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Optimal sequential decision-making 
under uncertainty

Finance

Inventory management

Machine maintenance

Medical decision making
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Preven&on of heart disease involves balancing 
benefits and harms of treatment

Uncertain Future Benefits 
• Delay the onset of potentially deadly and 

debilitating heart attacks and strokes
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Immediate harms
• Side effects (e.g., muscle pain, frequent 

urination)



Markov decision processes generalize 
Markov chains to incorporate decisions
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Health states
• Blood pressure levels
• Cholesterol levels
• Current medications 

Steimle, L. N., & Denton, B. T. (2017). Markov decision processes for screening and treatment 
of chronic diseases. In Markov Decision Processes in Practice (pp. 189-222). Springer, Cham.



Markov decision processes can improve 
sequential decision making under uncertainty
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Clinical risk calculators are used to 
estimate a patient’s risk

72013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of 
Cardiology/American Heart Association Task Force on Practice Guidelines. 2014

Inputs:
• Age
• Sex
• Race
• Total Cholesterol
• HDL Cholesterol
• LDL Cholesterol
• Systolic Blood Pressure
• History of Diabetes
• On Hypertensive Treatment
• Smoker

Output:
Current 10-Year Risk



Well-established clinical studies give 
conflicting estimates about CVD risk
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1 Wilson et. al. Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation. 1998
Wolf et. al. Probability of stroke: a risk profile from the Framingham Study. Stroke. 1991
2 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of 
Cardiology/American Heart Association Task Force on Practice Guidelines. 2014
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Research Questions

How can we improve Markov decision 
processes to account for ambiguity?

How much benefit is there in doing so?

10



Stochastic dynamic optimization 
under ambiguity

Multi-model Markov decision processes

Decomposition methods
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We have two layers of uncertainty 
in our problem

13

Optimal control of a stochastic system… 
• Markov decision processes

…under parameter uncertainty
• Robust optimization
• Stochastic optimization



Robust optimization approach to ambiguity in 
Markov decision processes
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Assume that P lies within some 
ambiguity set
e.g., Interval Model

Goal is to maximize worst-case 
performance

(s,a)-rectangularity property gives a 
tractable model for MDPs



(s,a)-rectangularity is computationally 
attractive, but has its drawbacks
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Leads to overly-protective policies
ØOptimizing for case where all parameters take 

on worst-case values simultaneously

Transition matrices might lose known structure
ØAmbiguity is realized independently across 

states, actions, and/or decision epochs

Relaxing (s,a)-rectangularity causes max-min 
problem to be NP-hard*

*Wiesemann, Wolfram, Daniel Kuhn, and Berç Rustem. "Robust Markov decision 
processes." Mathema/cs of Opera/ons Research 38.1 (2013): 153-183.



The Multi-model Markov Decision Process is a 
new framework for handling ambiguity

Generalizes a Markov decision process
§ State space, ! ≡ {1,… , '}
§ Action space, ) ≡ {1,… , *}
§ Decision epochs, + ≡ {1,… , ,}
§ Rewards, - ∈ ℝ0×2×3

Finite set of models,  ℳ = 1,… , |ℳ|
§ Model 7: An MDP (!, ), +, -, 89)
§ Transition probabilities 89 are model-specific

17Steimle, L. N., Kaufman, D.L., and Denton B.T. (2018) “Multi-model Markov Decision Processes.” 
Optimization Online.



The weighted value problem seeks to find a 
single policy that performs well in each model

Performance of policy ! in model "
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We propose exact and approximate 
solu2on methods with bounds 
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Mixed-integer programming (MIP)

Weight-Select-Update (WSU)

Non-adaptive: Only Markov deterministic policies

Adaptive: Allow for history-dependent policies
Outer linearization with state-wise pruning
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We used an approximation algorithm to 
solve a heart disease management problem

Multi-model Markov decision process
§ 4,096 states
§ 64 actions
§ 20 decision epochs
§ 2 models

Case study data
§ Longitudinal data from Mayo Clinic
§ Framingham, ACC risk calculators
§ Disutilities from medical literature

Mason, J. E., Denton, B. T., Shah, N. D., & Smith, S. A. (2014). Optimizing the simultaneous 
management of blood pressure and cholesterol for type 2 diabetes patients. European Journal 
of Operational Research, 233(3), 727-738.



