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An electronic supplement to the manuscript “A
strong combinatorial relaxation for the problem of
Min-Time Coverage in Constricted Environments”

Young-In Kim and Spyros Reveliotis

Abstract—This document constitutes an “electronic supple-
ment” to the manuscript entitled “A strong combinatorial re-
laxation for the problem of Min-Time Coverage in Constricted
Environments”, that is co-authored by the same authors, pro-
viding the proofs of some supporting results in the analytical
developments of the main manuscript, and some further details
on the organization of the numerical experiment that is presented
in Section V of that document.

Proof of Proposition 2

First we notice that, under the working assumptions, flow
plan F ∗ is focused. Hence, since xv,t < xv,t−1 at period
t, there exists at least one leaf node v′ of tree T that is a
descendant of node v and has C(v′;F ∗) < t. Let L′ ⊂ L be
the set of all these nodes, and τ ≡ max{C(v′;F ∗) : v′ ∈ L′}.
We prove the result of Proposition 2 by considering two types
of descendants of node v in T .

Case 1: First we focus on descendants of node v that are
on a path π(v, v′), v′ ∈ L′, and have all their descendant leaf
nodes in the set L′ (i.e., visited by period t). We claim that all
these nodes are empty of any fluid at period t. Indeed, if this
claim is not true, then there exists a node v′′ in the considered
class of nodes with xv′′,t > 0 and either being a leaf node
of T or having all its descendants empty. Hence, its fluid
could have been used to cover at least part of the needs that
are addressed by the fluid amount (xv,t−1−xv,t) drawn from
node v. Furthermore, since all the descendant leaf nodes of v′′

are in L′, the fluid drawn from node v′′ need not be replaced
in the future periods of plan F ∗. Therefore, the considered
modification of flow plan F ∗ will result in a flow plan F̃ with
equal performance to plan F ∗ but incurring less variation of
the nodal fluid concentrations, something that contradicts the
structural minimality of F ∗.

Case 2: Next, we consider the case where every descendant
node v′′ of node v that belongs in the class addressed in Case
1 has been depleted from its fluid by period t, but there are
still non-empty nodes, other than node v, in the subtree T ′ of
T that is rooted at node v and consists of all the paths π(v, v′)
leading to nodes v′ with C(v′;F ∗) > t. Consider the plan F̃
that, at period t, substitutes for the fluid (xv,t−1 − xv,t) by
drawing from some nodes of the subtree T ′ that are furthest
away from node v. The feasibility of the plan F ∗ implies that
such substitution is feasible with respect to Constraints 6–9
of the combinatorial relaxation. Furthermore, this substitution
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Fig. 1: A maximal set of leaf nodes, V̂ = {v1, v2, . . . , vn},
having the same closest common ancestor, denoted by
CCA(V̂ ).

does not alter the total amount of fluid contained in the subtree
T ′ at period t, and furthermore, it does not compromise the
performance of plan F ∗ with respect to the visitation times of
the leaf nodes of T ′, since the fluid that is provided by plan
F ∗ for the restoration of the fluid in node v to the unit value,
in some period(s) t′ > t, can be forwarded immediately to the
nodes from which this fluid was drawn by plan F̃ . Plan F̃ is
unfocused, and therefore, does not belong in the set of plans
that satisfy the working assumptions of Proposition 2. But by
using arguments similar to those employed in the proof of
Proposition 1 (also c.f. reference [25] in the main document),
it is possible to construct another flow plan F̂ that will redirect
the fluid to be drawn from the subtree T ′ by plan F̃ , directly
to the destination node(s) of the fluid (xv,t−1 − xv,t) that is
drawn by plan F ∗ from node v at period t. Flow plan F̂ is
focused, and, in fact, it would result in a smaller value for the
cost defined by Eq. 21 in the main document than plan F ∗.
This fact contradicts the structural minimality of plan F ∗, and
proves Proposition 2 for this case, as well.

