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Let G be a finitely-generated left-orderable group.

Quantify the complexity of left-orderings on G.

Theorem (Linnell)
The set of left-orders of G, LO(G), is either finite or uncountably infinite.

@ Tararin gave a precise algebraic characterization of groups with finitely many
left-orders.

@ Recently, Clay and Calderoni study LO(G) up to orbit equivalence and give
examples of groups of different Borel complexity.
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The space of left-orders of groups

In general, LO(G) can be topologized as follows:

Definition (Sikora)

Fix a metric on G relative to a finite generating set. Suppose P, @ € LO(G). The
formula

d(P,Q):=1/2",

where n = max{k € N | PN Bs(k) = QN Bs(k)}, defines a metric on LO(G)
whose topology is independent of the choice of the generating set.

Under this topology, LO(G) becomes a compact, totally-disconnected metric
space. That is, LO(G) is either the Cantor set or has isolated points.
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Hausdorff dimension of LO(G

A natural notion of complexity of LO(G) is its Hausdorff dimension.

@ Hausdorff dimension is an invariant of metric spaces up to bi-Lipschitz
equivalence.

@ The identity map id : LO(G) — LO(G) becomes a Holder map when we
change the finite generating set on G. Consequently, we have

dr(P,Q)* < ds(P, Q) < dr(P, Q)"

o Although the precise Hausdorff dimension of LO(G) is not well-defined, it
can only be either ; , or

Proposition (in progress with Dinamarca)

@ The Hausdorff dimension of LO(Z") is zero for any n.

@ The Hausdorff dimension of LO(BS(1,()) is bounded above by log,(1 + 1/2)
for all £ > 2
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Isolated orders in LO(G)

Let M be a compact 3-manifold. When does LO(m1(M)) have isolated orders?

@ Rivas: The space LO(G x H) has no isolated points (if not empty).

@ Malicet, Mann, Rivas, Triestino: F, X Z has isolated orders if and only if n is
even.

Q m(S3\ T, ) is has isolated left-orders.

Suppose that M is a SFS over a compact triangle orbifold. Does LO(m1(M)) have
isolated order?

IF yes, these isolated left-orders must come from circular orders on the
corresponding co-compact triangle group with a particular dynamics.
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Introduction

@ Roughly speaking, minimal genus Seifert surfaces play an important
role in the construction of taut foliations.

@ | have partial results that indicate there is a cleaner proof of a result
of Delman-Roberts:

Theorem (Delman & Roberts)

Any non-torus Montesinos knot that is not isotopic to a (—2,3, q)-pretzel
knot or its mirror image is persistently foliar.

@ An ongoing goal is to continue constructing examples of different taut
foliations and apply my methods to other families of knots.

July 23, 2023 2



Background

Definition
A Montesinos knot is a knot K having a diagram (see below), where
T<ﬁ> (with a; > 1 and ged(a, Bi) = 1 Vi) denotes a rational tangle of

o

slope g—’l We denote K = M(ﬁ B &]e)
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Continued Fraction

Definition
A continued fraction expansion is a finite
sequence ci, Cy, . . ., Cmy Tor a rational number
B/, such that —a < 5 < «, where
1 p
[C]_,Cz,...,Cm] = 1 :a
c — 1
C — 1
C3 — 1
@&
and ¢1,¢,...,¢cm # 0.
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Background (Hirasawa & Murasugi 2006)
Fact: At most one of the «; can be even.
Definition

K is of odd type is a; is odd and even type if a3 is even.

N

f 010
( e fwists
(& TE2) e TR
Figure: odd Figure: even
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Background

Theorem (Hirasawa & Murasugi 2006)

Let K = M(%, %, - &|e> be a Montesinos knot. Then there exists an

)

explicit algorithmic description of a minimal genus Seifert surface for K.
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Approach
@ [We restrict to cases r > 3 because the others are all classical.]
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Step 1

@ We know from previous work that if our surface admits a
decomposition with product disks of opposite crossings (deplumbing),
then we will be able to find persistent foliations.

Atzimba Martinez lightning talk July 23, 2023 8



Thank You!

