v ∈ V \
(
L ∪ {o}

)
then

âv,t :=
∑t

τ=1

∑
v′∈N (v)\p(v) uv′,v,τ − x̂v,t−1

−
∑t

τ=1 uv,p(v),τ +
∑t

τ=1 ûp(v),v,τ

−
∑t−1

τ=1

∑
v′∈N (v)\p(v) ûv,v′,τ ;

if 0 ≤ âv,t < 1 then x̂v,t := x̂v,t−1;
else if âv,t ≥ 1 then

if x̂v,t−1 = 0 then
x̂v,t = 1;
ADD a unit demand for node (v, t) in
T̂ SH(F );

else /* x̂v,t−1 = 1 */
∀v′ ∈ N (v)\p(v),
dv,v′,t := dv,v′,t−1 + uv,v′,t − ûv,v′,t−1;
ṽ := argmax{dv,v′,t : v

′ ∈ N (v)\p(v)}
ûv,ṽ,t := 1;

end if
else /* âv,t < 0 */

ADD a unit supply to node (v, t) and
directed edges

(
(v, t), (v, τ)

)
, τ = t+1, . . .,

M(F ), of unit capacity, in T̂ SH(F );
x̂v,t := 0; dp(v),v,t := −âv,t;

end if
else /* v ∈ L */

âv,t :=
∑t

τ=1 ûp(v),v,τ ;
if âv,t = 1 then

ADD a unit demand to node (v, t) in
T̂ SH(F ); v′ := v; Ṽ := Ṽ \v′;
ADD a unit supply to node (v′, t+ 1),
and directed edges

(
(v′, t+ 1), (v′, τ)

)
,

τ = t+ 2, . . . ,M(F ), of unit capacity, in
T̂ SH(F );
while

{
N (p(v′)\{v′, p

(
p(v′)

)
}
}
∩Ṽ = ∅ do

v′ := p(v); Ṽ := Ṽ \v′;
ADD a unit supply to node (v′, t+ 1),
and directed edges

(
(v′, t+ 1), (v′, τ)

)
,

τ = t+2, . . . ,M(F ), of unit capacity, in
T̂ SH(F );

end while
end if

end if
end for

end for

phase, ADJUST also adds to the constructed network NS a
replicate of the tree T for each period t ∈ {1, . . . ,M(F )}, and
attaches a supply of |R|−1 to node (o, 1) of NS , together with
the directed edges that enable the potential consumption of this
supply at subsequent periods. Finally, during the initializing
phase, ADJUST also computes an ordered list, Ṽ , of the
elements of V , where the nodes are ordered in increasing
distance from the root note o. This list is used in the main
part of the procedure for computing the flows ûv,v′,t and the
nodal fluid concentrations x̂v,t, at each period t, by proceeding
from the root node towards the leaves of T . Furthermore, list
Ṽ is dynamically updated at each period t so that the only
nodes considered at this period are the nodes with descendant
leaf nodes that have not met yet their target of a unit-flow
concentration.

The main part of ADJUST consists of a double iteration,
with the external iteration running over the considered time
horizon {1, . . . ,M(F )}, and the inner iteration processing
each remaining node in Ṽ in order to determine the corre-
sponding flows ûv,v′,t and the nodal fluid concentration x̂v,t

for the running period t.
More specifically, for each period t ∈ {1, . . . ,M(F )},

ADJUST first computes the flows ûo,v′,t, for each child v′

of o, according to the following logic: First, it computes the
fluid availability âo,t at node o at period t, based on: (i) the
initial supply defined by the |R|−1 robots at period 0; (ii) the
total flow returned to node o via its children by the original
plan F , over the time interval {1, . . . , t}; and (iii) the total
flow that has been shipped from node o to its children by the
modified plan F̂ , over the time interval {1, . . . , t−1}; i.e., the
availability âo,t accounts for the entire inflow to node o up to
period t according to flow plan F and the total outflow from
this node up to period t − 1 according to the modified plan
F̂ . If âo,t ≥ 1, then ADJUST (i) computes, for every child
v′ ∈ N (o), a “deficit”

do,v′,t =

t∑
τ=1

uo,v′,τ −
t−1∑
τ=1

ûo,v′,τ , (28)

(ii) orders these children in decreasing deficit, and (iii) scans
the constructed ordered list shipping a unit of flow to each
encountered child v′ until either it encounters a child v′ with
do,v′,t < 1 or the remaining fluid is not adequate for an integral
shipment.