Proof of Proposition 3
The first part of Proposition 3 is clearly true for any

subtree of T that constitutes a simple path to some leaf
node, without any branching in its internal nodes. For subtrees
containing branching nodes, we establish the first part of
Proposition 3 through an inductive argument that proceeds
from the branching nodes of tree T that are closest to its
leaves, towards the root node o.

Hence, for the base case of this induction, consider a subtree
T ′ of T that possesses the structure depicted in Figure 1
in this document. The attainment of the target level of one
unit of fluid by any leaf node vi in this subtree, requires the
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provision of l(CCA(V̂ ), vi) units of fluid from node CCA(V̂ )
towards the corresponding path π(CCA(V̂ ), vi). Furthermore,
since the considered plan F ∗ is focused, it does not incur
the provision of any additional flow to path π(CCA(V̂ ), vi).
Hence, Proposition 3 holds for node CCA(V̂ ).

For the induction step, consider an internal node v ∈
V of T and suppose that Proposition 3 holds for all the
subtrees of T that are rooted to the children of v; i.e.,
there is a structurally minimal, optimal flow plan F̂ with∑T̄

t=1

∑
v′′∈V :p(v′′)=v′ uv′,v′′,t ∈ Z+ for every node v′ in

these subtrees. In particular, this inclusion is true for every
child v̂ of node v. However, in general, it is possible that,
in flow plan F̂ , node v provides only a fraction of the flow∑T̄

t=1

∑
v′′∈V :p(v′′)=v̂ uv̂,v′′,t that is conveyed from a child

v̂ of v towards its own children, and the remaining part of
this total flow results from fluid transfers among the subtrees
emanating from node v̂, through node v̂ itself.

Next, consider the case where at least one of these internal
transfers involves the conveyance of a fractional amount of
fluid, f̃ , from some subtree emanating from node v̂, let’s
say T ′, towards the other subtrees emanating from v̂. Con-
straints 6–9 imply the existence of a flow plan F̃ that (a)
is obtained from flow plan F̂ by (i) augmenting the fractional
amount of fluid f̃ provided by subtree T ′ to an integral amount
of fluid, equal to the ⌈f̃⌉, and (ii) reducing accordingly the
total flow

∑T̄
t=1 uv,v̂,t conveyed by node v to node v̂, and (b)

has C(ṽ; F̃ ) = C(ṽ;F ∗) for each leaf node ṽ in subtree T ′.
The last equality is true because Constraint 9 implies that for
any leaf node ṽ of T ′, and any valid flow plan F , at period
C(ṽ;F ), the total amount of fluid deployed on the path π(v̂, ṽ)
is equal to l(v̂, ṽ), which is integral. Hence, the availability of
an extra fractional amount of fluid in tree T ′ cannot expedite
the attainment of the target fluid concentration of 1.0 by any
leaf node ṽ of T ′.

Also, by drawing the additional fluid to be extracted from
tree T ′ according to the logic that was delineated in the proof
of Proposition 2, we can ensure that the resulting flow plan F̃
remains structurally minimal.

The above adjustment can be applied to every fractional
internal transfer taking place in any subtree of T rooted to a
child v̂ of node v, through node v̂. In this way, we can obtain
a structurally minimal, optimal flow plan F ∗ where the total
flow conveyed from node v to each of its children is integer,
and the first part of Proposition 3 has been proven.

The second part of Proposition 3 is an immediate conse-
quence of the arguments that were provided in the earlier part
of this proof.

Proof of Lemma 1

We prove the result of Lemma 1 through an induction on
the elements of the set V \{o} that proceeds from the children
of the root node o towards the leaf nodes.

For the base case, first notice that, in the input plan
F , the flows

∑t
τ=1 uo,v,τ , for every period t and node

v ∈ N (o), are supported by a total fluid availability of
ξo,t := |R|+

∑t
τ=1

∑
v′∈N (o) uv′,o,τ . On the other hand, in the

modified flow plan F̂ , the respective flows
∑t

τ=1 ûo,v,τ trace
the quantities

⌊∑t
τ=1 uo,v,τ

⌋
based on a total fluid availability

of ξ̂o,t := |R|− 1+
∑t

τ=1

∑
v′∈N (o) uv′,o,τ , at each period t.