Questions?
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Main Results

Theorem 1 (B)

For each p > 1 there is a fibered Trefoil pattern P, 1 with winding
number p + 1, genus 1 and so that

(p+17(K)+1 if  e(K)
H(PU)) = (p+ D (K) +1) I e(K) =1
1 if  e(K)

Theorem 2 (B)

If K is a fibered thin companion, or a fibered companion with
7(K) = £9(K), the monodromy of P, 1(K) is right or left veering.

Theorem 3 (B)

For any fibered Floer thin knot K with |7(K)| < g(K), the satellite
knot Py 1(K) is not Floer thin.

Holt Bodish (UO) Satellites and immersed curves July 24, 2023



Proof of Theorem (1)

Figure: Pairing Diagram for ﬁFT((Sﬂ P31(T23)) cf [HRW, 2019],
[Chen, 2019]
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Proof of Theorem (3)

* By Theorems 1 and 2 we know that P, 1(K) is a fibered knot
with right or left veering monodromy whenever K is a fibered
thin knot.

® By Theorem 1 we can check that |7(Pp 1(K))| < 9(Pp,1(K))
whenever |7(K)| < g(K).

¢ By [BNS, 2022], fibered thin knots with |7(K)| < g(K) do not

have left or right veering monodromy. So the satellite knots
Po.1(K) cannot be thin.

Holt Bodish (UO) Satellites and immersed curves July 24, 2023 4/5
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Unknotting number

u(K) := the unknotting number of a knot K C S
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= the minimal number of crossing changes needed to transform
the knot K into the unknot in the 3-sphere
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Example.

u (a non-trivial twist knot) = 1



Unknotting number

u(K) := the unknotting number of a knot K C S

= the minimal number of crossing changes needed to transform
the knot K into the unknot in the 3-sphere

Example.
u (a non-trivial twist knot) = 1



Unknotting number (cont‘d)

Another example [Bleiler, 1984].



Unknotting number (cont‘d)

Another example [Bleiler, 1984].

10-crossing



Unknotting number (cont‘d)

Another example [Bleiler, 1984].

u(104) = 2 /
N

No two crossing changes

results in the unknot.



Unknotting number (cont‘d)

Another example [Bleiler, 1984].
u(10g) =2 r’—_—‘
P,
2

-

14-crossing




Unknotting number (cont‘d)

Another example [Bleiler, 1984].

u(10g) =2
0>
O\

= Nees

o




Unknotting number (cont‘d)

Another example [Bleiler, 1984].

Upshot:



Unknotting number (cont‘d)

Another example [Bleiler, 1984].

Upshot:

Although the unknotting number is one of the oldest and most
natural knot invariants, it remains mysterious.




How does the unknotting number behave
under knot operations?



How does the unknotting number behave
under satellite operations?






Kp,q o=

Cabling

the (p, g)-cable of K,

where p denotes the longitudinal winding.



Cabling

K, , = the (p, g)-cable of K,

where p denotes the longitudinal winding.

Theorem [Hom-Lidman-Park, 2022]
Assume that p > 1. If K is a non-trivial knot, then

kK, ) = p-
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A satellite knot P(K) is called

a if Pis a Whitehead
(1,1)-pattern. doubles

Cables



A satellite knot P(K) is called

a (1,1)-501’3“"’3 if Pis a Whitehead

(1,1)-pattern. doubles

Cables
(D? x S, P) admits
a genus one doubly pointed
bordered Heegaard diagram.



A satellite knot P(K) is called

a (1,1)-satellite if P is a
(1,1)-pattern.

e.q., Mazur pattern
(D2 % S'. P) admits S ’

a genus one doubly pointed
bordered Heegaard diagram.




A satellite knot P(K) is called

a (1,1)-satellite if P is a
(1,1)-pattern.

e.q., Mazur pattern
(D2 % S'. P) admits S ’

a genus one doubly pointed
bordered Heegaard diagram.
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(1,1)-Satellites

Theorem [Chen-S.]
Suppose that P(K) is a (1,1)-satellite of a non-trivial companion K.

