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Motivation

Let G be a finitely-generated left-orderable group.

Question

Quantify the complexity of left-orderings on G .

Theorem (Linnell)

The set of left-orders of G , LO(G ), is either finite or uncountably infinite.

Remark

Tararin gave a precise algebraic characterization of groups with finitely many
left-orders.

Recently, Clay and Calderoni study LO(G ) up to orbit equivalence and give
examples of groups of di↵erent Borel complexity.

Khanh Le Rice University The space of left-orders of groups 2 / 5



The space of left-orders of groups

In general, LO(G ) can be topologized as follows:

Definition (Sikora)

Fix a metric on G relative to a finite generating set. Suppose P ,Q 2 LO(G ). The
formula

d(P ,Q) := 1/2n,

where n = max{k 2 N | P \ BS(k) = Q \ BS(k)}, defines a metric on LO(G )
whose topology is independent of the choice of the generating set.

Remark

Under this topology, LO(G ) becomes a compact, totally-disconnected metric
space. That is, LO(G ) is either the Cantor set or has isolated points.
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Hausdor↵ dimension of LO(G )

A natural notion of complexity of LO(G ) is its Hausdor↵ dimension.

Remark

Hausdor↵ dimension is an invariant of metric spaces up to bi-Lipschitz
equivalence.

The identity map id : LO(G ) ! LO(G ) becomes a Holder map when we
change the finite generating set on G . Consequently, we have

dT (P ,Q)↵  dS(P ,Q)  dT (P ,Q)�

Although the precise Hausdor↵ dimension of LO(G ) is not well-defined, it
can only be either zero, finite and positive, or infinite.

Proposition (in progress with Dinamarca)

1 The Hausdor↵ dimension of LO(Zn) is zero for any n.
2 The Hausdor↵ dimension of LO(BS(1, `)) is bounded above by log2(1 +

p
2)

for all ` � 2
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Isolated orders in LO(G )

Question

Let M be a compact 3-manifold. When does LO(⇡1(M)) have isolated orders?

Remark

1 Rivas: The space LO(G ⇤ H) has no isolated points (if not empty).
2 Malicet, Mann, Rivas, Triestino: Fn ⇥ Z has isolated orders if and only if n is

even.
3 ⇡1(S3 \ Tp,q) is has isolated left-orders.

Question

Suppose that M is a SFS over a compact triangle orbifold. Does LO(⇡1(M)) have
isolated order?
IF yes, these isolated left-orders must come from circular orders on the
corresponding co-compact triangle group with a particular dynamics.
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Introduction

Roughly speaking, minimal genus Seifert surfaces play an important
role in the construction of taut foliations.

I have partial results that indicate there is a cleaner proof of a result
of Delman-Roberts:

Theorem (Delman & Roberts)

Any non-torus Montesinos knot that is not isotopic to a (�2, 3, q)-pretzel
knot or its mirror image is persistently foliar.

An ongoing goal is to continue constructing examples of di↵erent taut
foliations and apply my methods to other families of knots.
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Background

Definition

A Montesinos knot is a knot K having a diagram (see below), where

T
⇣

�i
↵i

⌘
(with ↵i > 1 and gcd(↵i ,�i ) = 1 8i) denotes a rational tangle of

slope �i
↵i
. We denote K = M

⇣
�1
↵1
, �2
↵2
, . . . , �r

↵r
|e
⌘
.
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Continued Fraction

Definition

A continued fraction expansion is a finite
sequence c1, c2, . . . , cm for a rational number
�/↵, such that �↵ < � < ↵, where

[c1, c2, . . . , cm] :=
1

c1 �
1

c2 �
1

c3 �
1

. . . �
1

cm

=
�

↵

and c1, c2, . . . , cm 6= 0.

Atzimba Martinez lightning talk July 23, 2023 4



Background (Hirasawa & Murasugi 2006)

Fact: At most one of the ↵i can be even.

Definition

K is of odd type is ↵1 is odd and even type if ↵1 is even.

