
Strongly Infinite-Step Opaque
Boolean Networks

Spyros Reveliotis

School of Industrial & Systems Engineering
Georgia Institute of Technology, USA

(email: sr81@gatech.edu)

Abstract: Motivated by the increasing interest of the Discrete Event Systems (DES) community
in the theory of Boolean networks (BNs), this work undertakes a prototypical investigation of
the notion of opacity in the BN modeling framework. More specifically, we (i) adapt a particular
version of this concept to the BN semantics and dynamics; (ii) provide an algorithm that assesses
the resulting opacity concept while taking advantage of the special structure of the BN state
spaces; and (iii) develop a methodology for enforcing the sought opacity, in some optimal sense,
on BNs that do not possess this property. The closing part of the paper briefly discusses how this
prototypical study can be extended to other versions of opacity studied by the DES community.

Keywords: Boolean networks; opacity verification and enforcement; Discrete Event Systems;
optimal supervisory control theory

1. INTRODUCTION

Boolean networks (BNs) were introduced by Kauffman
(Kauffman (1969)) in order to model, analyze and simulate
the dynamics of the cellular networks studied by systems
biology. This model provides a discrete-time, state-space-
based representation of the traced dynamics in a spirit sim-
ilar to the state-space approaches of the classical control
theory; but all the involved variables are Boolean variables
and the recursive functions that iterate these variables are
Boolean functions. Also, more recently, Boolean networks
have attracted a broader interest as a formal modeling
framework, and there has been an extensive effort to de-
velop a general theory for the analysis and the control of
these networks that parallels the analysis and the control
of more classical dynamical systems. A nice introduction
to these developments is provided in Cheng et al. (2011).

At the same time, the discrete (binary) nature of the
variables employed by the BN model places it in the class
of Finite State Automata (FSA) (Cassandras and Lafor-
tune (2021)). Therefore, the BNs can also be analyzed in
terms of concepts and methods that have been developed
by computer science and the theory of Discrete Event
Systems (DES) (Cassandras and Lafortune (2021); Had-
jicostis (2020)). This possibility has been recognized by,
both, the BN researchers (e.g., Kauffman (1969); Cheng
et al. (2011); Gao et al. (2018)) and the DES commu-
nity (e.g., Cury and Baldissera (2012)). Furthermore, the
BNs possess significant special structure, both, in their
semantics and in the dynamics of the induced FSAs, that
can enable extensive customization of the general DES
theory to this particular setting. More specifically, the
transitional dynamics of an autonomous BN place the
underlying FSA to the class of deterministic FSAs with a
single transition available at every state. In the following,
we shall refer to this FSA class as 1-DFSAs. An 1-DFSA

has a unique trajectory when started from any given initial
state, and this fact partitions the underlying state space
into a number of noncommunicating subspaces that are
defined by the “attractors” (i.e., absorbing states or cy-
cles) that are present in the corresponding state transi-
tion diagram (STD). The resulting topological structure
can simplify very substantially the specification and the
analysis of many properties that have been investigated
for DES represented by more general FSAs.

Motivated by the above remarks, this paper undertakes
an investigation of the notion of opacity in the context of
autonomous BNs. Opacity is a concept that has drawn
extensive attention within the DES community, and it
implies the preservation of a “secret” from an external
“intruder” that has complete knowledge of the system
structure but only partial observation of the generated
dynamics. It also comes in many variations, that include
(i) language-based opacity, (ii) current-state opacity, (iii)
initial-state opacity, (iv) weak K-step and infinite-step
opacity, and (v) strong K-step and infinite-step opacity.
The reader is referred to Jacob et al. (2016); Lafortune
et al. (2018) and the monograph of Hadjicostis (2020) for
some systematic introductions to all these concepts and
their development within DES.

The current work seeks to adapt the notion of strong
infinite-step opacity to the dynamics of autonomous BNs
and their observational mechanisms. In more specific
terms, we (i) adapt the original definition of this concept
to the BN semantics and the standard analytical model
that represents the dynamics of these systems; (ii) develop
customized algorithms for assessing the strong infinite-
step opacity of any given BN that take advantage of the
special structure of the underlying state space described
in the earlier part of this section; and also (iii) develop
a methodology for enforcing strong infinite-step opacity,
in some optimal sense, when the original BN does not

possess this property. All these results are meant to have
a demonstrative, prototypical role and value, and, hence,
in the last part of the paper we briefly discuss how they can
be adapted and extended to address some other notions of
opacity in the BN modeling framework.

