Switch Doctor Project

ECE 4011

Georgia Tech Team

Team Members: Fabrizzio Campos, Ryan Odari, Derek Warner,

Mamadou Cisse, Habtamu Bonso

Faculty Adviser: Lukas Graber

Lead Hubbell Engineers

Technical Contact: David Rhein Director Contact: Jerry Goolsby

End of the Semester Presentation

- In today's presentation, we will look at the finalized design decisions that the team has made as well as the overall topology of the project.
- We would also like to begin preparing for the upcoming semester, and explain progress.

Overall Topology

- Attached is the current topology of the design
- This will allow us to organize and prepare to order parts at the beginning of the Fall semester

Thermocouple

- Preference to use type K Thermocouple (Chromel/Alumel)
 - Nickel based, good corrosion resistance
 - Temperange range -200 to 1260 degree celsius
 - Handle rugged environment water, mild chemical solutions, gasses, dry areas
 - Uncoated wire probe, quick response time
 - Suited for MAX38155

TOLERANCE OF A TYPE K THERMOCOUPLE				
	°C			
ANSI	Temperature Range	Standard	Special	
	-200 °C to -100 °C	± 2% T		
	-100 °C to 0 °C	± 2.2 °C		
	0 °C to 275 °C	± 2.2 ℃	± 1.1 ℃	
	175 °C to 293 °C	± 2.2 ℃	± 0.4 % T	
	293 °C to 1260 °C	± 1.75% T	± 0.4 % T	

Thermocouple Amplifier MAX31855 Breakout Board

Benefits and Features of MAX31855

- The MAX31855 performs cold-junction compensation and digitizes the signal from a type K thermocouple
- Exhibits K type thermocouple accuracy of ±2°C for temperatures ranging from -200°C to +700°C for K-type thermocouples
- Integration Reduces Design Time and Lowers System Cost
 - •14-Bit, 0.25°C Resolution Converter
 - Integrated Cold-Junction Compensation
 - Detects type K Thermocouple Shorts to GND or VCC
 - Detects Open type K Thermocouple
 - Interfaces to MSP-EXP460G2 microcontroller

Application Circuit

Microcontroller

- The microcontroller has the basic requirements needed for the design project
- CAN bus
- Sufficient clock frequency
- ADC pins
- The reason for using this microcontroller is cost and power consumption
- Low cost \$10
- ultra-low power consumption

Specifications of the MSP-EXP430G2 microcontroller		
Microcontroller Design Requirements	Specifications	
Clock Frequency	32.76 kHz	
RAM Memory	512 bytes	
Flash Memory	16 kB	
Input Voltage	1.8 V- 3.6 V	

Sim900 GSM Module

Design parameters	Specifications
Supply Voltage	3.2 to 4.8V
Operating Temperature	-40°C to +85 °C
Low power consumption	1.5mA (sleep mode)
control	Via AT command (GSM 07.07,07.05)
Dimensions	24x24x3mm
Operating frequency	Quad-Band 850/900/1800 MHz
Industrial Temperature Range	-40°C to +85°C

- The reason for using/choosing this device is Quad-Band frequency, which is recommended for U.S.A network
- It supports 3G/4G cellular networks

Power Supply

Supercapacitor:

PCAP0050 P230 S01

50 F, 2.3 VDC, $36 \text{ m}\Omega \text{ ESR}$

Buck-Boost Converter:

TPS63050

0.5 A continuous output current, 2.5-5.5 V Vin, OvertemperatureProtection

PV Panel:

FYD-004

1.5 W, 2.2 V 0.68 A at max power