The processing of the internal nodes v ∈ V \
(
L ∪ {o}

)
,

for any period t ∈ {1, . . . ,M(F )}, is also driven by the
computation of a fluid availability âv,t. In this case, âv,t
is determined by: (i) the total flow returned to node o via
its children by the original plan F , over the time interval
{1, . . . , t}, minus any flow that is shipped from node v to its
parent node v′ by flow plan F over the same time interval; (ii)
the fluid stored at node v by the modified flow plan F̂ during
the past t − 1 periods; and (iii) the total outflow from node
v towards its children over the time interval {1, . . . , t − 1}
according to the modified plan F̂ . A fluid availability of
âv,t ∈ [0, 1) maintains the fluid content of node v at its
previous level, and it does not incur any outflow from node
v towards its children in the considered period t. A fluid
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availability of âv,t ≥ 1 leads to the storage of a unit of fluid at
node v, if its current content is zero. Also, this increase of the
fluid content of v by one unit is represented in the constructed
problem T̂ SH(F ) by the attachment of a unit of demand to
node (v, t). If node v already possesses a unit of fluid, an
availability âv,t ≥ 1.0 leads to the shipment of a unit of fluid
to the child ṽ of v that presents the highest current deficit
dv,ṽ,t; the involved deficits are computed as in the case of the
root node o. Finally, a negative fluid availability âv,t signifies
a drawing of fluid from node v towards its parent node p(v).
The working assumptions regarding the input plan F imply
that the conditions and the arguments presented in the proof
of Proposition 2 hold; i.e., the entire subtree emanating from
node v is empty of any fluid, and it must also hold that

x̂v,t−1 = 1.0 (29)

x̂v,t = x̂v,t−1 −
( t∑

τ=1

∑
v′∈N (v)\p(v)

uv′,v,τ −
t∑

τ=1

uv,p(v),τ

+

t∑
τ=1

ûp(v),v,τ −
t−1∑
τ=1

∑
v′∈N (v)\p(v)

ûv,v′,τ

)
= −âv,t (30)

ADJUST (i) turns the unit of fluid located at node v at the
beginning of period t to a unit of supply attached to the node
(v, t) of the constructed network NS , (ii) sets x̂v,t to zero, and
(iii) it accounts for any remaining fluid at node v at the end of
period t by expressing this amount as a deficit dp(v),v,t;12 this
deficit will be taken into consideration whenever a new unit
of fluid becomes available at node p(v) during the subsequent
periods.

The processing of a leaf node v ∈ L ∩ Ṽ , for any period
t, also starts with the estimation of a fluid availability âv,t.
In this case, âv,t is defined by the total flow shipped to
node v by its parent node p(v) during the interval {1, . . . , t},
according to the modified flow plan F̂ . From the description
of the processing of the nodes v′ ∈ V \ L, we know that the
aforementioned flow occurs in single units of fluid. As soon as
the considered leaf node v receives such a unit flow, it reaches
its target. Hence, this unit amount of fluid is turned into a unit
of supply that becomes available in the subsequent periods
t′ ∈ {t + 1, . . . ,M(F )}. In addition, Constraint (9) implies
that, at period t, every node on the path π(o, v) possesses a
unit of fluid, as well. Any node v′ on the path π(o, v) that
has no further descendants with unattained target fluid levels,
is removed from list Ṽ , and its fluid is turned into a unit of
supply that will become available at period t + 1, as well.
Finally, ADJUST traces the initial increase of the fluid level
at the considered node v from zero to one during period t, by
attaching a unit of demand to the corresponding node (v, t)
of the network NS .