The rest of the paper is organized as follows: The next
section provides some background material from the FSA
and the BN modeling frameworks that is necessary for
the main developments of this work. It also introduces
some new concepts and results that are necessary for
these developments. Section 3 adapts the notion of strong
infinite-step opacity to the context of the BN modeling
framework, and develops a novel, customized algorithm
for the verification of this concept for any given BN.
Section 4 considers the problem of enforcing optimally
strong infinite-step opacity on any given BN that does
not possess this property. Finally, Section 5 concludes the
paper and suggests some directions for future work.

2. PRELIMINARIES

Finite State Automata: For the needs of this work, we
define a finite state automaton (FSA) G by a quintuple
⟨S,E, δ, S0, Sm⟩ where: (i) S = {s1, s2, . . . , sn} is the set
of states of G. (ii) E = {e1, e2, . . . , em} is the set of events
taking place inG. (iii) δ : S×E → 2S is the state transition
function of G. For any pair (si, ej) ∈ S×E, δ(si, ej) ̸= ∅ is
the set of possible states that can result from the execution
of event ej at state si. On the other hand, δ(si, ej) = ∅
implies that event ej is not feasible at state si. (iv) S0 ⊆ S
is the set of the possible initial states of G. Finally, (v)
Sm ⊆ S is the set of the marked states of G.

The transitional dynamics of FSA G can be represented
graphically by a labelled directed graph (or digraph),
G = (V, E ,L), that is known as the state transition diagram
(STD) of G. The nodes v ∈ V of G are in one-to-one
correspondence with the states si ∈ S of G. To emphasize
this correspondence, in the following we shall set V = S.
The edge set E of G is a subset of S × S, with the pair
(si, sj) being in E if there exists an event ek ∈ E such that
sj ∈ δ(si, ek). The label function L is defined on the edge
set E , and for every (si, sj) ∈ E , L(si, sj) =

{
ek ∈ E : sj ∈

δ(si, ek)
}
.

The state transition function of FSA G is extended to
(2S \ {∅}) × E∗ (i.e., to nonempty subsets Ŝ of state set
S and strings q of the event set E) through the following
recursion: 1 (i) ∀si ∈ S, δ(si, ϵ) = si; (ii) ∀si ∈ S, ∀q =
e[1]e[2] . . . e[l], δ(si, q) =

⋃
sk∈δ(si,e[1]e[2]...e[l−1])

δ(sk, e[l]);

(iii) ∀Ŝ ∈ 2S \ {∅}, ∀q ∈ E∗, δ(Ŝ, q) =
⋃

si∈Ŝ δ(si, q).

We shall refer to the set of strings L(G) = {q ∈ E∗:
δ(S0, q) ̸= ∅} as the language generated by G. Also,
Lm(G) = {q ∈ L(G) : δ(S0, q) ∩ Sm ̸= ∅} is the language
recognized by G.

For an event string q ∈ L(G), with q = e[1]e[2] . . . e[l],
a trace – or run – of q in G is a state sequence
1 We remind the reader that for any finite set Q, Q∗ is the set
containing all the finite-length sequences of elements of Q, including
the empty sequence, and it is known as the Kleene closure of Q.
The elements of Q∗ are also known as the (finite) strings of Q. The
empty string is denoted by ϵ and has zero length.

⟨s[0], s[1], . . . , s[l]⟩ such that (i) s[0] ∈ S0 and (ii) ∀i =
1, . . . , l, s[i] ∈ δ(s[i−1], e[i]). The set of traces of an event
string q ∈ L(G) in G is denoted by tr(q;G).

For any FSA G = ⟨S,E, f, S0, Sm⟩, we define the set of
its accessible – or reachable –states, ac(S), by ac(S) =
{si ∈ S : ∃q ∈ E∗ s.t. si ∈ δ(S0, q)}. Also, the FSA
ac(G) = ⟨ac(S), E, ac(δ), S0, ac(Sm)⟩, where ac(Sm) =
Sm ∩ ac(S) and ac(δ) is the restriction of f in ac(S)× E,
is the accessible part of G. These definitions imply that

L(ac(G)) = L(G) ∧ Lm(ac(G)) = Lm(G) (1)

An FSA G is complete if ∀(si, ej) ∈ S × E, δ(si, ej) ̸= ∅.
Also, G is deterministic (DFSA) if (i) ∀(si, ej) ∈ S ×
E, |δ(si, ej)| ≤ 1, and (ii) |S0| = 1. Otherwise it is
nondeterministic (NFSA). The state transition function
δ of a complete DFSA can be alternatively defined as a
function δ : S × E → S.