Furthermore, in flow plan F ,

∀t ∈ {1, . . . ,M(F )},

xo,t = |R|+
t∑

τ=1

∑
v′∈N (o)

uv′,o,τ −
t∑

τ=1

∑
v′∈N (o)

uo,v′,τ (1)

Equation 1 together with the fact that xo,t > 0,∀t, imply
that

∀t ∈ {1, . . . ,M(F )},
t∑

τ=1

∑
v′∈N (o)

uo,v′,τ − 1 < ξ̂o,t (2)

From Equation 1 we also have that

∀t ∈ {1, . . . ,M(F )},

xo,t ≥ 1 =⇒ ξ̂o,t ≥
t∑

τ=1

∑
v′∈N (o)

uo,v′,τ (3)

But then, for the children v ∈ N (o) of the root node
o, Equation 31 in the main document is an implication of
Equations 2, 3, and the aforementioned tracing of the quan-
tities

⌊∑t
τ=1 uo,v,τ

⌋
by the respective cumulative allocations∑t

τ=1 ûo,v,τ , based on the corresponding deficits do,v,t (c.f.
Algorithm 2).

For the inductive step, consider a node v ∈ V \
(
{o}∪N (o)

)
,

and suppose that Equation 31 in the main document holds for
its parent node p(v); i.e.,

∀t ∈ {1, . . . ,M(F )},
t∑

τ=1

ûp(p(v)),p(v),τ ≥⌊
t∑

τ=1

up(p(v)),p(v),τ

⌋
−

∑
v′∈π(o,p(p(v)))

I{xv′,t<1} (4)

From the flow balance equations that are observed by flow
plan F , we also have:

∀t ∈ {1, . . . ,M(F )},
t∑

τ=1

up(p(v)),p(v),τ = xp(v),t +
∑

v′∈N (p(v))
v′ ̸=p(p(v))

t∑
τ=1

up(v),v′,τ (5)

Equation 5 further implies that

∀t ∈ {1, . . . ,M(F )},

⌊
t∑

τ=1

up(p(v)),p(v),τ

⌋
≥ xp(v),t +⌊ ∑

v′∈N (p(v))
v′ ̸=p(p(v))

t∑
τ=1

up(v),v′,τ

⌋
(6)

From Equations 4 and 6, we have:

∀t ∈ {1, . . . ,M(F )},
t∑

τ=1

ûp(p(v)),p(v),τ +
∑

v′∈π(o,p(p(v)))

I{xv′,t<1} ≥

xp(v),t +

⌊ ∑
v′∈N (p(v))
v′ ̸=p(p(v))

t∑
τ=1

up(v),v′,τ

⌋
(7)
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From the logic that computes the modified flow plan F̂ in
ADJUST, we have:

∀t ∈ {1, . . . ,M(F )},
t∑

τ=1

ûp(p(v)),p(v),τ = x̂p(v),t +
∑

v′∈N (p(v))
v′ ̸=p(p(v))

t∑
τ=1

ûp(v),v′,τ (8)

From Equations 7 and 8, we have:

∀t ∈ {1, . . . ,M(F )},∑
v′∈N (p(v))
v′ ̸=p(p(v))

t∑
τ=1

ûp(v),v′,τ +
(
x̂p(v),t − xp(v),t

)
+

∑
v′∈π(o,p(p(v)))

I{xv′,t<1} ≥

⌊ ∑
v′∈N (p(v))
v′ ̸=p(p(v))

t∑
τ=1

up(v),v′,τ

⌋
(9)