The right part of Figure 1 depicts the flow plan F̂ ∗ that
is computed by the procedure ADJUST when inputted with
the flow plan F ∗ depicted in the left part of Figure 1. This
figure also reports the flow deficits for the various nodes

12We also notice, for completeness, that under the working assumptions,
dp(v),v,t−1 = 0.0.

that are maintained by the procedure during this computation.
The transshipment problem T̂ SH(F ∗) that is eventually con-
structed by ADJUST in this case, is depicted in the right part
of Figure 2.

Analysis: Next we establish the properties of the modified
flow F̂ and the transshipment problem T̂ SH(F ) developed by
ADJUST, that were claimed in the preamble of this section.
The following lemma has a central role in the establishment
of these properties.

Lemma 1: Consider the application of procedure ADJUST
on a feasible flow plan F for the combinatorial relaxation of
some M- or TVT-problem instance, that is structurally minimal
and satisfies the integrality condition of Equation (24). Then,
it holds that13

∀v ∈ V \ {o}, ∀t ∈ {1, . . . ,M(F )},
t∑

τ=1

ûp(v),v,τ ≥⌊
t∑

τ=1

up(v),v,τ

⌋
−

∑
v′∈π(o,p(v))

I{xv′,t<1} (31)

The proof of Lemma 1 is provided in the companion
electronic supplement of the paper. Its significance is revealed
in the proof of the following proposition.

Proposition 4: Consider the application of the procedure
ADJUST on a feasible flow plan F for the combinatorial
relaxation of some M- or TVT-problem instance, that is
structurally minimal and satisfies the integrality condition of
Equation (24). Then, the modified flow plan F̂ developed by
ADJUST is feasible, and

∀v ∈ L, C(v; F̂ ) ≤ C(v;F ) (32)

Proof: First we notice that Constraint (9) implies that, for
any leaf node v ∈ L, at period C(v;F ), all nodes v′ on the
path π(o, v) have xv′,C(v;F ) = 1.0. But then, Equation (31)
implies that

C(v;F )∑
τ=1

ûp(v),v,τ ≥ 1.0

and establishes Equation (32).
Next we argue the feasibility of the flow plan F̂ . The “for-

ward” flows that ship fluid from any node v towards its chil-
dren, satisfy Constraints (6)–(9) by construction. Furthermore,
the satisfaction of the integrality condition of Equation (24)
by the input plan F ensures that the “forward” total flows∑M(F )

τ=1 uv,v′τ , for any nodal pair v ∈ V, v′ ∈ N (v)\{p(v)},
are attainable under the integrality requirement for the corre-
sponding flows

∑M(F )
τ=1 ûv,v′τ that is forced by ADJUST.

In order to fully establish the feasibility of the flow plan
F̂ , it remains to show that flow plan F̂ is also compatible
with the fluid availability that is defined by the original plan
F , since it is this availability that is used in the computation
of the function âv,t, v ∈ V \ L, t ∈ {1, . . . ,M(F )}. From
the provided description of ADJUST (c.f. also the first part
of the proof of Lemma 1), it is clear that ADJUST accounts
correctly the fluid availability that is defined by the initial

13For any predicate ϕ, I{ϕ} is the corresponding indicator function; i.e.,
I{ϕ} is equal to one if the predicate ϕ is true, and it is equal to zero otherwise.
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presence of the R robots at the root node o. Next, we show
that the fluid availability coming from nodal supplies other
than the root node o in the ADJUST computation is indeed
realizable under the modified plan F̂ .

We establish this result through an induction on the time-
sequence of the realizations of these additional supplies in the
input flow plan F . The working assumptions of Proposition 4
imply that the first occurrence of these additional supplies in
flow plan F takes place when the first leaf node, let’s say node
v, attains the target level of one unit of fluid. For this case,
Equation (32) implies that leaf node v has attained its target
fluid level by period C(v;F ) in plan F̂ , as well. Hence, the
fluid supply for flow plan F̂ that is assumed in ADJUST due
to this particular event in flow plan F , is valid.

If all the further nodal supplies generated by plan F are due
to similar target attainments by some other leaf nodes v′ ∈ L,
then the validity of any particular supply in this sequence with
respect to the modified flow plan F̂ results from the validity
of all the preceding supplies in the considered sequence and
an argument similar to that in the previous paragraph.