Boolean Networks: For the needs of this work, an
(autonomous) Boolean network (BN) B is a discrete-time
dynamical system where:

(1) the state x is a column vector x = [x1, x2, . . .,xn]
T

such that

∀ i = 1, . . . , n, xi ∈ B = {0, 1}. (2)

(2) The dynamics of B are defined by
(a) an initial state x(0) ∈ Bn, and
(b) the following recursion:

∀t = 0, 1, . . . , ∀i ∈ {1, . . . , n}, xi(t+1) = fi(x(t))
(3)

where ∀i, fi(·) : Bn → B (i.e., fi(·) is an n-variate
Boolean function).

(3) The output of B at any given state x is an m-
dimensional binary column vector o(x) = [o1(x),
o2(x), . . . , om(x)]T where

∀j ∈ {1, . . . ,m}, oj(x) = gj(x) ∧ gj(·) : Bn → B
(4)

We also set: f(x) = [f1(x), f2(x), . . . , fn(x)]
T = f1(x);

∀k ≥ 2, fk(x) = f(fk−1(x)); and g(x) = [g1(x), g2(x), . . .,
gm(x)]T . Furthermore, for a given BN B and any x ∈ Bn,
B(x) denotes the BN induced by B by setting its initial
state x(0) = x.

FSA-based representation of the BN dynamics:
The BN B defined in the previous subsection induces
the FSA G(B) = ⟨S(B), E(B), δ(B), S0(B), Sm(B)⟩ where:
(i) S(B) = Bn; (ii) E(B) = {τ}, i.e., a singleton with
the unique event τ corresponding to the discrete-time
advancement by one time unit; (iii) δ(B) : Bn×E(B) → Bn

with δ(B)(x, τ) = f(x); (iv) S0(B) = {x(0)}; and (v)
Sm(B) = S(B) = Bn. 2

When combined with Eq. 3, the above definition of the
FSA G(B) implies that (i) it is complete; (ii) there is only
one event available at each state s ∈ S(B); and (iii) the
corresponding transition is deterministic. We shall indicate
these three properties of G(B) by characterizing it as 1-
DFSA.

2 In the rest of this work, the FSA G(B) is used primarily as an
alternative generator of the dynamics of the BN B, and therefore,
the specification of the set Sm(B) is indifferent.

For any t ≥ 0, let τ t denote the t-length string ττ . . . τ .
An important implication of the 1-DFSA property of the
FSA G(B) is that, for any initialization B(x) of B and any
period t ≥ 0, the trace set tr(τ t;G(B(x))) ≡ tr(t;B(x))
is a singleton. With a slight abuse of notation, in the
following we shall also use the notation tr(t;B(x)) to
denote the single element of this set. Furthermore, a trace
tr(t;B(x)) = ⟨x[0](= x), x[1], . . . , x[t]⟩ will be represented
more compactly by x[0](= x)x[1] . . . x[t]. Finally, for any
state set X ⊆ Bn, tr(t;B(X)) = {tr(t;B(x)) : x ∈ X}.
The singleton structure of the trace sets tr(τ t;G(B(x))) ≡
tr(t;B(x)), when combined with (i) the perpetuality of
the dynamics of BN(x) in the discrete-time t, and (ii) the
finiteness of the state space S(B(x)), also imply that for,
t ≥ 2n, any trace tr(t;B(x)) = x[0](= x)x[1] . . . x[t] can
be decomposed to (i) an initial, possibly empty, transient
segment , followed by (ii) a periodic segment . In the STD of
the DFSA G(B(x)), the transient segment is represented
by a directed acyclic path P(x) that starts from state x and
leads to a directed cycle C(x) that supports the periodic
segment of the behavior of B(x). 3 Also, in the following,
|P(x)| (resp., |C(x)|) will denote the length of path P(x)
(resp., C(x)), defined by the number of states in this
structure. Finally, the above remarks further imply that
for any BN B and any state x ∈ Bn, the FSA ac(G(B(x)))
is graphically represented by the subgraph of the STD of
G(B) that is induced by the path P(x) and the cycle C(x).
A trace tr(t;B(x)) induces the corresponding observation
string o(t;B(x)) with o[k](t;B(x)) = o(x(k)), for k =
0, 1, . . . , t; i.e., string o(t;B(x)) traces the output of the
BN B(x) at each period k, from period 0 up to period t.

Definition 1. Two traces tr(t;B(x1)) and tr(t;B(x2)) are
indistinguishable if o(t;B(x1)) = o(t;B(x2)). Also, states
x1 and x2 are indistinguishable if

∀t = 0, 1, 2, . . . , o(t;B(x1)) = o(t;B(x2)) (5)

The next proposition provides a succinct test for state
indistinguishability.