The deficit-tracing implemented by ADJUST at the internal
nodes of tree T implies that x̂p(v),t > xp(v),t only at periods
t ∈ {1, . . . ,M(F )} for which xp(v),t < 1, and in that case,
x̂p(v),t−xp(v),t < 1. But then, Equation 9 further implies that

∀t ∈ {1, . . . ,M(F )},∑
v′∈N (p(v))
v′ ̸=p(p(v))

t∑
τ=1

ûp(v),v′,τ +
∑

v′∈π(o,p(v))

I{xv′,t<1} ≥

⌊ ∑
v′∈N (p(v))
v′ ̸=p(p(v))

t∑
τ=1

up(v),v′,τ

⌋
≥

∑
v′∈N (p(v))
v′ ̸=p(p(v))

⌊ t∑
τ=1

up(v),v′,τ

⌋
(10)

Next, suppose that the considered node v violates the
inequality of Equation 31 in the main document; i.e.,

∃t ∈ {1, . . . ,M(F )},
t∑

τ=1

ûp(v),v,τ ≤

⌊
t∑

τ=1

up(v),v,τ

⌋
−

∑
v′∈π(o,p(v))

I{xv′,t<1}

− 1 (11)

When combined with Equation 10, Equation 11 implies that
the existence of another child ṽ of node p(v) with

t∑
τ=1

ûp(v),ṽ,τ ≥

⌊
t∑

τ=1

up(v),ṽ,τ

⌋
+ 1 (12)

But Equations 10–12 violate the logic of ADJUST that
defines the flows ûv,v′,t for nodes v ̸= o, based on the
corresponding deficits dv,v′,t. This contradiction establishes
the result of Lemma 1 for the inductive step, and concludes
the proof.

The algorithm generating the trees for the various problem
instances in the numerical experiment of Section V

The algorithm presented in this section generates a tree with
a specified number of nodes V .

The algorithm starts by generating a random number p0 ∈
[0, 1] which is used for determining the extent of branching
that takes place at the different nodes of the constructed tree.

Algorithm : Generation of a tree T with a specified number
of nodes

Inputs:
The number of nodes |V |.

Outputs:
A tree instance T := ⟨V,E⟩.

Initialization:
Generate a random number p0 ∈ [0, 1];
V := {0}; E := {};
i := 0; j := 1;

while j < |V | do
Generate p ∈ [0, 1];
if p ≤ p0 then

V := V ∪ {j};
E := E ∪ {(i, j)};
j := j + 1;

else
if i+ 1 < j then

i := i+ 1;
else /* i+ 1 = j */

V := V ∪ {j};
E := E ∪ {(i, j)};
i := j;
j := j + 1;

end if
end if

end while

It also initializes the node set V by inserting in it the root
node 0, and the edge set E by setting it equal to the empty
set.

The while-loop in the above algorithm adds the remaining
|V |−1 nodes in tree T by using the indices i and j as follows:

At each iteration, the candidate node to enter tree T is node
j, while index i specifies the parent node of the newly added
node. Then, starting with i = 0, the algorithm keeps adding
children to node i, one per iteration, as long as the random
number p ∈ [0, 1] that is generated at each of these iterations is
less than or equal to p0. Otherwise, i is increased to i+1, and
if node i+1 has been added already in the generated tree T ,
then the above procedure repeats itself on this node. If, on the
other hand, node i+1 is not in the already generated tree, then
it must be the next node to be added in the tree (i.e., i+1 = j)
and in order to preserve the connectivity of the generated tree,
it is added as a child to the current node i. Subsequently, the
newly added node j = i + 1 becomes the new parent node,
and j is also increased by one unit to properly represent the
next node to enter tree T . The entire process terminates when
tree T has obtained the specified number of nodes |V |.

Closing the presentation of this algorithm, we also notice
that the generated tree T is expanded in a “breadth-first” sense.
Hence, for a fixed value of |V |, smaller values of the generated
number p0 will result in deeper trees and a smaller number
of leaf nodes, while larger values of p0 will have the opposite
effects. By randomizing p0, we enable all these possibilities.