In the remaining case, there will exist nodal supplies result-
ing from the redirection of the fluid that is available at some
internal node v of tree T towards its parent node, in spite of
the presence of leaf nodes that are descendants of node v and
have not attained their target fluid levels of one unit. Consider
the first occurrence of such a supply in plan F . The structural
minimality of F together with Proposition 2 imply that, at
the corresponding period t, every node v′ on the path π(o, v)
has xv′,t = 1.0. Hence, Equation (31) implies that x̂v,t = 1.
Furthermore, the remark following Proposition 2 in Section III
implies that x̂v′,t = 0, for every node v′ ̸= v in the subtree
of T that is rooted at node v. Hence, the unit of fluid that is
located in node v at period t is converted to a unit of supply
in the ADJUST computation, and the corresponding nodal
variable x̂v,t is set equal to zero in plan F̂ , without violating
Constraint (9). ADJUST also considers the possibility of only
a partial drawing of some fluid from node v at period t by
accounting for any fluid remaining in node v as a positive
deficit dp(v),v,t that will impact accordingly the distribution
of any fluid that will become available at node p(v) at the
subsequent periods.

Finally, the compatibility of the flow plan F̂ with any
subsequent supplies resulting from similar fluid redirections
at other internal nodes v′, can be argued in the same manner
with the case discussed above, since Proposition 2 implies that
such redirections occur first at nodes that are located further
from the root node o in the underlying tree T ; hence, all the
descendants of any such node v′ are empty at the period of
the corresponding redirection. □

The next theorem is a direct implication of Proposition 4,
and it constitutes a more formal statement of the second part
of the results that are claimed in the preamble of this section.

Theorem 1: Consider the application of the procedure AD-
JUST on a feasible flow plan F for the combinatorial relax-
ation of some M- or TVT-problem instance M = ⟨R, T ⟩, that
is structurally minimal and satisfies the integrality condition
of Equation (24). Then, there exists a plan P ∈ P for the
underlying M- or TVT-problem instance with an objective

value that is no worse than the objective value of flow plan F .
Furthermore, plan P can be computed from the input problem
instance M = ⟨R, T ⟩ and the considered flow plan F in time
polynomial with respect to |V |, i.e., the number of nodes in
tree T .

Proof: Consider the flow plan F̂ that is obtained by ap-
plying ADJUST on flow plan F . Proposition 4 ensures that
flow plan F̂ is feasible for the underlying relaxation, and
its objective value is no worse than the objective value of
flow plan F . Furthermore, since flow plan F̂ involves unit
forward-flow transfers among the different nodes of tree T ,
the transshipment problem TSH(F̂ ) = T̂ SH(F ), that is
also constructed by ADJUST, has integral supplies, demands
and edge capacities for the generated network NS . Hence,
the static flows that constitute extreme feasible solutions for
T̂ SH(F ) are integral, and we can obtain such an extreme
feasible solution, F̃S , by solving the corresponding min-cost
flow problem with all edge costs of NS set to zero. Finally,
from the semantics that define T̂ SH(F ), F̃S can be translated
directly to a plan P ∈ P for the underlying M- or TVT-
problem instance, and the objective value of P is equal to the
objective value of F̂ .

Also, as remarked in the introduction of the transshipment
problem TSH(F ), the size of the network NS is polynomially
related to |V |, and the set of its feasible solutions is a polytope
representable by sets of variables and the constraints that are
polynomially sized with respect to the size of the net NS .
Furthermore, the number of iterations resulting by the two for-
loops in the main part of ADJUST is O(|I| · |V |) = O(|V |2),
and it is also clear that each of these iterations has polynomial
complexity in |V |. Finally, the computation of the flow plan
F̃S is a polynomial task with respect to the size of NS , and
therefore, with respect to |V |. Hence, the sought plan P can
be obtained in time polynomial with respect to |V |. □