Proposition 1. Consider states x1 and x2 and set

T (x1, x2) = max{|P(x1)|, |P(x2)|}+ lcm{|C(x1)|, |C(x2)|}
(6)

where the function ‘lcm{·, ·}’ returns the least common
multiplier of its arguments. States x1 and x2 are indistin-
guishable if and only if

o(T (x1, x2);B(x1)) = o(T (x1, x2);B(x2)) (7)

Proof: The necessity of the condition of Eq. 7 is ob-
vious from the definition of the state indistinguishabil-
ity. For the sufficiency part, first consider the period
t̂(x1, x2) = max{|P(x1)|, |P(x2)|}. By this time, both
automata G(B(x1)) and G(B(x2)) have reached their cor-
responding cycles C(x1) and C(x2). Furthermore, at period
T (x1, x2), each automaton G(B(xi)), i = 1, 2, will be at
the same state in its cycle C(xi) that it was at period
t̂(x1, x2). More specifically, after period t̂(x1, x2), the state
pair (x1, x2) evolves periodically and the time interval
⟨t̂(x1, x2) + 1, . . . , T (x1, x2)⟩ constitutes a cycle of this
evolution. Hence, the indistinguishability of states x1 and
3 Cycle C(x) may contain only a single state x, in which case state
x is characterized as an absorbing state of G(B) or a fixed point of
B.

x2 up to T (x1, x2) also implies their indistinguishability
over any longer observation interval. 2

3. THE CONSIDERED NOTION OF OPACITY AND
ITS VERIFICATION

Consider a BN B defined as in Section 2 but with its initial
state x(0) selected arbitrarily from a subset of Bn defined
by a Boolean function ζ(·) : Bn → B; i.e.,

X0 = {x ∈ Bn : ζ(x) = 1} (8)

Also, let X̂ be another predicate set of Bn, defined by a
Boolean function ξ(·) : Bn → B through the equation

X̂ = {x ∈ Bn : ξ(x) = 1} (9)

X̂ denotes a special set of states of B to be referred to
as the secret states. Also, function ξ(·) is the secret of B.
BN B is observed by an agent A who (i) traces the output
o(t), t = 0, 1, . . ., generated by B, and also (ii) knows (a)
the Boolean functions f , g, ζ and ξ, that determine the
dynamics, the output, the initial-state set, and the secret-
state set of B. On the other hand, agent A does not know
the exact initial state x(0) of B.
Definition 2. BN B, with initial state set X0, is strongly
infinite-step opaque with respect to the secret state set X̂, if
for every period t = 0, 1, 2, . . ., and trace q ∈ tr(t;B(X0))

that contains a secret state x ∈ X̂, there exists a trace
q′ ∈ tr(t;B(X0)) that does not contain any secret state
and it is indistinguishable from q.

Without loss of generality, in the following we assume that
X̂ ⊆ ac(S(B(X0))). Then, for every secret state x̂ ∈ X̂,
we define the set X0(x̂) = {x ∈ X0 : x̂ ∈ ac(S(B(x)))}.
We also set X̂0 =

⋃
x̂∈X̂ X0(x̂) and X̃0 = X0 \ X̂0.

The following theorem provides a necessary and sufficient
condition for the strong infinite-step opacity of BN B with
respect to the secret state set X̂ when the initial state set
is X0.

Theorem 2. BN B, with initial state set X0, is strongly
infinite-step opaque with respect to the secret state set X̂
if and only if every state x ∈ X̂0 is indistinguishable from
some state x′ ∈ X̃0.

Proof: The sufficiency of the condition of Theorem 2 for
the strong infinite-step opacity of BN B is obvious. Next,
we prove the necessity of this condition by contraposition.
Hence, suppose that there is a secret state x̂ for which
there exists a state x ∈ X0(x̂) that is not indistinguishable

from any state x′ ∈ X̃0. Then, Proposition 1 implies
that, when starting BN B from state x, agent A will
be able to infer that the initial state x(0) ̸∈ X̃0 by
period T (x) = maxx′∈X̃0

{T (x, x′)}. But then, she will
also know that a secret state has been visited by period
T̂ = maxx∈X̂0

{|ac(S(B(x)))|}. 2

Theorem 2 decomposes the assessment of the strong
infinite-step opacity of a BN B with a set of initial states
X0 and a secret-state set X̂, to a set of tests assessing the
indistinguishability of each state x ∈ X̂0 =

⋃
x̂∈X̂ X0(x̂)

with the set X̃0 = X0 \ X̂0. Algorithm 1 outlines an

Algorithm 1 An algorithm for assessing the strong
infinite-step opacity of an autonomous BN B with initial-
state predicate ζ and secret-state predicate ξ.