Then u(P(K)) > w(P).




(1,1)-Satellites

Theorem [Chen-S.]

Suppose that P(K) is a (1,1)-satellite of a non-trivial companion K.
Then u(P(K)) = w(P).

Conjecture [Hom-Lidman-Park]

Suppose that P(K) is a satellite of a non-trivial companion K.
Then u(P(K)) =2 w(P) + 1.




Proof relies on knot Floer homology...
[Ozsvath-Szabo, Rasmussen, 2003]




Proof relies on knot Floer homology...
[Ozsvath-Szabo, Rasmussen, 2003]

KcS?



Proof relies on knot Floer homology...
[Ozsvath-Szabo, Rasmussen, 2003]

Kc S’ ————— HFK~(K)

a finitely generated module over
the polynomial ring [ [%].



Proof relies on knot Floer homology...
[Ozsvath-Szabo, Rasmussen, 2003]

KcS§’ HFK~(K)

a finitely generated module over
the polynomial ring [ [%].

The module HFK(K) decomposes non-canonically as
HFK™(K) = K|%] & HFK ., ;(K).



Proof relies on knot Floer homology... (cont'd)

Suppose that N
HFK~(K) = F,[%] & @ Fl21/(U™).
=1



Proof relies on knot Floer homology... (cont'd)

Suppose that N
HFK~(K) = F,[%] & @D F[21/(%™).
=1

Define the torsion order of K as
Ord(K) := max{n,}.
i




Proof relies on knot Floer homology... (cont'd)

Suppose that N
HFK~(K) = F,[%] & @ Fl21/(U™).
=1

Define the torsion order of K as
Ord(K) := max{n,}.
i

Theorem [Alishahi-Eftekhary, 2018]
u(K) = ord(K).




... and immersed curves.
[Hanselman-Rasmussen-Watson, 2017]




... and immersed curves.
[Hanselman-Rasmussen-Watson, 2017]

X = S \U(K)



.. and immersed curves.
[Hanselman-Rasmussen-Watson, 2017]

a collection of immersed

curves in 0Xy — {pt}
(each decorated with a
local system)




... and immersed curves.
[Hanselman-Rasmussen-Watson, 2017]

a collection of immersed

X = S \U(K) —_— curves in 0Xy — {pt}
(each decorated with a

local system)
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L-spaces, taut foliations and fibered hyperbolic
two-bridge links
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L-space conjecture (Juhasz, Boyer-Gordon-Watson):

Let M be an irreducible QHS®. The following are equivalent:

(1) M supports a coorientable taut foliation;
(2) Mis not an L-space;
(3) m(M) is left-orderable.

1/4



THE MAIN THEOREM

Let L be a fibered hyperbolic two-bridge link and let M be a
manifold obtained as Dehn surgery on L. Then M admits a coo-
rientable taut foliation if and only if M is not an L-space.

Co fn |a;| = 2 Vi

C— |
k positive k negative
(ala"-van) * i(27_272’” '7_272)
=N / -
GFxox 3o
[N —) e
k left half-twists |k| right half-twists
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A CLASSIFICATION RESULT

Theorem B (S. '23):

If a fibered hyperbolic two-bridge link L has a (finite) surgery
that is an L-space, then L is isotopic, as unoriented link, to one
of the links {Ln},>1 Or their mirrors.
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TAUT FOLIATIONS AND WHITEHEAD DOUBLES

Let P C D? x S" be the Whitehead pattern and let
® : D? x S" — vK be an orientation preserving diffeomorphism, where
Kis a knot in S3. The knot K’ = ®(P) is a Whitehead double of K.

& @&

4l



TAUT FOLIATIONS AND WHITEHEAD DOUBLES

Let P C D? x S" be the Whitehead pattern and let
® : D? x S" — vK be an orientation preserving diffeomorphism, where
Kis a knot in S3. The knot K’ = ®(P) is a Whitehead double of K.

& @&

Let K be a nontrivial knot and let K’ be a Whitehead double of K.
Then all nontrivial surgeries on K’ support a coorientable taut
foliation.
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