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Markov decision processes (MDPs) are models for sequential decision-making that inform decision making

in many fields, including healthcare, manufacturing, and others. However, the optimal policy for an MDP

may be sensitive to the reward and transition parameters which are often uncertain because parameters are

typically estimated from data or rely on expert opinion. To address parameter uncertainty in MDPs, it has

been proposed that multiple models of the parameters be incorporated into the solution process, but solving

these problems can be computationally challenging. In this article, we propose a policy-based branch-and-

bound approach that leverages the structure of these problems and numerically compare several important

algorithmic designs. We demonstrate that our approach outperforms existing methods on test cases from

the literature including randomly generated MDPs, a machine maintenance MDP, and an MDP for medical

decision making.
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1. Introduction

Markov decision processes (MDPs) are used to model sequential decision-making under

uncertainty in many fields, including healthcare, machine maintenance, inventory control,

and finance (Boucherie and Van Dijk 2017, Puterman 1994). MDPs are stochastic control

processes whereby a decision maker (DM) seeks to maximize rewards over a planning

horizon. In this article, we consider expected discounted rewards over an infinite horizon,

where the expectation depends on the DM’s decisions, the transition probabilities, and

rewards which describe the stochastic reward process. However, the transition probability

and reward parameters are uncertain because they are typically estimated from data,

synthesized from systematic reviews of the literature, or based on expert opinion. The
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optimal decisions may depend on such parameters used in the optimization process, leading

to ambiguity in what the DM should do.

Recent e↵orts have sought to improve sequential decision-making by directly incorporat-

ing parameter uncertainty into MDPs. One proposed approach is the Multi-model Markov

decision process (MMDP) wherein the DM considers multiple models of the MDP’s param-

eters in the solution (Steimle et al. 2018, Buchholz and Scheftelowitsch 2019). Solving an

MMDP involves finding the policy that performs the best with respect to the weighted aver-

age of the policy’s performance in each model, and this problem has been shown to be NP-

hard for infinite-horizon MMDPs (Buchholz and Scheftelowitsch 2019) and finite-horizon

MMDPs (Steimle et al. 2018). Both Steimle et al. (2018) and Buchholz and Scheftelowitsch

(2019) proposed mixed-integer program (MIP) formulations to solve these problems when

considering the class of stationary (Markov) deterministic policies. However, it has been

shown that this formulation struggles to scale to larger problem instances.

To address the computational challenge of infinite-horizon MMDPs, Buchholz and

Scheftelowitsch (2019) considered heuristics. Meraklı and Küçükyavuz (2019) proposed a

MIP formulation for an extension of the MMDP in which the DM may be risk-averse

to parameter ambiguity. In the finite-horizon setting, Steimle et al. (2019) designed a

policy-based branch-and-bound (B&B) algorithm that can solve MMDPs faster than the

previously proposed MIP formulation (Steimle et al. 2018). The B&B approach for solving

finite-horizon MMDPs relies on exploring promising partial Markov deterministic policies

until the optimal solution is found. To obtain bounds for partial policies, their algorithm

solves a relaxation on each node in the B&B tree in which each model is independently

solved using backwards induction. Nodes are enumerated in the tree by fixing certain

actions in certain state-time pairs and then employing traditional B&B pruning methods

until the optimal solution is found. Although this approach worked well for finite-horizon

MDPs with parameter ambiguity, it is an open question whether a similar B&B approach

would also outperform MIP-based solution methods for infinite-horizon MMDPs.

In this article, we consider a policy-based branch-and-bound (PB-B&B) approach for

solving infinite-horizon MMDPs and examine di↵erent options for the algorithmic design.

We consider di↵erent node selection strategies including depth-first search (DFS), breadth-

first search (BrFS), or best-first search (BeFS). Di↵erent strategies for branching in the PB-

B&B tree are also considered. We also explore the use of exact and approximate solution



Ahluwalia, Steimle, and Denton: Infinite-Horizon MMDPs

3

methods for solving the relaxation and obtaining upper bounds at each node, such as policy

iteration and value iteration (see Chapter 6 of Puterman (1994) for a description of these

methods). We analyze the computational performance of the PB-B&B with respect to the

stopping criteria for these alternative approaches. More specifically, we consider the trade-

o↵ between solving the relaxation using a very small convergence parameter to obtain a

tighter upper bound and the additional computational e↵ort required to do so.

We then compare the best-performing PB-B&B design to the current standard for solving

these problems, a MIP formulation implemented using a commercial solver. We compare

the PB-B&B and MIP-based solution methods on three sets of test instances. The first

set is comprised of MMDPs in which all parameters are sampled randomly (Buchholz

and Scheftelowitsch 2019). The second set is a study of the optimal time to repair a

deteriorating machine under uncertainty in the transition probabilities which describe the

deterioration process (Delage and Mannor 2010). The third set is based on a model of the

optimal time to start treatment for a patient with HIV under multiple plausible models

of the natural history of HIV and the remaining life expectancy after beginning treatment

(Shechter et al. 2008). We show that the PB-B&B approach outperforms the MIP-based

approach on larger problems, but that using a MIP formulation may be su�cient for small

scale instances.

In summary, the main contributions of this work are as follows:

• We propose the first PB-B&B method for solving infinite-horizon MDPs with multiple

models of the parameters.

• We propose and evaluate algorithmic designs for the PB-B&B method that are unique

to infinite-horizon MDPs.

• We demonstrate the performance of our PB-B&B on 3 di↵erent case studies of MMDPs

and we show that the best algorithmic design outperforms the existing MIP approaches

for solving these instances.

• We illustrate that the PB-B&B algorithm is easily modified to support a percentile

optimization objective and outperforms the corresponding MIP formulation.

The remainder of this article is organized as follows. In Section 2, we state the infinite-

horizon MMDP after we provide background on infinite-horizon MDPs relevant to the

PB-B&B algorithm. In Section 3, we describe our algorithmic approach and several design

considerations, and in Section 4, we compare these designs numerically. In Section 5, we
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demonstrate the e↵ectiveness of our PB-B&Bs algorithm on three di↵erent MDPs from

the literature. In Section 6, we conclude with a discussion of the main contributions of our

study, and we propose ideas for future work.

2. Problem statement

In this section, we present the problem setting in which we apply our PB-B&B algorithm.

We begin by describing the standard infinite-horizon MDP, and we then describe the

infinite-horizon MMDP. For brevity, we refer to these as the MDP and MMDP from this

point forward.

The stochastic process for a standard MDP is described by a discrete-time Markov chain

over a set of states, S = {1, . . . , |S|}. The initial state of the system is determined by

the initial state distribution vector, µ 2 [0,1]|S|, such that µ(s) represents the probability

that the MDP will start in state s. At each decision epoch t 2 T := {1,2, . . .}, the DM

observes the state of the Markov chain, s, and specifies a control action a 2A. Then, the

Markov chain will evolve stochastically such that the state of the system at time t+1 will

be s0 with probability p(s0|s, a) 2 [0,1]. When implementing action a in state s, the DM

receives a reward of r(s, a), and rewards are discounted at a rate � 2 [0,1). We consider

the setting where all rewards and transition probabilities are stationary meaning that

they are independent of time. We summarize the parameters of an MDP using the tuple

(S,A,R,P,µ) where R 2 R|S|⇥|A| and P 2 R|S|⇥|A|⇥|S| denote the rewards and transition

probabilities, respectively.

The DM uses a policy to determine which actions to take. In general, a policy may depend

on the entire history of the MDP, but it is well-known that stationary Markov policies

are optimal for infinite-horizon MDPs with stationary transition probabilities and rewards

(Puterman 1994, §6.2). Therefore, we consider the class of stationary deterministic policies

of the form ⇡ : S 7! A. When the DM implements a policy ⇡, the expected discounted

reward to the DM will be:

Eµ,P,R,⇡

" 1X

t=1

�t�1r(s, a)

#
, (1)

which depends on the MDP parameters, R and P . The optimal policy is obtained as a

solution to the following well-known optimality equations :
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v(s) =max
a2A

�
r(s, a)+�

X

s2S

p(s0|s, a)v(s0)
 
, 8s2 S. (2)

In this article, we specifically focus on infinite-horizon MDPs. Infinite-horizon MDPs are

widely used to model controlled stochastic processes with stationary rewards and transition

probabilities and long time-horizons relative to the decision epoch (Puterman 1994, Ch.