Inputs:
A BN B, the Boolean function ζ(·) defining
the set X0 of the possible initial states of B,
and the function ξ(·) defining the

secret-state set X̂ of B.
Outputs:

A decision of whether B is strongly
infinite-step opaque with respect to the
secret state set X̂.

1) X0 := {x ∈ Bn : ζ(x) = 1}.
2) ∀x ∈ X0, compute the FSA ac(G(B(x))).
3) X :=

⋃
x∈X0

ac(S(B(x))).
3) X̂ := {x ∈ Bn : ξ(x) = 1} ∩X.

4) X̂0 := {x ∈ X0 : ac(S(B(x))) ∩ X̂ ̸= ∅}.
5) X̃0 := X0 \ X̂0.
6) T := max(x1,x2)∈X̂0×X̃0

{T (x1, x2)} (c.f. Eq. 6).

7) For each state x ∈ X̃0, compute the observation string
o(T ;B(x)).
8) For each state x ∈ X̂0, use the results of Step 7 to

check whether ∃x′ ∈ X̃0 : o(T ;B(x)) = o(T ;B(x′)).

9) If ∃x ∈ X̂0 failing the test of Step 8, return with
a negative decision; otherwise, return with a positive
decision.

efficient way for contacting this assessment in view of the
aforementioned decomposition. 4

Also, an upper bound for the worst-case time complexity
of Algorithm 1 can be obtained as follows: Let M =
|
⋃

x∈X0
ac(S(B(x)))|. Then, Step 1 of Algorithm 1 has a

time complexity of 2n, while the worst-case time complex-
ity of Steps 2-5 is O(M). The worst-case time complexity
of Step 6 is O(M2) and so is the value of the variable
T that is computed at this step. Step 7 has worst-case
time complexity O(M · T) = O(M3). Finally, Step 8 has
worst-case time complexity O(M2 · T) = O(M4). Hence,
the worst-case time complexity of the entire algorithm
is min{2n, O(M4)}. But M = O(2n), where n the state
dimensionality of B. Therefore, eventually, the worst-case
time complexity of Algorithm 1 is O(24n).

Example: We demonstrate the concepts introduced in Sec-
tion 2 and in this section, and the execution of Algo-
rithm 1, through a small but elucidating example. The con-
sidered BN B has a 4-dim state vector x = [x1, x2, x3, x4]

T

and a 3-dim output vector o = [o1, o2, o3]
T . The state-

updating function f : B4 → B4 is defined by

∀x ∈ B4, f(x) = [¬x1, x1 ∨̄ x2, x1 ∧ x2, ¬x4]
T (10)

The function g : B4 → B3, determining the system output,
is defined by

∀x ∈ B4, g(x) = [¬x1, x2 ∨ x3, x1 ∧ x4]
T (11)

In Eqs 10 and 11, the binary operators ‘∧’, ‘∨’ and ‘∨̄’
denote, respectively, the AND, OR and XOR Boolean

4 Theorem 2 also relates the considered notion of opacity to the
notion of “BN observability”. We refer the reader to Cheng et al.
(2011) for further discussion on this concept.

Fig. 1. The STD of the FSA ac(G(B(X0))) in the example.

Table 1. The observation strings o(5;B(x)),
x ∈ X̂0 ∪ X̃0, for the considered example.

Init. state 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0

t o1 o2 o3 o1 o2 o3 o1 o2 o3 o1 o2 o3
0 1 0 0 0 1 1 1 0 0 0 1 0
1 0 0 1 1 1 0 0 0 0 1 1 0
2 1 1 0 0 0 1 1 1 0 0 0 0
3 0 1 1 1 1 0 0 1 0 1 1 0
4 1 1 0 0 1 1 1 1 0 0 1 0
5 0 0 1 1 1 0 0 0 0 1 1 0

functions, and the unitary operator ‘¬’ denotes negation
(or the NOT Boolean function). We also set 5

X0 =
{
[0, 0, 0, 0]T , [0, 0, 0, 1]T , [1, 1, 1, 0]T , [1, 1, 1, 1]T

}
(12)

and

X̂ =
{
[0, 0, 1, 0]T

}
(13)

The STD of the FSA ac(G(B(X0))) is provided in Figure 1.
The possible initial states x ∈ X0 are depicted with bold
black boundaries, while the secret state x̂ ∈ X̂ is depicted
with a bold red boundary. The reader should also notice
that the entire STD consists of two disjoint subgraphs,
with each subgraph containing a single directed cycle that
functions as an attractor for the corresponding initial
states. From this decomposition, it is clear that the state
sets X̂0 and X̃0 computed in Steps 4 and 5 of Algorithm 1,
are