Some implications of Theorem 1: As pointed out in the
introductory section, the results of Theorem 1 suggest an
alternative algorithm for solving any given instance of the
M- or the TVT-problem. This algorithm will solve first the
corresponding relaxation of Section III, and subsequently it
will convert the obtained optimal solution to a plan P for
the original problem instance. The necessary steps for this
approach are suggested by the proof of Theorem 1, and the
complete procedure is formally stated in Algorithm 3. Since
Steps 2–6 of Algorithm 3 can be executed in polynomial time
with respect to the size of the underlying M- or TVT-problem
instance, and the relaxed MIP that is solved in Step 1 involves
a much smaller number of integer variables, Algorithm 3 is
expected to provide significant computational advantage with
respect to the direct solution of the original MIP formulations
of Section II, especially for the harder problem instances. We
demonstrate and assess this advantage through a numerical
experiment that is presented in the next section.

The results of Theorem 1 also imply that, for any given M-
or TVT-problem instance, we can test the existence of a plan P
with pre-specified visitation times C(v;P ), v ∈ L, by testing
the feasibility of an LP that is defined by Constraints (4)–
(9) and the additional constraints that impose the specified
visitation times. These tests can be especially useful in the
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Algorithm 3 The new solution method for the M- and TVT-
problems

Inputs:
An instance ⟨R, T ⟩ of the M- or TVT-problem

Outputs:
An optimal plan P ∗

1) Solve the corresponding combinatorial relaxation that
was introduced in Section III, to obtain a structurally
minimal, optimal flow plan F ∗;
2) Check whether flow plan F ∗ satisfies the integrality
condition of Proposition 3, and if not, set F ∗ := F̄ ∗, where
the flow plan F̄ ∗ must be obtained by formulating and
solving the LP of Proposition 3;
3) Run F ∗ through procedure ADJUST to get the transship-
ment problem T̂ SH(F ∗);
4) Use the LP formulation of the min-cost flow problem that
is defined by T̂ SH(F ∗) and zero unit-flow costs associated
with every edge of the network NS , or any other efficient
algorithm for the min-cost flow problem [27], in order to
get an integral feasible solution F̃S for this problem;
5) Convert the obtained static flow F̃S to a plan P ∗ for the
input M- or TVT-problem;
6) Return P ∗.

adaptation to the solution of the M- and TVT-problems of
various heuristic methods borrowed from the general combi-
natorial optimization theory [28], [22]. The development of
such heuristic methods is part of our ongoing investigations.

V. A NUMERICAL EXPERIMENT ASSESSING THE RELATIVE
EFFICACY OF ALGORITHM 3

In order to demonstrate and assess the computational ad-
vantage of Algorithm 3 in the solution of the M- and TVT-
problems of Section II versus the original MIP formulations
of Section II, we conducted a numerical experiment that
compared statistically, through a set of paired t-tests, the
computation times and/or the MIP gaps attained by (i) the
MIP formulations of Section II and (ii) the corresponding
combinatorial relaxations of Section III. This comparison is
motivated, and justified, by the fact that Step 1 in Algorithm 3
is, by far, the most computationally demanding task in the
entire computation.

The particular instantiations of the M-and TVT-problems
that were considered in this experiment, and the obtained
results from the aforementioned comparisons, are tabulated
in Table I. More specifically, column |V | in Table I reports
the number of nodes in the trees, T , of the considered
instantiations. For each |V | value, we considered three possible
levels for |R|: (a) low (L), where |R| was set equal to
the depth of the corresponding tree T plus 10% of |V |;
(b) moderate (M), where |R| was set equal to the depth
of the corresponding tree T plus 40% of |V |; and (c) high
(H), where |R| was set equal to |V |. Eventually, for each
pair (|V |, |R|-level) shown in Table I, we generated five
replications by generating randomly the corresponding trees

T ; the detailed procedure that generated these trees is provided
in the companion electronic supplement.