6). Thus, infinite-horizon models are often appropriate for stochastic control processes

such as inventory control and machine maintenance. Because the search space is limited

to stationary policies, infinite-horizon MDPs tend to be easier to solve than their finite-

horizon counterparts. Reducing the search space o↵ers computational benefits and several

algorithms leverage this when determining an optimal solution to the set of equations in (2),

such as value iteration, policy iteration, modified policy iteration, and linear programming.

We refer the reader to Chapter 6 of Puterman (1994) for the details of these methods.

2.1. The Multi-model Markov decision process

The MMDP framework includes a finite collection of models of the MDP, M =

{1, . . . , |M|}. Each model is itself an MDP defined on the same state space and

action space, with reward and transition probabilities possibly dependent on the model:

(S,A,Rm, Pm, µ). We let rm(s, a) denote the model-specific reward of taking action a in

state s in the MDP m. Similarly, pm(s0|s, a) denotes the model-specific probability of tran-

sitioning from state s to s0 by taking action a.

Multiple objectives can be considered in the MMDP framework to design policies that

account for multiple models of the parameters including maximizing minimum model value,

minimizing maximum model regret, and percentile optimization (Steimle et al. 2019, Mer-

aklı and Küçükyavuz 2019). In this article, we focus on the weighted value problem (WVP).

In the WVP, each model m is assigned a weight ↵m 2 (0,1) such that
P

m2M↵m = 1. The

goal of the DM in this setting is to select a policy that maximizes the weighted average of

the objective functions from each model. That is, if policy ⇡ achieves the following value

function in model m:

vm⇡ =Eµ,Pm,Rm,⇡

"
X

t=1

�t�1rm(s, a)

#
,
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then the weighted value of policy ⇡ is given by:

W (⇡) =
X

m2M

↵mv
m
⇡ . (3)

The goal is to find a policy ⇡ 2⇧ that maximizes the weighted value:

W ⇤ =max
⇡2⇧

W (⇡)

where ⇧ is the class of stationary deterministic policies. Stationary deterministic policies

are desirable due to their ease of implementation and interpretability, and others have

similarly searched over this policy class to design policies for MMDPs (Buchholz and

Scheftelowitsch 2019, Meraklı and Küçükyavuz 2019). The WVP has been shown to be

computationally di�cult:

Theorem 1 (Buchholz and Scheftelowitsch (2019)). Solving the weighted value

problem is NP-hard.

Although we discuss the development of our solution methods in the context of the weighted

value problem, our framework easily extends to other proposed multi-model objectives

such as those discussed in Steimle et al. (2019) and Meraklı and Küçükyavuz (2019) which

reflect DMs that are risk-averse to ambiguity in the MDP parameters. We show how a

modification of our framework can be used to solve the percentile optimization objective

for infinite-horizon MMDPs proposed in Meraklı and Küçükyavuz (2019) and discuss the

results in a numerical study. The goal of the DM in percentile maximization is to maximize

the value, z, such that P(vm⇡ � z) � 1 � ⌘. On the other hand, the goal of the DM in

percentile minimization is to minimize the value, z, such that P(vm⇡  z)� 1�⌘.

2.2. Related work

We now describe related work on mitigating parameter ambiguity in MDPs and focus

on related methods where multiple models of MDPs are considered. As demonstrated in

Mannor et al. (2007), parameter ambiguity can negatively impact decision-making in two

ways. First, the DM may choose to operate under a policy that is not actually optimal

because the optimization process was done with respect to parameter estimates that di↵er

from the true parameters of the MDP. Second, the DM may get a false sense of confi-

dence in that the value function found via the optimization process is higher than the
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true optimal value functions. Recently, there has been a stream of research dedicated to

methods for addressing parameter ambiguity in MDPs. Robust optimization has been a

common approach for addressing parameter ambiguity in MDPs. In the robust MDP set-

ting, the DM seeks to select a policy that performs the best when the transition probability

parameters are allowed to vary within an ambiguity set. Nilim and El Ghaoui (2005) and

Iyengar (2005) showed that the max-min objective is tractable so long as the ambiguity

set has a special structure called (s, a)-rectangularity, which means that the ambiguity

set is constructed as the Cartesian product of ambiguity sets corresponding to rows for

each (s, a) 2 S ⇥A. The rectangularity assumption often leads to conservative solutions

that perform poorly in expectation with respect to parameter uncertainty (Zhang et al.

2019). Work in this stream of research has sought to either find ambiguity sets that remain

tractable while relaxing the (s, a)-rectangularity requirement (Mannor et al. 2016, Goyal

and Grand-Clement 2018, Zhang et al. 2019) or assume distributional information about

the model parameters (Delage and Mannor 2010, Xu et al. 2012). We refer the interested

reader to Mannor and Xu (2019) for more details on robust optimization approaches for

MDPs with parameter ambiguity.

In contrast to the work above, the MMDP approach characterizes parameter uncertainty

via multiple sets of model parameters with no rectangularity assumption. The MMDP

approach under the weighted value objective was concurrently developed by Buchholz and

Scheftelowitsch (2019) and Steimle et al. (2018) in the infinite-horizon and finite-horizon

settings, respectively. Meraklı and Küçükyavuz (2019) noted that the weighted value objec-

tive may not be appropriate for DMs that are risk-averse to parameter ambiguity in MDPs

and proposed an extension of the MMDPs using a percentile optimization objective. In

general, the MMDP approach is NP-hard for the weighted value problems (Buchholz and

Scheftelowitsch 2019, Steimle et al. 2018) and the percentile optimization problem (Delage

and Mannor 2010).

Exact solution methods for solving these hard problems have relied on MIP formula-

tions. Buchholz and Scheftelowitsch (2019) proposed a MIP formulation to find the optimal

deterministic stationary policy to solve infinite-horizon MMDPs. Steimle et al. (2018) also

proposed a MIP formulation in the finite-horizon setting, and Meraklı and Küçükyavuz

(2019) proposed a MIP formulation for the percentile optimization objective. The formu-

lation in (4) is based on the primal linear programming formulation that can be used to
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solve a single MDP (Puterman 1994, §6.9), with additional binary variables and logic-based

constraints to enforce that each model of the MDP is operating under the same policy

max
⇡, v

X

m2M

X

s2S

↵mµ
m(s)vm(s) (4a)

s.t.
X

a2A

⇡t(a|s) = 1, 8s2 S, (4b)

M⇡(a|s)+ vm(s)��
X

s02S

pm(s0|s, a)vm(s0) rm(s, a)+M, 8m2M, s2 S, a2A,

(4c)

⇡t(a|s)2 {0,1}, 8a2A, s2 S, (4d)

vm(s)2R, 8m2M, s2 S (4e)

where the binary variables are defined as follows:

⇡(a|s) =

8
><

>:

1 if the optimal policy takes action a in state s

0 otherwise
,8s2 S, a2A.

In (4), the continuous variables, vm(s), represent the value to go in model m from state

s under the policy described by the ⇡ variables. Constraints (4b) ensure that only one

action is taken in each state. Constraints (4c) ensure that the value functions take on

their maximum values so long as they correspond to the policy ⇡ and rely on the use of

“big-M”s to enforce the logical relationship between the value function variables and the

policy variables.