X̂0 =
{
[0, 0, 0, 0]T , [1, 1, 1, 1]T

}
(14)

and

X̃0 =
{
[0, 0, 0, 1]T , [1, 1, 1, 0]T

}
(15)

Next, we compute the value of the variable T that appears
in Step 6 of Algorithm 1. For this, first we notice that both
of the directed cycles appearing in Figure 1 include four
states. Therefore, the second term in the right-hand-side
of Eq 6 is equal to 4. From Figure 1, it is also clear that,
for every initial state x ∈ X0, the first term in the right-
hand-side of Eq 6 is equal to 1. Hence, in the considered
example, T = 5.

The observation strings o(5;B(x)), x ∈ X̂0 ∪ X̃0, are pro-
vided in Table 1. More specifically, the first two columns
of Table 1 list the six-period observation strings for the
initial states x ∈ X̂0 while the last two columns provide
the corresponding observation strings for the initial states
x′ ∈ X̃0. The perusal of this table reveals that every state
in x ∈ X̂0 is distinguishable from every state x′ ∈ X̃0, and
therefore, the considered BN is not strongly infinite-step
opaque with respect to the secret state x̂ = [0, 0, 1, 0]T .

5 For brevity, we provide an explicit enumeration of the sets X0 and
X̂ instead of the corresponding Boolean functions ζ and ξ.

4. OPTIMAL ENFORCEMENT OF THE SOUGHT
OPACITY

In this section we consider the problem of enforcing the
strong infinite-step opacity of a BN B with a set of
possible initial states X0 and a secret-state set X̂, when
Algorithm 1 returns with a negative outcome. Obviously, a
first straightforward remedy of this problem is to remove
from the initial-state set X0 all states x ∈ X̂0 that fail
the test of Step 8 in Algorithm 1. Using the notation
introduced in Algorithm 1, this set of states is formally
characterized by

XB
0 ≡ {x ∈ X̂0 : ∀x′ ∈ X̃0, o(T ;B(x)) ̸= o(T ;B(x′))}

(16)
and it is the minimal set of initial states that must be
blocked in order to establish the sought opacity.

In the rest of this section, we consider an alternative mech-
anism for rendering BN B strongly infinite-step opaque
with respect to the secret-state set X̂. This mechanism
does not block any initial states x ∈ X0, but it tries to
satisfy the condition of Step 8 in Algorithm 1 by preventing
agent A from observing some of the variables oj in the
output vector o of BN B. In more technical terms, for any
index set J ⊆ {1, . . . ,m}, we define

o(J) ≡
[
oj : j ∈ {1, . . . ,m} \ J

]T
(17)

Also, B(J) denotes the BN induced from BN B by replac-
ing its output vector o by the binary vector o(J) defined
in Eq. 17. The index set J is characterized as effective if
BN B(J) is strongly infinite-step opaque with respect to

the initial-state set X0 and the secret-state set X̂. The set
collecting all the effective index sets J is denoted by J .
Finally, we assume that the blockage of an output variable
oj , j = 1, . . . ,m, incurs a cost cj > 0, and we want to
identify an effective index set J∗ ∈ J such that

J∗ = arg min
J∈J

∑
j∈J

cj (18)

The optimization problem defined by Eq. 18 is concep-
tually similar to the “static-mask synthesis” problem for
opacity-enforcement that is investigated in Cassez et al.
(2012). But the technical elements that are involved in the
detailed specification of this problem and its underlying
dynamics, are substantially different from their counter-
parts in the developments of Cassez et al. (2012), due to
the BN nature of the controlled plant.

Next, we provide an integer programming (IP) formulation
for the optimization problem of Eq. 18. First consider a
state pair (x, x′) ∈ XB

0 × X̃0. According to Algorithm 1,
an output variable oj distinguishes state x from state x′

if oj(x(t)) ̸= oj(x
′(t)) for some t ∈ {0, . . . , T}. Hence, the

output-variable subset O(x, x′) containing all the variables
that distinguish state x from x′, can be computed as
follows:

O(x, x′) =

T∨
t=0

(
o(x(t);B(x)) ⊕ o(x(t);B(x′))

)
(19)

In Eq. 19, the operators ‘
∨
’ and ‘⊕’ denote, respectively,

the ‘OR’ and the ‘XOR’ Boolean functions, and they
must be applied in a component-wise sense upon their m-
dimensional binary-vector arguments. The outcome of this

computation, O(x, x′), is an m-dimensional binary vector
with its ‘1’-valued components indicating the output vari-
ables oj that must be blocked in order to establish the
indistinguishability of x and x′.