For each generated replication, we formulated the MIPs of
Section II for the corresponding M- and TVT-problem in-
stance, and also the MIPs corresponding to their combinatorial
relaxations that were presented in Section III.14 Also, for an
easier interpretation of the obtained results, the actual objective
function used in the MIP formulations and their relaxations for
the M-problem instances was

min
(
T̄ + 1−

∑
t∈{1,...,T̄}

st

)
and the objective function used in the MIP formulations and
their relaxations for the TVT-problem instances was

min
(
|L| · (T̄ + 1)−

∑
v∈L

∑
t∈{1,...,T̄}

yv,t

)
We ran each of the two formulations corresponding to

each generated problem instance through CPLEX, with a time
budget of (i) one hour (3600 secs) for problem instances with
up to 75 nodes for tree T , and (ii) two hours (7200 secs) for the
larger problem instances. For each replication, we registered
(a) the involved computational time, and (b) the MIP gap
returned by CPLEX upon its completion or termination; the
reported MIP gaps are defined by the following equation:

MIP gap =

100×
(
1.0− best lower bound obtained by CPLEX

best objective value obtained by CPLEX

)
(33)

The observed statistics that were attained by the original
MIP formulations of Section II, are reported in the columns of
Table I labeled by “O”, averaged over the five replications for
each (|V |, |R|-level)-pair. The corresponding statistics attained
by the combinatorial relaxations of Section III are reported in
the columns of Table I labeled by “PR”.

For a more thorough assessment of the computational ad-
vantage that is attained by the considered relaxations versus
the original MIP formulations, we also conducted a set of
paired t-tests for each of the two statistics that were introduced
in the previous paragraphs, Each paired t-test was performed
on the corresponding performance data obtained for the five
replications generated for each (|V |, |R|-level)-pair and each
of the two problem versions (i.e., M and TVT). Table I also
reports the corresponding p-values of these t-tests.15 More
specifically, if CPLEX managed to complete its computation
within the allocated time budget for all five replications and for
both MIPs, the reported p-value is that concerning the t-test

14We also notice, for completeness, that the MIP formulations corre-
sponding to TVT-problem instances, and their relaxing MIPs, included the
additional constraints of Equation (22) in [26], that were established in that
work as useful valid inequalities for the TVT-problem. Similarly, the MIPs
corresponding to M-problem instances, and their relaxing MIPs, included the
additional “symmetry-breaking” constraints that are suggested in the closing
paragraph of Section 3 in [26].

15We remind the reader that the p-value corresponding to an observed value
for a test statistic is the lowest level of significance for which the test-statistic
value results in a rejection of the null hypothesis [29]. Equivalently, 100(1−p)
is the highest level of confidence for accepting the alternative hypothesis that
we want to verify through the test.
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TABLE I: A comparison of the computation times, the MIP gaps and the inflation ratios attained by (i) the original MIP
formulations of Section II and (ii) their combinatorial relaxations of Section III, for various instantiations of the M- and TVT-
problems.

|V | |R|

Makespan Total Visitation Time
The average of The average of The average of

p-value

The average of The average of The average of

p-valuecomputation MIP gap (%) inflation ratios computation MIP gap (%) inflation ratios
time (sec) time (sec)

O PR O PR O PR O PR O PR O PR

10
L 0 0 0.00 0.00 1.00 1.00 0.08 0 0 0.00 0.00 1.00 1.00 0.11
M 0 0 0.00 0.00 1.00 1.00 0.04 0 0 0.00 0.00 1.00 1.00 0.07
H 0 0 0.00 0.00 1.00 1.00 0.25 0 0 0.00 0.00 1.00 1.00 0.11

20
L 329 131 0.00 0.00 1.00 1.00 0.12 5 4 0.00 0.00 1.00 1.00 0.09
M 720 35 1.43 0.00 1.01 1.00 0.37 1 1 0.00 0.00 1.00 1.00 0.28
H 449 56 0.00 0.00 1.00 1.00 0.19 1 1 0.00 0.00 1.00 1.00 0.25

30
L 3600 3600 25.59 20.95 1.34 1.26 0.06 1043 872 3.12 2.32 1.03 1.02 0.12
M 9 4 0.00 0.00 1.00 1.00 0.08 4 2 0.00 0.00 1.00 1.00 0.04
H 10 5 0.00 0.00 1.00 1.00 0.09 3 2 0.00 0.00 1.00 1.00 0.02