Although this formulation is valid, early work has shown that it does not scale well

(Buchholz and Scheftelowitsch 2019, Steimle et al. 2019). Most approaches for solving

practical sized instances have depended on heuristic methods (Buchholz and Scheftelow-

itsch 2019, Steimle et al. 2018, Meraklı and Küçükyavuz 2019). Steimle et al. (2019) were

recently successful in solving finite-horizon MMDPs using a B&B approach that relies on

backward induction to generate bounds; however, their approach does not translate directly

to infinite-horizon MDPs. In the next section we propose policy-based B&B algorithms for

infinite-horizon MMDPs.
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3. Methods

The PB-B&B framework we present takes advantage of the decomposable nature of the

MMDP while leveraging specialized algorithms for solving MDPs to obtain bounds for each

partial solution in the B&B tree. The main di�culty in solving MMDPs is that the optimal

policy, ⇡⇤ must maximize the weighted performance, which is known to be NP-hard. In

contrast, given a policy ⇡, the objective value corresponding to that policy is easily found

by evaluating ⇡ independently in each of the |M| MDPs.

We now present Algorithm 1 (PB-B&B) which leverages the decomposable structure of

the MMDP. The algorithm starts by solving each model independently and subsequently

adds restrictions that policies must agree across all models. These restrictions are are added

incrementally based on partial policies which specify the actions to be taken in some, but

not necessarily all, of the states. In other words, a subset of the states have a valid action

a 2 A fixed for all models, while all other states do not have any such restrictions. In

order to obtain an upper bound on the objective value corresponding to the best possible

completion of a partial policy, the algorithm solves a relaxed version of the MMDP. In

this version, the states that do not have their actions specified by the partial policy are

allowed to have di↵erent actions in each model. To solve this relaxation, each model in the

MMDP can be solved independently using standard methods so long as states follow the

actions prescribed by the partial policy if they have been specified.

Solving the relaxed MMDP at a given node provides an upper bound for the given partial

policy. If the bound is worse than the best known completed policy (the incumbent), then

the node can be pruned. Warm-starting the algorithm with a good incumbent policy may

help accelerate the pruning of nodes by bound. A natural approach to warm-start is the

solution to the mean value problem (MVP), which is a single MDP wherein each parameter

takes on its weighted value across all the models of the MMDP. For instance, the MVP’s

transition probability parameters are specified as p̄(s0|s, a) =
P

m2M↵mpm(s0|s, a) for all

s, s0 2 S and a 2A. If the optimal completion of the partial policy at a node is the same

in each model, the node can be pruned and the incumbent updated if appropriate. The

upper bound on the weighted value is obtained in Line 6. If the DM would like to consider

another objective function, such as maximizing the (100⇥ ⌘th-percentile as Meraklı and

Küçükyavuz (2019) do, one would replace Line 6 with the upper bound on the 100⇥ ⌘-

percentile.
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Pending nodes are examined by branching to further define the node’s partial policy. To

do so, we select a state s that is not already fixed under the partial policy and create |A|
children nodes, one for each policy action that will be required by this new node’s partial

policy. In Algorithm 1, branching is accomplished in Steps 18 and the “for loop” starting

in step 19.

In the discussion that follows, we present several key considerations for the design of the

PB-B&B algorithm. We summarize these design considerations in Table 1.

3.1. Node Selection Strategies

There are multiple strategies for selecting pending nodes to e�ciently explore the space

of all possible policies. There are three main node selection strategies: 1) best-first search

(BeFS) 2) depth-first search (DFS) and 3) breadth-first search (BrFS). In BeFS, the algo-

rithm prioritizes the completion of policies with the highest upper bounds. In DFS, the

algorithm wishes to obtain complete policies as soon as possible. Lastly, in BrFS, all actions

for a particular state are explored before fixing actions in another state. We explore the

best choice of node selection design computationally in Section 4.

3.2. Branching strategies

Another important design consideration in the PB-B&B algorithm is the branching strat-

egy. In the context of the PB-B&B algorithm, the branching strategy will determine which

state should be added to the subset of states for which actions are fixed according to the

partial policy. We consider a branching strategy that follows from the high-level idea behind

branching on the “most-fractional variable” in B&B for integer programming (Wolsey 1998,

p. 99) because we branch on the state for which the relaxation is furthest from a completed

policy. The idea is that if many models disagree about the appropriate action to take for a

particular state, branching on this state may reduce the number of future nodes explored.

We consider two other types of branching strategies that consider discrepancies between

the individual models. The first, value-based disagreement branching (VDB), measures

disagreement using the standard deviation of individual models’ value functions found

solving the relaxation in Step 5. The second, policy-based disagreement branching (PDB),

branches on the state where there is the largest number of unique actions specified by

individual models’ policies found solving the relaxation. As a reference branching strategy,

we also consider arbitary branching (AB) in which states are branched on in a sequential

order, starting with s1 and ending with s|S|.
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Algorithm 1: Policy-based branch-and-bound (PB-B&B)

Data: An MMDP

Result: The optimal weighted value W ⇤, an optimal policy ⇡⇤

1 Lower bound: WLB �1

2 Let ⇡̂(s) ;, 8s2 S

3 Let Q be the set of pending nodes and Q= {⇡̂} the corresponding set of partial

policies while Q 6= ; do

4 Remove a pending node from Q and let ⇡̂ be the corresponding partial policy

5 Solve relaxation with ⇡̂ to obtain (⇡1, . . . ,⇡m) and (v1,. . . , vm)

6 W  
P

m2M↵mvm⇡m

7 if W <WLB then

8 Prune node Q by bound

9 end

10 if ⇡m = ⇡m0
,8(m,m0)2M⇥M then

11 if W >WLB then

12 WLB W

13 ⇡⇤ ⇡1

14 else

15 Prune node Q by bound

16 end

17 else

18 Select a state s̄ such that ⇡̄(s̄) is empty

19 for each a2A do

20 Let ⇡a(s) = ⇡(s) 8s 6= s̄

21 Let ⇡a(s̄) = a

22 Q Q[⇡a

23 end

24 end

25 end

26 W ⇤ WLB
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Algorithm Design Choice Designs Considered

Node selection strategy Best-first search (BeFS)

Breadth-first search (BrFS)

Depth-first search (DFS)

Branching strategy Arbitary branching (AB)

Value-based disagreement branching (VDB)

Policy-based disagreement branching (PDB)

Monotone branching (MB)⇤

Bounding strategy Linear programming (LP), Exact

Policy iteration (PI), Exact

Value iteration (VI), Approximation

Modified policy iteration (MPI), Approximation
Table 1 Algorithmic design choices for PB-B&B.

⇤
Monotone branching is considered in special cases.

3.3. Bounding strategies

In Step 5 of Algorithm 1, we obtain an upper bound on the best possible completion of

a given partial policy by solving the node relaxation of the MMDP. We consider four

methods for solving the relaxation: value iteration (VI), policy iteration (PI), modified

policy iteration (MPI), and linear programming (LP).

The choice of using an exact or approximate method for solving the relaxation at each

node presents an interesting potential trade-o↵ in computational performance. On the one

hand, we could use exact solution methods like PI or LP to obtain tighter upper bounds

than the approximate methods and could potentially prune nodes by bound earlier in the

search process; however, the tighter upper bounds may come at the cost of additional

computational e↵ort to solve each node relaxation. On the other hand, approximation

algorithms like VI and MPI may generate looser upper bounds, leading the algorithm to

potentially explore more nodes, but the bounds at each node could be generated more

quickly.

For the approximation algorithms (VI and MPI), there are well-known stopping criteria

that will guarantee ✏-optimal solutions (Puterman 1994, §6.3, §6.5). We hypothesized that

increasing ✏ would result in a trade-o↵ in the time required to solve node relaxations versus

the total number of nodes explored. We explore this trade-o↵ computationally in Section

4.
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3.4. Enhancements for monotone policies

In this section, we show how PB-B&B can be enhanced when only searching over the space

of monotone policies. For standard MDPs, there exist su�cient conditions that guarantee

the existence of an optimal monotone policy (Puterman 1994, §6.11.2). Monotone policies

are often desirable to DMs due to their interpretability.

First, we show that if each of the MMDP’s models satisfies some su�cient conditions for

a monotone policy to be optimal, then the MVP is guaranteed to have a monotone policy

that is optimal.