Let I{C} denote the indicator function of some condition C,
i.e., I{C} is a binary variable that is equal to ‘1’ if condition
C is true and ‘0’ otherwise. Then, an index set J ⊆
{1, . . . ,m} will render a state x ∈ XB

0 indistinguishable

from the state set X̃0 if and only if∨
x′∈X̃0

I{O(x,x′)⊆J} (20)

Furthermore, the index set J is effective if and only if∧
x∈XB

0

∨
x′∈X̃0

I{O(x,x′)⊆J} (21)

Equations 19–21 enable a characterization of the target set
J through a SATISFIABILITY (SAT) formula (Papadim-
itriou (1995)). In order to turn this characterization into
a set of binary constraints, consider the binary variables
Yj , j = 1, . . . ,m, with

Yj = I{j∈J} (22)

Also, for all (x, x′) ∈ XB
0 × X̃0, define

J(x, x′) =
{
j ∈ {1, . . . ,m} : O(x, x′)[j] = 1

}
(23)

Then, the expression of Eq. 20 can be rewritten as follows:∨
x′∈X̃0

∧
j∈J(x,x′)

Yj =
∧

Ĵ∈×x′∈X̃0
J(x,x′)

|X̃0|∨
l=1

YĴ[l] (24)

Eq. 24 results from the distributivity of ‘∨’ with respect to
‘∧’. Eqs 21, 22 and 24 enable the characterization of the
set J by means of the binary variables Yj , 1, . . . ,m, and
the following constraint set:

∀x ∈ XB
0 , ∀Ĵ ∈ ×x′∈X̃0

J(x, x′),

|X̃0|∑
l=1

YĴ[l] ≥ 1.0 (25)

But then, an IP formulation for the computation of an
optimal effective index set J∗ is as follows:

min

m∑
j=1

cj · Yj (26)

s.t. Constraint 25 and the requirement Yj ∈ B, ∀j.

The above IP has m binary variables and O(|X0| ·m|X0|)
technological constraints. Furthermore, using the represen-
tation of the solution set J that is provided by Eqs 19–
21, it can be easily shown that the combinatorial op-
timization problem defined by Eq. 18 subsumes the set
covering problem (Papadimitriou (1995)), and therefore it
is NP-hard. 6 The affinity of the considered optimization
problem with the set covering problem also suggests that
it might be possible to adapt to this problem some of the
6 More specifically, an instance of the set covering problem with
universe set U = {u1, . . . , uk}, and a collection of subsets of U ,
S = {S1, . . . , Sm}, with associated costs cj , j = 1, . . . ,m, can be
polynomially reduced to the problem defined by Eq. 18, by setting: (i)
{oj , j = 1, . . . ,m+1} = S ∪ {d} with (ii) variable oj , j = 1, . . . ,m,
having cost cj , and variable om+1 having cost cm+1 = ∞; (iii)
XB

0 = U ; and (iv) X̃0 = S. Also, for any pair (ui, Sj) ∈ XB
0 ×X̃0, we

set J(ui, Sj) = {j}, if ui ∈ Sj ; otherwise, we set J(ui, Sj) = {m+1}.

Table 2. The index sets J(x, x′) of Eq. 23 for
the considered example.

X̂0⧹X̃0 0 0 0 1 1 1 1 0

0 0 0 0 3 1, 2, 3
1 1 1 1 1, 2, 3 3

existing heuristics for the set covering problem; but due
to the imposed space limitations, we defer the systematic
investigation of this possibility to our future work on this
problem. It is also possible to simplify the constraint set
of Eq. 25 by identifying (i) redundant variables in the
involved summations due to variable repetition in these
summations, and (ii) redundant constraints due to certain
set inclusions among the various sets J(x, x′) that are
defined by Eq. 23. In fact, these simplifications can be
iterated to the point that they might even lead to an
optimal solution of the underlying optimization problem
instance without having to formulate and solve the cor-
responding IP; we demonstrate this possibility with the
following example.

Example: We apply the methodology that was developed
in this section, in order to enforce the strong infinite-step
opacity for the BN B of the example that was presented in
Section 3. In that example it was found that every state
x ∈ X̂0 is distinguishable from some state in X̃0; therefore,
according to Eq. 16,XB

0 = X̂0. Then, applying the formula

of Eq. 19 to the state pairs (x, x′) ∈ X̂0 × X̃0, by means
of Table 1, we obtain the index sets J(x, x′) that are
tabulated in Table 2. Associating some costs cj , j = 1, 2, 3,
with the corresponding output variables oj , we can use
Table 2 to determine the IP that is defined by Eqs 25–
26. After some obvious simplifications of the constraint
set that is generated by Eq. 25, this IP can be written as
follows:

min

3∑
j=1

cj · Yj (27)

s.t.