40
L 3600 3600 50.05 37.77 2.00 1.61 0.01 3600 2759 9.08 6.31 1.10 1.07 0.00
M 2885 2885 21.15 16.80 1.27 1.20 0.02 1418 1148 2.36 1.76 1.02 1.02 0.37
H 2883 2881 20.90 17.60 1.26 1.21 0.06 1399 1243 2.85 2.27 1.03 1.02 0.37

50
L 3600 3600 55.82 52.56 2.26 2.11 0.04 3600 3600 29.64 22.77 1.42 1.29 0.12
M 3091 2992 24.30 18.85 1.32 1.23 0.03 2938 2566 8.29 4.35 1.09 1.05 0.05
H 3043 2982 20.91 18.14 1.26 1.22 0.21 2916 2305 7.04 3.76 1.08 1.04 0.09

75
L 3600 3600 83.59 70.85 6.09 3.43 0.03 3600 3600 49.29 46.57 1.97 1.87 0.11
M 3600 2984 42.28 29.78 1.73 1.42 0.03 3600 2943 18.98 13.52 1.23 1.16 0.11
H 3600 3026 34.63 27.01 1.53 1.37 0.03 3429 2752 13.91 9.90 1.16 1.11 0.11

100
L 7200 7200 80.19 74.30 5.05 3.89 0.03 7200 7200 71.27 55.58 3.48 2.25 0.05
M 7200 7200 52.68 45.68 2.11 1.84 0.01 7200 7200 25.47 19.60 1.34 1.24 0.14
H 7200 7200 52.36 43.46 2.10 1.77 0.00 7200 7200 22.57 18.15 1.29 1.22 0.01

125
L 7200 7200 88.72 81.98 8.87 5.55 0.07 7200 7200 71.08 61.31 3.46 2.58 0.05
M 7200 7200 68.88 55.13 3.21 2.23 0.08 7200 7200 34.19 20.61 1.52 1.26 0.12
H 7200 7200 60.68 46.93 2.54 1.88 0.06 7200 7200 34.17 19.19 1.52 1.24 0.10

150
L 7200 7200 91.34 90.63 11.55 10.67 0.14 7200 7200 76.63 68.79 4.28 3.20 0.18
M 7200 7200 78.03 68.15 4.55 3.14 0.28 7200 7200 50.51 25.81 2.02 1.35 0.10
H 7200 7200 77.42 56.61 4.43 2.30 0.03 7200 7200 49.33 22.88 1.97 1.30 0.06

performed on the observed computational times; otherwise, the
reported p-value is that concerning the t-test performed on the
observed MIP gaps.

Finally, Table I also provides an alternative interpretation
of the MIP gaps that are reported in it, which enables an
easier understanding of the extent of the suboptimality of
the obtained solutions for the corresponding MIPs. These
results are provided under the title ”Average Inflation Ratios”,
and they are obtained from the corresponding MIP gaps by
rearranging Equation (33) as follows:

1

1−
(

MIP gap
100

) =

(
best objective value obtained by CPLEX

best lower bound obtained by CPLEX

)
(34)

The right hand-side of Equation (34) is the “inflation ratio” of
the attained objective value with respect to the best obtained
lower bound, and this ratio provides another surrogate measure
for the suboptimality of the obtained objective value. As a
more concrete example, Equation (34) implies that for a MIP
gap of 50%, the inflation ratio is equal to 2.0; i.e., the attained
objective value is at most two times higher than the optimal
value. Similarly, a MIP gap of 75% implies that the attained
objective value is at most four times higher than the optimal
value. Naturally, the exact solution of a MIP formulation
results in a MIP gap of 0% and an inflation ratio of 1.0. Finally,
the relationship between the MIP gap and the inflation ratio

defined by Equation (34) is highly nonlinear, with the inflation
ratio arising fast to some very high values when the MIP gap
takes values in the interval (50, 100).