Proposition 1. If each model, m2M, satisfies the following conditions:

1. rm(s, a) is non-decreasing in s for all a2A,

2. qm(k|s, a) is non-decreasing in s for all k 2 S and a2A,

3. rm(s, a) is a superadditive function on S ⇥A,

4. qm(k|s, a) is a superadditive function on S ⇥A for all k 2 S,

then there is guaranteed to be a non-increasing policy that is optimal for the MVP of the

MMDP.

The result of Proposition 1 is useful because it implies that we can use the solution to the

MVP as a warm-start for the PB-B&B algorithm when searching over only the class of

monotone policies for an MMDP where this restriction is natural.

Empirically, we have observed that if each model in the MMDP has a monotone policy

that is optimal, the optimal policy for the WVP is also monotone; Meraklı and Küçükyavuz

(2019) have also observed this phenomenon. However, su�cient conditions for the MMDP

optimal policy to be monotone have not been identified. Nevertheless, monotone policies

have desirable properties such as their interpretability and ease of implementation. Further,

the DM may find it appealing that the solution to the WVP is no more complex than the

solution to the individual MDPs or the MVP.

We consider two enhancements to the B&B strategy that exploit monotone policies. In

the first enhancement, we modify the branching strategy to omit examining certain actions

that would violate the monotone nature of the optimal policy. Specifically, on Step 19 of

Algorithm 1, only partial policies that could be completed with a monotone policy are

added to the set of pending partial policies. In the second enhancement, we modify the

method for solving node relaxations. For instance, PI in Step 5 could be replaced with
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with monotone PI (Puterman 1994, §6.11.2) which achieves computational e�ciencies by

eliminating non-monotone policies from consideration.

4. Numerical study of PB-B&B designs

In this section, we compare the di↵erent approaches for solving the MMDP. We generated

random test instances of MDPs to compare the PB-B&B under the di↵erent designs spec-

ified in Section 3 and summarized in Table 1. After determining the best designs for the

PB-B&B algorithm, we will compare the B&B approach to the MIP-based approach in

Section 5.

4.1. Design of test instances

We compared our algorithmic designs on a set of randomly generated MMDP instances

which were generated using the procedure described in Buchholz and Scheftelowitsch

(2019). The rewards, model weights, initial distributions, and transition probability matri-

ces in these instances are randomly sampled from uniform distributions, and all vectors

describing probability distributions are scaled so that their sum is equal to one. We com-

pared our di↵erent designs on 30 MMDP instances with 8 states, 8 actions, and 8 models

each. The discount factor for each instance was set to 0.97.

All experiments were run on a Windows Server 2012 R2 Standard with a 3.4 GHz Intel

processor and 128 GB of RAM. The PB-B&B was implemented in C++. The MIP for-

mulation and the linear programming relaxation solution were implemented using Gurobi

7.5.1. The number of threads for Gurobi was set to be 1. We recorded the computation

time in CPU seconds and the optimality gap. We attempted to solve each test instance to

within 1% of optimality subject to a time limit of 300 seconds.

4.2. Algorithmic Design Results

Table 2 compares the BeFS, DFS, and BrFS node selection strategies in terms of the com-

putation time, number of nodes visited, and the optimality gap. We found that these strate-

gies performed similarly in terms of median computation time. However, BeFS noticeably

outperformed the other two node selection strategies in mean computation time. Moreover,

BeFS was able to solve all but one of the thirty test instances, whereas BrFS was unable

to solve four instances, and DFS could not solve six instances within the time limit. The

single instance where best-first search (BeFS) did not terminate within 300 seconds had an

optimality gap of 1.4%, while the worst case optimality gaps for BrFS and DFS were 5.6%
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and 26.4%, respectively. Although all three node selection strategies may perform similarly

on average, the poor worst case performances of BrFS and DFS suggest that BeFS may

be the best choice of node selection strategy.

Table 2 Computational comparison of the three node selection strategies: Best-first search (BeFS),

Breadth-first search (BrFS), and Depth-first search (DFS). Policy-based disagreement branching (PDB) was used

for the branching strategy and Value iteration (VI) was used as the method for solving the relaxation. 30

instances were solved with a discount factor 0f 0.97.

Selection Instances Solution Time Nodes Optimality

Strategy Solved (CPU Secs.) Visited (1000s) Gap (%)

Avg. Med. Max. Avg. Max. Avg Max.

BeFS 96.7% 97.4 67.1 > 300.0 134.9 349.0 <1.0 1.4

BrFS 86.7% 101.5 68.7 > 300.0 164.5 369.4 <1.0 5.6

DFS 80.0% 106.4 71.7 > 300.0 138.3 350.3 3.2 26.4

Table 3 compares the VDB, PDB, and AB branching strategies in terms of the number

of instances solved, computation time, and number of nodes visited. We found that PDB

works the best among the three branching strategies in terms of number of instances

solved, mean and worst-case gaps, and mean number of nodes explored. We found that

VDB performed worse than AB, leading us to believe that the value functions are not a

meaningful measure of policy disagreement among the models. VDB had a significantly

higher average and median computation time and worst-case optimality gap relative to the

other two branching strategies. These findings suggest that branching on states in which

there is disagreement in the optimal policy can lead to computational gains relative to

simply branching in an arbitrary fashion.

We now present the trade-o↵ between obtaining tight upper bounds and solving relax-

ations quickly when using approximation methods to generate bounds. Figure 1 demon-

strates the influence of increasing the stopping criteria, ✏, on total computation time for two

di↵erent values of the discount factor, �. For each value of discount factor, we observe that

the mean computation time initially decreases in ✏ and then begins to increase once ✏ grows

su�ciently large. Our findings suggest that solving each node very close to optimality led

to overall increases in computation time due to the additional time spent processing each
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Table 3 Computational comparison of three branching strategies: Value-based disagreement branching (VDB),

Policy-based disagreement branching (PDB), and Arbitary branching (AB) on the test instances. Best-first search

(BeFS) was the node selection strategy and Value iteration (VI) was the method for solving the relaxation. 30

instances were solved with a discount factor 0f 0.97.

Branching Instances Solution Time Nodes Optimality

Strategy Solved (CPU Secs.) Visited (1000s) Gap (%)

Avg. Med. Max. Avg. Max. Avg Max.

AB 90.0% 112.3 71.1 > 300.0 140.0 393.5 <1.0 1.4

PDB 96.7% 97.6 67.8 > 300.0 134.8 349.1 <1.0 1.4

VDB 83.3% 123.9 84.8 > 300.0 156.2 308.5 1.1 2.2

Figure 1 Comparison of mean runtimes for 6 di↵erent values of the approximation algorithm’s stopping criteria,

✏, and two di↵erent discount factors.

node. On the other hand, while large values of ✏ allowed the relaxation at a given node to

terminate quickly, these values led to poor upper bounds, leading the algorithm to explore

more nodes in the tree. We found that selecting an ✏ in the middle of these two extremes can

decrease overall computation time and that a good choice of ✏ will be problem-dependent.

Empirically, we observed that using a stopping criteria of ✏= 2⇥0.001⇥W⇥�
1�� tended to perform

well across a wide number of instances, where W is the value of the wait-and-see objective

of the instance. For our final PB-B&B design, we use this approach to pre-compute a value

of the stopping criteria ✏ before beginning the branching.
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Finally, Table 4 shows the computation time, number of nodes visited, and the optimality

gap for the VI, MPI, LP, and PI bounding strategies. We found that the approximation

algorithms, VI and MPI, significantly outperformed the exact algorithms, LP and PI, in

terms of computation time. The approximation algorithms were able to solve 96.7% of the

instances, whereas the exact methods could not solve a single instance within the time

limit. Since PI could only examine around 720 nodes on average, as opposed to VI and

MPI, which examined 100,000 nodes on average, the time to solve the relaxation at a given

node using PI was significantly longer than the approximation algorithms. At the same

time, solving the relaxation exactly clearly did not yield bounds that facilitated increased

node pruning, demonstrating the ine↵ectiveness of PI for solving large MMDPs.