We compared our algorithm to 
policies that ignore ambiguity
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Quality-Adjusted Life Years Gained
Over No Treatment, per 1000 Men

Optimal Decisions for ACC Model
MMDP Decisions
Optimal Decisions for FHS Model



In some cases, ignoring ambiguity 
has relatively minor implications
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In some cases, ignoring ambiguity 
has relatively minor implications
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Quality-Adjusted Life Years Gained
Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for ACC Model
MMDP Decisions
Optimal Decisions for FHS Model

1,841 (-2%)

1,789 (-3%)



But in other cases, ignoring ambiguity 
can have major implications
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695.9

679.3 (-2%)
561.5 (-19%)

Optimal Decisions for ACC Model
MMDP Decisions
Optimal Decisions for FHS Model

Quality-Adjusted Life Years Gained
Over No Treatment, per 1000 Men

American College of Cardiology Model



Conclusions
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The MMDP allows for multiple models of stochastic 
system in the design of policies

The MMDP is difficult to solve computationally

A polynomial-time approximation algorithm can 
provide near-optimal solutions in many instances

Using a CVD case study, we showed can be important 
to address ambiguity arising from multiple models
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We have created exact solution methods 
for solving the weighted value problem

Mixed-integer programming (MIP)

Branch-and-cut

Custom branch-and-bound
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Branch-and-bound works towards finding 
policies that match across all models
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Relax requirement that policy must be same in each model

Goal: Find an implementable policy (policy is the same in all 
models) that maximizes weighted value

State 1
State 2

Tim
e 1

Tim
e 2
Tim

e 3

= Action 1
= Action 2
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Model 1 Model 2

Partial Policy 0 No ac3ons have been fixed in this 
par3al policy

Each model solved independently via 
backwards induc3on

Gives an upper bound !"

!"

B&B begins by solving each model independently



B&B proceeds by fixing a part of the policy that 
must match in all models
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Model 1 Model 2

Partial Policy 0 Pick a state-time pair to branch on

!"



B&B proceeds by fixing a part of the policy that 
must match in all models
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Model 1 Model 2

Partial Policy 1 Partial Policy 2

Pick a state-time pair to branch on

Fix an action to create add to the 
partial policy

!"
Partial Policy 0 



B&B solves a relaxation using backward 
induction to obtain upper bound
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Model 1 Model 2

!"

Partial Policy 2

Partial Policy 0 Solve each model’s MDP with 
reduced action space for state-
time pairs that are fixed

Model 1 Model 2

ParAal Policy 1

!#

Action is fixed according to partial policy



Pruning eliminates the need to explore all 
possible policies
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Model 1 Model 2

Partial Policy

Model 1 Model 2

Partial Policy

!"

Prune by bound
The incumbent is better than 
any possible completion of 
the partial policy

Prune by optimality
Solving the relaxation gives 
an implementable policy



We compared 3 exact methods on 240 
instances of MMDPs
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Solution Method Implementa1on % solved in 5 
minutes?

Optimality 
Gap (avg.)

MIP Extensive Form Gurobi 0% 12.2%

MIP Branch-and-cut Gurobi with 
Callbacks 0% 13.1%

Branch-and-Bound Custom code 
in C++ 97.9% 1.11%

[1] Steimle, L. N., Ahluwalia, V., Kamdar, C., and Denton B.T. (2018) “Decomposition methods for solving Multi-model 
Markov decision processes.” Optimization Online.
[2] Gurobi Optimization, LLC (2018) “Gurobi Optimizer Reference Manual", http://www.gurobi.com



Our custom branch-and-bound approach 
is the fastest of the solution methods
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Solution Method Implementation % solved in 5 
minutes?

Optimality 
Gap (avg.)

MIP Extensive Form Gurobi 0% 12.2%

MIP Branch-and-cut Gurobi with 
Callbacks 0% 13.1%

Branch-and-Bound Custom code 
in C++ 97.9% 1.11%



Conclusions
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A custom branch-and-bound approach 
outperforms MIP-based solution methods

MMDPs tend to be harder to solve when there 
is more variance in the models’ parameters

In many cases, the mean value problem 
provides an optimal or near-optimal solution.
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So far, we have considered a decision-
maker that maximizes expected value

41

!" # = %&,() *
+,-

.
/+ 0, 1 + /.3-(0)

Value of policy 
# in model m

6∗ # = max
&∈<=>

%ℳ[!"(#)]Weighted value problem 
maximizes expectation of 
model performance

What if the decision-maker wants to protection against 
undesirable outcomes resulting from ambiguity?



We modified the branch-and-bound algorithm 
to solve other ambiguity-aware formulations

max
$∈&'(

min+∈ℳ -+(/)

min
$∈&'(

max+∈ℳ max1$∈& -
+(2/) − -+(/)

max
4∈ℝ,$∈&'(

7
s. t. ℙ -+(/) ≥ 7 ≥ 1 − >
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[1] Ahmed A, Varakantham P, Lowalekar M, Adulyasak Y, Jaillet P (2017) Sampling Based Approaches for Minimizing 
Regret in Uncertain Markov Decision Processes (MDPs). Journal of Artificial Intelligence Research 59:229–264
[2] Merakli, M. and Kucukyavuz, S. (2019) “Risk-Averse Markov Decision Processes under Parameter Uncertainty with an 
Application to Slow-Onset Disaster Relief.” Optimization Online.