The perusal of Table I renders clear that, under the specified
time budget, the MIPs corresponding to the combinatorial
relaxations for, both, the M- and TVT-problems either (i) will
derive optimal plans faster than the original MIP formulations
for these problems, or (ii) will return suboptimal plans with
stronger quality certificates than the corresponding plans ob-
tained by the original MIP formulations. Table I highlights
in boldface those cases where the aforementioned dominance
of the relaxed MIPs is more prominent in the quoted values.
Furthermore, it is worth-noticing that this dominance is espe-
cially evident, and useful, in the case of the harder problem
instances where the original MIPs fail to provide solutions
with low inflation ratios with respect to the optimal objective
value.

We also notice, for completeness, that the obtained solutions
for the relaxing MIPs must be post-processed through the
remaining steps of Algorithm 3. But as already pointed out
in the introduction of this experiment, the computational cost
of these additional steps is much smaller than the solution of
the MIP. This is especially true for the larger and the harder
problem instances where, according to the previous remarks,
this method is expected to provide the highest computational
advantage.

Next, we provide some additional interesting observations
on the results that are reported in Table I. It is evident from
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Table I that low |R| levels relative to |V | increase significantly
the difficulty of, both, the M- and the TVT-problem. Charac-
teristically, as |V | increases, MIPs corresponding to problem
instances with low |R| levels start exhausting the allocated
time budget for their solution earlier than their counterparts
with moderate or high |R| levels. An intuitive explanation of
this fact is that the robot scarcity implied by the low |R| levels,
gives rise to more critical choices regarding the pertinent use
of this limited resource over the various parts of the underlying
tree T , compared to the case where the robots are in higher
abundance and, therefore, many parts of T can be visited
simultaneously.16

Also, the juxtaposition of the two major parts of Table I
corresponding to the M- and the TVT-problem, suggests that
the solution of the MIPs corresponding to the TVT-problem
instances, and to their relaxations, is a computationally easier
task than the solution of the counterparts of these MIPs
for the respective M-problem instances. One possible factor
contributing to this observation is the inclusion in the MIP
formulations for the TVT-problem instances, and in their
relaxations, of the additional constraints that are discussed in
Footnote 14. But it is possible that the relative expediency that
is observed in the solution of the MIPs corresponding to the
TVT-problem instances and their relaxations, is also due to the
particular objective function that is employed by these MIPs.
A more profound understanding of this phenomenon is part of
our future investigations.

Concluding the discussion of this experiment, we also notice
that the generated MIPs were solved by CPLEX in Python,
on a laptop with i7-8850H 2.6GHz CPU, 16 GB RAM, and
running Mac OS.

VI. CONCLUSIONS

This paper has developed some strong combinatorial relax-
ations for the M- and TVT-problems that were introduced in
[20]. Furthermore, the theoretical analysis of these relaxations
provided additional insights and results for the M- and TVT-
problems that can lead to new solution methods and pertinent
heuristic algorithms for them. The last part of the paper
detailed one such solution method, and demonstrated and as-
sessed its computational advantage with respect to the original
MIP formulations of [20] through a numerical experiment.

Our future work will seek the development of novel heuris-
tic algorithms for the M- and the TVT-problems, by adapting
to these problems some broader ideas and results coming from
combinatorial optimization theory [28], [22]. These heuristic
algorithms will be especially useful for dealing with the larger
problem instances of the M- and the TVT-problems that are
not easily tackled by the MIP-based methods that have been
pursued in [20] and in this work. As remarked in the closing
part of Section IV, the analytical results of this paper can
provide important ingredients in the development of the sought
heuristic algorithms, by supporting the effective and efficient
execution of certain tests that must be performed by them.

16Of course, even in this case, this potential concurrency is still limited by
the unit capacities of the imposed zoning scheme and the particular structure
of the underlying tree T for each problem instance.

Another task in our future research concerns the extension
of the investigation of the M-and TVT-problems to guidepath
networks with more general structures than trees.17 When it
comes to the results of the current paper, it is interesting
to see whether and/or how they can be extended to that
broader problem setting. The corresponding investigation, and
the potential challenges that might be encountered in it, will
also lead to a more profound understanding of the dependency
of the results developed in this work to the presumed tree
structure of the underlying guidepath network.
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