The approximation algorithms, VI and MPI outperform the exact methods, suggesting

that generating an ✏-optimal solution to the relaxation quickly will yield su�ciently tight

bounds that lead to faster solution time. Between the approximation algorithms, MPI

outperformed VI in terms of mean and median computation time, despite examining more

nodes on average. Therefore, our results suggest that MPI is the most e↵ective method for

solving the relaxation in PB-B&B.

Table 4 Computational comparison of four methods for solving the relaxation: Value iteration (VI), Modified

policy iteration (MPI), Policy iteration (PI), and Linear programming (LP) on the test instances. Best-first search

(BeFS) was the node selection strategy and Policy-based disagreement branching (PDB) was the branching

strategy. 30 instances were solved with a discount factor 0f 0.97. MPI used an mn = 5; for more details, consult

Puterman (1994).

Relaxation Instances Solution Time Nodes Optimality

Strategy Solved (CPU Secs.) Visited (1000s) Gap (%)

Avg. Med. Max. Avg. Max. Avg Max.

VI 96.7% 102.9 69.3 > 300.0 134.6 349.0 <1.0 1.55

MPI 96.7% 96.6 61.7 > 300.0 142.1 367.9 <1.0 1.55

PI 0% > 300.0 > 300.0 > 300.0 0.7 0.8 15.0 18.8

LP 0% > 300.0 > 300.0 > 300.0 12.7 13.1 7.8 11.8
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5. Case studies

In this section, we present numerical experiments comparing the best implementation of

the B&B algorithm with the MIP formulation presented in (4). We used the following three

test cases:

• Random instances (RI) from Buchholz and Scheftelowitsch (2019): These

MMDP instances are generated using the same procedure from Buchholz and

Scheftelowitsch (2019) which was used in Section 4. In this section, we vary the number

of actions, states, and models, and we generate 30 instances of each problem size. We

generated test instances by sampling the transition probability and reward parameters

from the distributions described in the article and used a discount factor of 0.97.

• Machine maintenance (MM) from Delage and Mannor (2010): This MMDP

was generated from the description of a machine maintenance MDP described in

Delage and Mannor (2010). The state space is comprised of eight states representing

di↵erent levels of quality the machine’s operation while two states correspond to dif-

ferent types of maintenance. There are four actions corresponding to di↵erent repair

options that influence which type of maintence the machine will undergo. Parameter

ambiguity in the transition probabilities among the di↵erent states under the repairs

options is modeled using a Dirichlet distribution. The nominal transition probabil-

ity parameters were scaled by a concentration parameter, denoted c, to generate the

parameters for the Dirichlet distribution. We considered three values of concentration

parameters, c= 1, 5, and 9. We also considered MMDPs with 10, 30, and 100 models.

We still use a discount factor of 0.97.

• HIV therapy (HIV) from Shechter et al. (2008): This MMDP was generated

from the description of an MDP used to determine the optimal time to initiate therapy

for HIV from Shechter et al. (2008). There are six states in the model: four transient

states corresponding to the patient’s CD4 count (an indicator of the disease’s severity)

and two absorbing states corresponding to death and post-treatment. The actions are

whether or not to start therapy in order to maximize a quality-adjusted measure of life

expectancy. The authors present multiple plausible models of this decision making pro-

cess due to the di↵erent methods for estimating utilities, natural history of the disease,

and prognosis after treatment. The di↵erent methods for estimating the parameters

lead to 72 di↵erent models that define the infinite-horizon MMDP. We found that each
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model of the MDP, when solved independently, satisfied the requirements for having

an optimal non-decreasing monotone policy (Puterman 1994, §6.11.2). Therefore, we
also used a version of this MDP, which we refer to as HIV-M, to test the enhancements

for monotone policies that we discussed in Section 3.4.

For RI and MM, we generated 30 instances for each set of problem characteristics by

sampling from the distributions described in these articles. For all problem instances, we

instituted an optimality gap of 1% and a time limit of 300 seconds. For the MM case

study, we also considered a version of the MMDP with a percentile optimization objective

(Meraklı and Küçükyavuz 2019). The goal of the DM in the MM case study is percentile

minimization, or to minimize the value, z, such that P(vm⇡  z) � 1� ⌘. We denote this

objective using PercOpt(100⇥⌘%), which signifies optimizing the 100⇥⌘-th percentile. We

compared the PB-B&B approach to a MIP formulation and analyzed the policies resulting

from the weighted value and PercOpt objective functions. We provide details about the

MIP implementation of this problem in Appendix B.2. We have created a repository of the

data for these test instances which is available at: https://doi.org/10.7302/2frp-2m36.

All experiments were run on a Windows Server 2012 R2 Standard with a 3.4 GHz

Intel processor and 128 GB of RAM. The PB-B&B was implemented in C++. The MIP

formulation was implemented using Gurobi 7.5.1. The number of threads for Gurobi was set

to be 1. The big-Ms used in the MIP were tightened according to the procedure described

in Appendix B.1. We recorded the computation time in CPU seconds and the optimality

gap for both the PB-B&B and the MIP formulation.

The results of our experiments comparing PB-B&Bs to the MIP formulation for the

weighted value objective are summarized in Table 5. For each case study and for each set

of problem characteristics, the PB-B&B performed at least as well as the MIP in terms

of the percentage of instances solved. In addition, the PB-B&B significantly outperformed

the MIP in terms of average computation time and the average optimality gap for large

problem instances.

The PB-B&B and MIP both solved the small problems very quickly. The first four sets

of problem instances shown in Table 5 were solved in under one second on average. For

slightly larger problem instances, such as the 5-model, 5-state, 5-action MMDPs, the PB-

B&B begins to outperform the MIP. For 2-model, 10-state, 3-action problems, the PB-B&B

shows greater improvements over the MIP formulation, with a mean computation time

https://doi.org/10.7302/2frp-2m36
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Table 5 Computational comparison of the PB-B&B and MIP for the RI, MM, and HIV MDPs. For each

problem size, the instance was solved to within 1% of optimality. Each solution method was warmstarted with the

mean-value policy and had a time limit of 300 seconds. The discount factor was 0.97 for all cases. The PB-B&B

design included BeFS as the node selection strategy, PDB as the branching strategy, and MPI as the method for

solving the relaxation. The PB-B&B used the monotone branching strategy for the HIV-M case.

MDP Characteristics Instances Solution Time Optimality Gap

|M| |S| |A| c Solved Avg., (CPU Secs.) Avg., (%)

PB-

B&B

MIP PB-

B&B

MIP PB-

B&B

MIP

RI 2 2 2 NA 100% 100% 0.03 0.02 <1 <1

3 3 3 NA 100% 100% 0.09 0.04 <1 <1

2 5 2 NA 100% 100% 0.02 0.03 <1 <1

10 5 2 NA 100% 100% 0.08 0.08 <1 <1

5 5 5 NA 100% 100% 0.72 1.07 <1 <1

2 10 3 NA 100% 100% 0.04 11.66 <1 <1

2 10 10 NA 100% 0% 9.18 >300.0 <1 1666.9

3 20 4 NA 86.7% 0% 98.84 >300.0 1.2 1385.6

3 50 3 NA 0% 0% >300.0 >300.0 7.0 1327.7

5 50 5 NA 0% 0% >300.0 >300.0 16.0 2586.8

3 100 4 NA 0% 0% >300.0 >300.0 12.2 2315.2

3 200 4 NA 0% 0% >300.0 >300.0 11.9 2200.0

3 300 4 NA 0% 0% >300.0 >300.0 12.4 2244.9

MM 10 10 4 1 100% 83.3% 1.37 177.14 <1 77.0

10 10 4 5 100% 10% 1.72 287.90 <1 470.8

10 10 4 9 100% 6.7% 1.54 292.81 <1 495.6

30 10 4 1 100% 23.3% 8.62 298.13 <1 185.1

30 10 4 5 100% 0% 4.57 > 300.0 <1 931.1

30 10 4 9 100% 0% 4.46 > 300.0 <1 1019.8

100 10 4 1 100% 0% 50.02 >300.0 <1 952.4

100 10 4 5 100% 0% 11.54 >300.0 <1 1855.0

100 10 4 9 100% 0% 5.84 >300.0 <1 1970.1

HIV 72 6 2 NA NA NA 0.14 0.10 <1 <1

HIV-M 72 6 2 NA NA NA 0.05 0.10 <1 <1

of 0.04 seconds versus 11.66 seconds, respectively. The PB-B&B continues to significantly

outperform the MIP as the problem size increases. When the MMDP has 2 models, 10

states, and 10 actions, the MIP formulation is unable to solve a single test instance within
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the time limit. Meanwhile, the PB-B&B solved every such problem with a mean of 9.18

seconds. Moreover, once this problem size was reached, the MIP had an optimality gap at

termination of over 1600% on average. For a much larger problem size (3 models, 20 states,