Y1 + Y3 ≥ 1.0 ; Y2 + Y3 ≥ 1.0 ; Y3 ≥ 1.0 (28)

∀j ∈ {1, 2, 3}, Yj ∈ B (29)

Looking at the constraints of this IP, and also considering
the fact that cj > 0, ∀j, we can see that the optimal
solution for it is Y1 = Y2 = 0 ∧ Y3 = 1; i.e., J∗ = {3}.
This result could also have been obtained directly from
the information that is provided in Table 2, reasoning
according to either of the following two arguments:

Argument 1: The appearance of an index j in every cell
of a row in Table 2 corresponding to some state x ∈ XB

0 ,
implies that the output variable oj distinguishes state x

from every state x′ ∈ X̃0. Therefore, index j must be
included in J∗. In the considered example, index 3 is such
an index for both rows of Table 2. Furthermore, in this
case, the blockage of o3 renders (i) the state [0, 0, 0, 0]T

indistinguishable from the state [0, 0, 0, 1]T , and (ii)
the state [1, 1, 1, 1]T indistinguishable from the state
[1, 1, 1, 0]T . Hence, J∗ = {3}.
Argument 2: Since cj > 0, ∀j, for any x ∈ XB

0 and

x′, x′′ ∈ X̃0, J(x, x′) ⊂ J(x, x′′) implies that trying to
render state x indistinguishable from state x′′ is not a
competitive option, and the corresponding cells in Table 2

should be dropped from further consideration. In the
context of the considered example, the elimination of
these noncompetitive cells leaves the blockage of variable
o3 as the only competitive option for rendering states
[0, 0, 0, 0]T and [1, 1, 1, 1]T indistinguishable from the

state set X̃0. Hence, J∗ = {3}.

5. CONCLUSION

This paper has adapted the notion of strong infinite-step
opacity in the operational context of autonomous BNs,
and it has provided (i) an algorithm for the assessment
of this property and (ii) some mechanisms for its enforce-
ment in a maximally permissive manner. Instrumental in
these developments are (a) the 1-DFSA structure of the
underlying dynamics, and (b) the mechanism generating
the output that is traced by the external observer. With
these elements in mind, one can analyze and enforce addi-
tional notions of state-based opacity that were listed in the
introductory section. This analysis can be extended even
to controlled Boolean networks when the external observer
traces the controls that are applied at each iteration. On
the other hand, the case of controlled BNs with unobserv-
able controls at each iteration gives rise to observational
structures and dynamics that are closer to the typical
FSA-based representations of the opacity assessment and
enforcement problems that have been investigated by the
DES community. Finally, another issue that can render
more complete the developments that are presented in
this work, is the formal characterization of the worst-
case computational complexity of the opacity assessment
problem that is addressed in Section 3.

REFERENCES

Cassandras, C.G. and Lafortune, S. (2021). Introduction
to Discrete Event Systems (3rd ed.). Springer, NY,NY.

Cassez, F., Dubreil, J., and Marchand, H. (2012). Synthe-
sis of opaque systems with static and dynamic masks.
Formal Methods in Systems Design, 40, 88–115.

Cheng, D., Qi, H., and Li, Z. (2011). Analysis and Control
of Boolean Networks. Springer, London.

Cury, J.E.R. and Baldissera, F.L. (2012). Some perspec-
tives and challenges in the (discrete) control of cellular
systems. In Proc. of the 11th International Workshop
on Discrete Event Systems, 1–3. IFAC.

Gao, Z., Chen, X., and Basar, T. (2018). Stability struc-
tures of conjunctive Boolean networks. Automatica, 89,
8–20.

Hadjicostis, C.N. (2020). Estimation and Inference in
Discrete Event Systems: A Model-Based Approach with
Finite Automata. Springer, Switzerland.

Jacob, R., Lessage, J.J., and Faure, J.M. (2016). Overview
of Discrete Event Systems Opacity: models, validation
and quantification. Annual Reviews in Control, 41, 135–
146.

Kauffman, S.A. (1969). Metabolic stability and epigen-
esis in randomly constructed genetic nets. Journal of
Theoretical Biology, 22, 437–467.

Lafortune, S., Lin, F., and Hadjicostis, C.N. (2018). On the
history of diagnosability and opacity in discrete event
systems. Annual Reviews in Control, 45, 257–266.

Papadimitriou, C.H. (1995). Computational Complexity.
Addison-Wesley, Reading, MA.