Max-min

Min-max-regret1

Percentile 
optimization2



These problems are still NP-hard. We compared 
to polynomial-time alternatives
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Mean Value Problem

(s,a)-rectangular 
finite scenario MDP*

max
$∈&'( )$, +, -

./0

1
2. 3, 4 + 2160(3)

Nilim, Arnab, and Laurent El Ghaoui. "Robust control of Markov decision processes 
with uncertain transition matrices." Operations Research 53.5 (2005): 780-798.

max9∈: min=>(?,9)∈@>(?,9)
2. 3, 4 + -

?A∈B
C. 3D 3, 4 E.60(3)



We compared these formulations in 
two case studies

Machine maintenance

Cardiovascular disease management
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Machine maintenance: 
Optimal timing of machine repairs

Options:
• Do Nothing at no cost
• Minor repair at low cost
• Major repair at high cost

Operating costs depend on quality of machine

61 2 3 4 5

High Quality Low Quality

RepairDo Nothing

45



46
Value Function, v

ℙ(# $, & ' ≤ #)

High Variance Instance

ℙ(#* $ ≤ #)

The measure of protection against can 
distribution of performance among models

Lower costHigher cost



47

Value Function, v

ℙ(# $, & ' ≤ #)

Best we could 
possibly do

High Variance Instance

ℙ(#* $ ≤ #)

The measure of protection against can 
distribution of performance among models



The measure of protection against can 
distribution of performance among models
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Value Function, v

Best weighted 
performance

Best worst-case performance

(s,a)-rect-MMDP 
does not mitigate 
ambiguity well

High Variance Instance

ℙ(#$ % ≤ #)



As variance in models decreases, the form of 
protection against ambiguity matters less 
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Value Function, v 

ℙ(#$ % ≤ #)

Low Variance Instance



50

J K L
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We considered these formulations to 
determine the optimal time to start statins 

Multi-model Markov decision process
§ 64 states (HDL/TC Levels)
§ 3 actions (Wait, low-dose, high-dose)
§ 34 decision epochs
§ 30 models

Case study data
§ Longitudinal data from Mayo Clinic
§ ACC risk calculator
§ Disutilities from medical literature

Mason, J. E., Denton, B. T., Shah, N. D., & Smith, S. A. (2014). Optimizing the simultaneous 
management of blood pressure and cholesterol for type 2 diabetes patients. European Journal 
of Operational Research, 233(3), 727-738.



Most formulations of the MMDP 
recommend similar policies
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(s,a)-rect-MMDP

Age Age

Better 
cholesterol

Worse
cholesterol

Not on a statin

On a low-dose statin

HDL/TC State

WVP-MMDP
Perc-Opt-MMDP (20%)
Max-min-MMDP



Most MMDP policies are similar;
(s,a)-rect-MMDP treats more aggressively
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(s,a)-rect-MMDP

High variance instance
Age

HDL/TC 
State

Age

Lower risk 

Higher risk

WVP-MMDP
Perc-Opt-MMDP (20%)
Max-min-MMDP



(s,a)-rect-MMDP can perform 
worse than MVP in all models 
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Regret from (s,a)-
rectangular projection

Regret, ℓ (QALYs per 1000 women)

ℙ($ %∗ − $ % ≤ ℓ)

40 800



(s,a)-rect-MMDP can perform 
worse than MVP in all models 

54

Regret from (s,a)-
rectangular projection

Regret, ℓ (QALYs per 1000 persons)

ℙ($ %∗ − $ % ≤ ℓ)

Benefit from aspirin, 
an important 
intervention for CVD 
prevention

40 800



(s,a)-rect-MMDP may not be good 
indicator of worst-case performance
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Difference between 
worst-case in 
(s,a)-rect-MMDP and 
max-min-MMDP



Conclusions
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Branch-and-bound can be modified to incorporate 
other protective measures towards ambiguity

Considering multiple models is most important when 
the models are quite different;  MVP tends to perform 
well for MDPs with imprecise parameters 

Use caution before employing the (s,a)-rectangularity 
property if not a supported assumption



Summary of contributions 
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We considered the issue of ambiguity in MDPs 
arising from multiple plausible models 

We created solution methods that allow for DM to 
consider performance in different models

We characterized when it is most important to 
consider ambiguity

Laid foundations for future work on incorporating 
ambiguity in stochastic dynamic optimization
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