4 actions), the PB-B&B was still able to solve a majority of the test instances while the

MIP still could not solve a single one of these instances. Among the four test instances of

this size that the PB-B&B could not solve, the maximum optimality gap after 300 seconds

was less than 3%. Lastly, for the largest problem instances, neither the PB-B&B nor the

MIP were able to solve the test instances within the time limit. However, the highest mean

optimality gap for the PB-B&B was 16%, versus 2200% for the MIP.

In the MM problem instances, the PB-B&B significantly outperformed the MIP formu-

lation for each of the 270 test instances. The PB-B&B solved all instances of the MM

decision-making problem within the time limit, whereas the MIP formulation only solved

37% of the instances. For very large problem instances, such as with 100 models, the MIP

formulation could not solve any of the instances within the 300-second time limit. Similar

results were noted for the large RI instances.

When solving the MM problem instances, the solution time for the PB-B&B increased

as the number of models increased and as the concentration parameter decreased. The

expected time required for solving the relaxation grows linearly in the number of models,

which explains why increasing the number of models also increases overall computation

time. We suspect that the computation time increases as the concentration parameter

decreases because there is more variation in each of the model’s parameters. When the

models are increasingly di↵erent from one another, each model’s individual policy is di↵er-

ent, leading to increased disagreement among policies and the exploration of more nodes.

Interestingly, the performance of the MIP was better when the concentration parameter

decreased. However, as the concentration parameter increased and the models became more

similar, the MIP required more computation time and overall had much higher optimality

gaps at termination.

For the HIV case study, we observed that a non-decreasing monotone policy was optimal

for the WVP based on Theorem 6.11.6 of Puterman (1994). For these instances, we tested

a separate branching strategy, Monotone branching (MB), in which we limited our search

space to monotone partial policies. This resulted in a significant relative reduction in

the number of nodes, 15 to 5 nodes, and computation time, from 0.14 to 0.05 seconds,
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respectively. Although this is a small problem instance, this finding suggests that monotone

branching may be useful for reducing the number of nodes explored within the PB-B&B

algorithm, generating significant computational savings on very large problems.

Table 6 shows a comparison of the PB-B&B and MIP solution methods in terms of

instances solved, solution time, and optimality gap for the MM problem instances with a

percentile optimization objective for ⌘ = 0.0 (PercOpt(0%)), 0.10 (PercOpt(10%)), 0.25

(PercOpt(25%)). In this case, ⌘ = 0.0 is equivalent to minimizing the worst-case cost.

As observed with the WVP, the PB-B&B approach outperforms the MIP formulation,

with the PB-B&B solving 807 of the 810 test instances within the time limit, whereas the

MIP was only able to solve 312 out of 810. The PB-B&B also outperformed the MIP in

terms of average solution time for all problem sizes and percentile values; it also had a

higher percentage of instances solved and a better average optimality gap in all but one

problem size (PercOpt(0%), 30 models, 10 states, 4 actions, c= 1).

In general, the solution time required to solve the percentile optimization objective

decreased with the percentile for the PB-B&B but increased with the percentile for the

MIP. As previously seen with the WVP, the solution time increased for the MIP as the

concentration parameter increased and variance subsequently decreased. We observed the

opposite trend for the PB-B&B, but only when there were 100 models, since the average

solution time considerably decreased as the variance increased. We conjecture that the

behavior of the MIP for PercOpt(10%) and PercOpt(25%) may be attributed to the fact

that when model variances are large, there is a clear stratification of the value functions,

allowing the algorithm to more easily find the desired percentile value. Yet when the value

functions are closer to each other, it is more di�cult for the MIP to pinpoint the model

value for the desired percentile. Overall, these findings demonstrate that the PB-B&B

approach outperforms MIP-based solution methods when extended to another multi-model

objective function that is relevant for risk-averse DMs.

Figure 2 demonstrates how the WVP and percentile optimization objectives compare in

terms of mitigating parameter ambiguity in MDPs. The boxplots show the distribution of

the models’ value functions for a 100-model instance of the MM MMDP under di↵erent

optimal policies. Boxplots for additional instances are shown in Appendix C. The WVP

policy is obtained via PB-B&B for the WVP objective function. The other policies are
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Table 6 Computational comparison of the PB-B&B and MIP for the MM MMDPs using the percentile

optimization objective for the corresponding percentile, ⌘. For each problem size, the instance was solved to

within 1% of optimality. Each solution method was warmstarted with the mean-value policy and had a time limit

of 300 seconds. The discount factor was 0.97 for all cases. The PB-B&B design included BeFS as the node

selection strategy, PDB as the branching strategy, and MPI as the method for solving the relaxation.

⌘ Characteristics Instances Solution Time Optimality Gap

|M| |S| |A| c Solved Avg., (CPU Secs.) Avg., (%)

PB-

B&B

MIP PB-

B&B

MIP PB-

B&B

MIP

0.0 10 10 4 1 100.0% 100.0% 1.48 50.33 <1 <1

10 10 4 5 100.0% 100.0% 2.22 62.58 <1 <1

10 10 4 9 100.0% 100.0% 2.78 71.55 <1 <1

30 10 4 1 96.7% 100.0% 23.62 97.36 1.1 <1

30 10 4 5 100.0% 100.0% 9.85 159.43 <1 <1

30 10 4 9 100.0% 100.0% 10.12 170.99 <1 <1

100 10 4 1 96.7% 23.3% 88.85 288.73 1.1 51.2

100 10 4 5 96.7% 0.0% 59.48 >300.0 1.0 191.7

100 10 4 9 100% 0.0% 32.83 >300.0 <1 237

0.1 10 10 4 1 100.0% 100.0% 0.78 154.82 <1 <1

10 10 4 5 100.0% 93.3% 1.47 192.23 <1 11.8

10 10 4 9 100.0% 96.7% 1.75 183.01 <1 2.9

30 10 4 1 100.0% 0.0% 4.40 >300.0 <1 417.0

30 10 4 5 100.0% 0.0% 5.44 >300.0 <1 570.6

30 10 4 9 100.0% 0.0% 5.53 >300.0 <1 580.8

100 10 4 1 100.0% 0.0% 33.11 >300.0 <1 714.5

100 10 4 5 100.0% 0.0% 20.40 >300.0 <1 1101.1

100 10 4 9 100.0% 0.0% 10.25 >300.0 <1 1285.8

0.25 10 10 4 1 100.0% 36.7% 0.68 284.93 <1 223.6

10 10 4 5 100.0% 26.7% 1.04 290.58 <1 199.1

10 10 4 9 100.0% 63.3% 1.03 278.62 <1 74.3

30 10 4 1 100.0% 0.0% 3.58 >300.0 <1 852.5

30 10 4 5 100.0% 0.0% 3.25 >300.0 <1 866.3

30 10 4 9 100.0% 0.0% 3.28 >300.0 <1 853.5

100 10 4 1 100.0% 0.0% 28.21 >300.0 <1 1223.8

100 10 4 5 100.0% 0.0% 9.65 >300.0 <1 1827.5

100 10 4 9 100.0% 0.0% 5.82 >300.0 <1 1918.7
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found using PB-B&B for the percentile optimization objective that optimized the 0th per-

centile (worst-case), 10th percentile, and 25th percentile. As expected, we observe that

the WVP policy performs the best in terms of the weighted value, the PercOpt(0%) per-

forms the best in terms of worst-case model value, and the other percentile optimization

objectives achieve their respective percentiles.

(a) c= 1 (Highest variance) (b) c= 5 (c) c= 9 (Lowest Variance)

Figure 2 Boxplots showing the distribution of an MMDP’s models’ value functions for a 100-model instance of the

MM MMDP under di↵erent policies. The WVP policy is obtained via PB-B&B for the WVP objective

function. The other policies are found using PB-B&B for the percentile optimization formulation that

optimized the 0th percentile (worst-case), 10th percentile, and 25th percentile. In the MM MMDP,

we aim to minimize cost.

For a concentration parameter of 1, Figure 2(a) illustrates that while the WVP optimal

policy did not have the lowest worst-case cost, it did have the lowest weighted-value cost

as well as the second lowest worst-case cost, which was better than the policies of both

PercOpt(10%) and PercOpt(25%). Moreover, both PercOpt(10%) and PercOpt(25%) had

multiple individual models whose value functions were outliers, many of which exceeded

200.

The fact that the WVP policy outperforms a policy optimized for the 10th or 25th

percentiles can likely be ascribed to the binary nature of the objective in terms of whether a

model has a cost below the optimized percentile value. That is, the percentile optimization

tends to sacrifice the performance of models that tend to have higher cost in order to achieve

a policy that improve the desired percentile. We also observe that as the concentration

parameter increases, and in turn as the variance among the models’ parameters decreases,

the value functions for the various models tend to be more similar under the various models.

This suggests that the objective function that is specified to mitigate parameter ambiguity
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is most important when the variance among the models’ parameters is high. As a result,

when there is high variance in the model parameters, the DM is advised to solve the WVP

as opposed to PercOpt because this objective function e↵ectively balances the trade-o↵s

of the worst case performance with its weighted value performance.

In summary, our experiments show that the PB-B&B significantly outperforms the MIP

in terms of computation time and optimality gaps for several large, existing decision-

making problems across di↵erent domains. As a result, we recommend that the PB-B&B

be used to solve large infinite-horizon MMDPs due to the algorithm’s ability to exploit the

specific problem structure and the MIP’s inability to quickly generate favorable bounds.

We also demonstrated the flexibility of the PB-B&B algorithm by solving a percentile

optimization version of the MMDP. The PB-B&B outperformed a MIP formulation of the

percentile optimization version and demonstrated that the WVP objective can perform

better than the percentile optimization objective in terms of weighted and worst-case

performance.

6. Conclusion

We considered a new solution method for solving infinite-horizon MDPs when the DM has

multiple plausible models of the parameters. This problem has been shown to be NP-hard

and existing solution methods based on the state-of-the-art MIP have struggled to scale

to larger instances of these problems.

In this article, we proposed a custom PB-B&B as a solution method which leverages the

ability to optimize and evaluate policies quickly for single-model MDPs. By branching on

the policy-space, we are able to use specialized solution methods for single-model MDPs

to quickly obtain bounds. We considered several important design considerations for the

PB-B&B algorithm, including the node selection strategy, branching strategy, bounding

strategy, and choice of stopping criteria, and explored their performance numerically using

a test set of previously-published random instances described in Buchholz and Scheftelow-

itsch (2019). We found that BeFS node selection and a PDB branching strategy tended

to perform the best in our computational experiments. We also found that using MPI, an

approximation method, can obtain bounds when solving the relaxation much faster than

exact methods such as LP or PI. Lastly, we found a good rule-of-thumb for pre-computing

the stopping criteria, ✏, which can enhance the performance of the approximation algo-

rithms in generating bounds. Overall, our PB-B&B can successfully solve large problems by
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exploiting the specific problem structure of the MMDP as well as by solving subproblems

approximately, instead of exactly.

We compared the performance of PB-B&B against MIP-based methods on previously-

published MDP formulations where there are multiple models of the parameters: a set

of random MMDP instances reported in Buchholz and Scheftelowitsch (2019), a set of

machine maintenance MDPs with parameter ambiguity presented in Delage and Mannor

(2010), and a medical decision-making instance to determine optimal treatment of HIV

when there are multiple plausible models of the MDP Shechter et al. (2008). PB-B&B

significantly outperformed the MIP formulation on each of these case studies when the

MDPs had many states, actions, and/or models. We also demonstrated that, if the best

monotone policy is acceptable for the DM, PB-B&B can be modified for further compu-

tational gains. For very large problem instances, the PB-B&B could not solve a problem

within the 300 second time limit, but its optimality gap was reasonably small, whereas the

MIP sometimes had gaps greater than 2000% for these same instances.

We presented the PB-B&B algorithm in the context of the WVP. One may view the

WVP as an appropriate objective for a DM who is risk-neutral towards ambiguity in the

model’s parameters. However, others have proposed alternative objectives that may be

more appropriate for a DM that is risk-averse to ambiguity in the model’s parameters,

such as the percentile optimization objective proposed in Meraklı and Küçükyavuz (2019).

We demonstrated that the PB-B&B is easily adapted to consider other objectives, such as

percentile optimization, by simply changing the calculation for the upper bound at each

node in the branch-and-bound tree. Using numerical experiments, we demonstrated that

the PB-B&B algorithm outperformed a MIP-based approach for percentile optimization.

Further, our experiments revealed that a WVP approach can yield policies that outperform

policies generated from certain percentile optimization objectives in terms of both weighted

and worst-case performance. This finding suggests that the WVP may lead to more robust

solutions than a percentile optimization objective, depending on the percentile optimized.

We also found that the choice of objective function for the MMDP is most important

when the variance in transition probabilities among the models’ is high. In these situations,

the WVP objective function tended to o↵er both good weighted value and worst-case

performance relative to the percentile optimization objectives. Meanwhile, when variance
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in the model parameters is low, the policies generated by the di↵erent objective functions

tend to perform similarly.

Our study is not without limitations. In our computational study, we found the PB-

B&B approach was unable to solve some of the MMDPs with 50 or more states within a

time limit of 300 seconds. However, the PB-B&B still fared significantly better on these

large instances than the MIP approach. In addition, the computational gains associated

with monotone policy structure were relevant to only one of our test instances and it was

not a large problem. Nevertheless, our results do demonstrate the feasibility of exploiting

this problem structure and showed significant relative improvement in computation times.

We compared our PB-B&B algorithm to a MIP-based approach to solve the percentile

optimization version of the MMDP. Although we did our best to replicate the proposed

formulation from Meraklı and Küçükyavuz (2019), there may be small di↵erences between

our implementation of the proposed formulation and the implementation that is presented

in Meraklı and Küçükyavuz (2019), which would lead to di↵erences in performance.

There are opportunities to build upon the ideas presented in this paper. First, there may

be other enhancements to the PB-B&B algorithm. We considered the most well-known

node selection strategies but other more specialized node selection strategies may perform

better. Similarly, there may be methods that incorporate aspects of di↵erent algorithmic

design choices, such as combining PDB and VDB. Second, we presented our algorithms

in the context of the WVPs and PercOpt problems, but the best search strategies for

other objective functions (e.g. regret) could vary. Finally, we showed how our PB-B&B

algorithm could be modified to exploit monotonicity of policies. Future work may explore

how other side constraints that add structure to the policy can be incorporated into such

a framework.

Acknowledgments

This work was supported by the National Science Foundation under grant numbers DGE-1256260 (Steimle)

and CMMI-1462060 (Denton); any opinions, findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Appendix



Ahluwalia, Steimle, and Denton: Infinite-Horizon MMDPs

28

A. Proof of Proposition 1

Proof of Proposition 1 Theorem 6.11.6 of Puterman (1994) states that if an MDP satisfies Conditions

1-4 in the statement of the proposition, then there exists a monotone nonincreasing policy that is optimal

for the MDP. We prove the proposition by showing that if each model in an MMDP satisfies Conditions 1-4,

then there exists an optimal policy for the MVP that is monotone nonincreasing.

First, we will show that the rewards and tailsums are nondecreasing if Condition 1 is satisfied for the

MMDP. By Condition 1 of the assumption, each model’s rewards are nondecreasing with respect to states for

each action and model. Therefore, because the weights are non-negative, it follows that the MVP’s rewards

are also nondecreasing:

rm(s, a) rm(s+1, a), 8a2A,m2M

)
X

m2M

↵mrm(s, a)
X

m2M

↵mrm(s+1, a), 8a2A.

Thus, the MVP reward function satisfies Condition 1 of Puterman (1994) Theorem 6.11.6. A similar argument

shows that the MVP’s tailsums
P

m2M↵mqm(k|s, a) are nondecreasing in s for all k 2 S and a2A and thus

Condition 2 is also satisfied.

Next, we show that the rewards and tailsums of the MVP are superadditive. We show this for the rewards

case. By Condition 3 and the definition of superadditivity, each model has superadditive rewards:

rm(s�, a�)+ rm(s+, a+)� rm(s+, a�)+ rm(s�, a+), 8m2M,

where s�  s+ 2 S, and a�  a+,8a2A. Therefore, for s�  s+ and a�  a+, it follows that

↵mrm(s�, a�)+↵mrm(s+, a+)� ↵mrm(s+, a�)+↵mrm(s�, a+), 8m2M

) ↵m(rm(s�, a�)+ rm(s+, a+))� ↵m(rm(s+, a�)+ rm(s�, a+)), 8m2M

)
X

m2M

↵m(rm(s�, a�)+ rm(s+, a+))�
X

m2M

↵m(rm(s+, a�)+ rm(s�, a+))

This implies that the MVP also has superadditive rewards which satisfies Condition 3 of Theorem 6.11.6 in

Puterman (1994). A similar argument shows the tailsums are superadditive satisfying Condition 4. Thus,

Conditions 1-4 are satisfied. By Theorem 6.11.6 of Puterman (1994), it follows that if Conditions 1-4 are

satisfied for all models that define an MMDP, then the corresponding MVP is guaranteed to have a monotone

policy that is optimal. ⇤

B. Implementation details

B.1. Tightening procedure for big-Ms

In the MIP formulation that was implemented in Section 5, we select the big-Ms in the constraint (4c)

corresponding to model m, state s, and action a to be su�ciently large so that these constraints become

redundant if ⇡(a|s) = 1. However, we desire that these big-M values are as small as possible so long as they

stay su�ciently large. Tightening the big-Ms improves the linear programming relaxation of the problem

and has been shown to improve the running time of MIP solvers.
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To tighten the big-Ms, we used a similar procedure to that described in Meraklı and Küçükyavuz (2019)

and Steimle et al. (2018) by considering the value functions under the best possible policy:

min
v 2R|S|·|M|

X

s2S

µm(s)vm(s) (5a)

s.t. rm(s, a)+�
X

s02S

pm(s0|s, a)vm(s0) vm(s),8s2 S,m2M, a2A (5b)

and the value functions under the worst-possible policy:

max
v 2R|S|·|M|

X

s2S

µm(s)vm(s) (6a)

s.t. rm(s, a)+�
X

s02S

pm(s0|s, a)vm(s0)� vm(s),8s2 S,m2M, a2A (6b)

Considering these value functions, we select the big-Ms to be specific to each state s and each model m by

selecting the big-M for all corresponding constraints in (4c) such that:

Mm,s � v̄m(s)� vm(s)

where v̄m(s) is the optimal value of vm(s) in (5) and that vm(s) is the optimal value of vm(s) in (6).

B.2. Implementation of the percentile optimization formulation

Below we outline the specific version of Meraklı and Küçükyavuz (2019) proposed a similar MIP-based

formulation for solving the percentile optimization formulation of the MMDP:

max
⇡ 2⇧, v 2R|S|·|M|, z 2R

z (7a)

s.t. P
 
X

s2S

µm(s)vm(s)� z

!
� 1�⌘, (7b)

rm(s,⇡(s))+�
X

s02S

pm(s0|s,⇡(s))vm(s0,⇡(s0)) = vm(s,⇡(s)),8s2 S,m2M (7c)

In short, the formulation above maximizes the value z so that there is at least (1� ⌘) probability that the

value function is at least z. In other words, the (100⇥⌘)th percentile is maximized.

Keeping with our previous notation, we define ⇡ as binary decision variables representing the policy

and v as continuous variables representing the value function for each model and state. In the percentile

optimization formulation, we also introduce binary variables ym for each model which take on a value of 1

if the value in model m is at least z and zero otherwise. The constraint (8d) ensures that the ym value will

take on a value equal to 1 for models with values greater than or equal to z and all models with a value

less than z will have a ym value of 0. Constraint (8e) requires that there is no more than ⌘ chance that the

models have values less than z.

max
⇡, v, y, z

z (8a)

s.t.
X

a2A

⇡(a|s) = 1, 8s2 S, (8b)
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M⇡(a|s)+ vm(s)��
X

s02S

pm(s0|s, a)vm(s0) rm(s, a)+M, (8c)

8m2M, s2 S,

a2A,

z+M 0ym�
X

s2S

µm
1 (s)v

m(s)M 0, 8m2M, s2 S, (8d)

X

m2M

↵mym � 1�⌘ 8m2M, (8e)

⇡(a|s)2 {0,1},8a2A, s2 S, (8f)

ym 2 {0,1},8m2M, (8g)

vm(s)2R, 8m2M, s2 S, (8h)

z 2R. (8i)

The big-Ms in (8c) are the same as those discussed in Appendix B.1 and there is a specific big-Ms for each

state and model, which we denote Mm,s. The big-Ms in constraint (8d) are tightened specific to each model,

M 0
m =

P
s2S Mm,s.

C. Additional comparisons of WVP and PercOpt for the MM case study

In Figures 3 and 4, we provide boxplots for two additional instances of the MM case study which compare the

value functions for the WVP, PercOpt(0%), PercOpt(10%), and PercOpt(25%). We provide these boxplots

to demonstrate that our findings were consistent across multiple instances.

(a) c= 1 (b) c= 5 (c) c= 9

Figure 3 Boxplots showing the distribution of an MMDP’s models’ value functions for a second 100-model

instance of the MM MMDP under di↵erent policies. The WVP policy is obtained via PB-B&B for the

WVP objective function. The other policies are found using PB-B&B for the percentile optimization

formulation that optimized the 0th percentile (worst-case), 10th percentile, and 25th percentile. In the

MM MMDP, we aim to minimize cost.

As with the instance shown in Figure 2, we observe that the WVP policy tends to perform well with respect

to the weighted performance across the MMDP models relative to the PercOpt formulations, especially when

variance is high. In Figure 3(a), the weighted performance of the WVP policy is substantially better than

the weighted performance of the PercOpt(0%) policy, even though the latter has a better worst-case cost.
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(a) c= 1 (b) c= 5 (c) c= 9

Figure 4 Boxplots showing the distribution of an MMDP’s models’ value functions for a third 100-model instance

of the MM MMDP under di↵erent policies. The WVP policy is obtained via PB-B&B for the WVP

objective function. The other policies are found using PB-B&B for the percentile optimization formu-

lation that optimized the 0th percentile (worst-case), 10th percentile, and 25th percentile. In the MM

MMDP, we aim to minimize cost.

In addition, the worst-case cost of the WVP policy is noticeably lower than that of PercOpt(25%), although

the percentile optimization formulation for the 10th percentile slightly outperforms the WVP policy in the

worst-case.

In the instance shown in Figure 4, we observe that the WVP once again outperforms the 10th and 25th

percentile optimization approaches in terms of both weighted and worst-case performance. The worst-case

cost for the WVP is also quite similar to the worst-case cost for PercOpt(0%). As discussed in the main

body of this article, the choice of MMDP objective function is more important when the variance across the

models’ parameters is high.
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