Figure: odd Figure: even
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Background

Theorem (Hirasawa & Murasugi 2006)

Let K = M
⇣

�1
↵1
, �2
↵2
, . . . , �r

↵r
|e
⌘
be a Montesinos knot. Then there exists an

explicit algorithmic description of a minimal genus Seifert surface for K .
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Approach

[We restrict to cases r � 3 because the others are all classical.]
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Step 1

We know from previous work that if our surface admits a
decomposition with product disks of opposite crossings (deplumbing),
then we will be able to find persistent foliations.
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Thank You!

Questions?
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Main Results

Theorem 1 (B)
For each p > 1 there is a �bered Trefoil pattern Pp,1 with winding
number p + 1, genus 1 and so that

⌧(P(K )) =

8
><

>:

(p + 1)⌧(K ) + 1 if ✏(K ) = 1
(p + 1)(⌧(K ) + 1) if ✏(K ) = �1
1 if ✏(K ) = 0

Theorem 2 (B)
If K is a �bered thin companion, or a �bered companion with
⌧(K ) = ±g(K ), the monodromy of Pp,1(K ) is right or left veering.

Theorem 3 (B)
For any �bered Floer thin knot K with |⌧(K )| < g(K ), the satellite
knot Pp,1(K ) is not Floer thin.
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Proof of Theorem (1)

Figure: Pairing Diagram for [HFK(S3,P3,1(T2,3)) cf [HRW, 2019],
[Chen, 2019]
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Proof of Theorem (3)

• By Theorems 1 and 2 we know that Pp,1(K ) is a �bered knot
with right or left veering monodromy whenever K is a �bered
thin knot.

• By Theorem 1 we can check that |⌧(Pp,1(K ))| < g(Pp,1(K ))
whenever |⌧(K )| < g(K ).

• By [BNS, 2022], �bered thin knots with |⌧(K )| < g(K ) do not
have left or right veering monodromy. So the satellite knots
Pp,1(K ) cannot be thin.
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Unknotting number

 := the unknotting number of a knot u(K) K ⊂ S3
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Unknotting number (cont’d)

Another example [Bleiler, 1984].

u(108) = 2



Unknotting number (cont’d)

Another example [Bleiler, 1984].

u(108) = 2

10-crossing



Unknotting number (cont’d)

u(108) = 2

No two crossing changes 

results in the unknot.

Another example [Bleiler, 1984].



Unknotting number (cont’d)

u(108) = 2
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Unknotting number (cont’d)

u(108) = 2
Another example [Bleiler, 1984].

Although the unknotting number is one of the oldest and most 
natural knot invariants, it remains mysterious.

Upshot:



How does the unknotting number behave 
under knot operations?



How does the unknotting number behave 
under satellite operations?



Whitehead doubling

t + 3



 := the -cable of , 
         where  denotes the longitudinal winding. 
Kp,q (p, q) K

p

Cabling



Cabling

 := the -cable of , 
         where  denotes the longitudinal winding. 
Kp,q (p, q) K

p

Theorem [Hom-Lidman-Park, 2022]
Assume that . If  is a non-trivial knot, then

.
p > 1 K

u(Kp,q) ⩾ p
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Theorem [Chen-S.]
Suppose that  is a (1,1)-satellite of a non-trivial companion .
Then .

P(K) K
u(P(K)) ⩾ ω(P)

(1,1)-Satellites

winding number



Theorem [Chen-S.]
Suppose that  is a (1,1)-satellite of a non-trivial companion .
Then .

P(K) K
u(P(K)) ⩾ ω(P)

(1,1)-Satellites

Conjecture [Hom-Lidman-Park]
Suppose that  is a satellite of a non-trivial companion .
Then .

P(K) K
u(P(K)) ⩾ ω(P) + 1

winding number



Proof relies on knot Floer homology…
[Ozsváth-Szabó, Rasmussen, 2003]



K ⊂ S3

Proof relies on knot Floer homology…
[Ozsváth-Szabó, Rasmussen, 2003]



K ⊂ S3 HFK−(K)

Proof relies on knot Floer homology…
[Ozsváth-Szabó, Rasmussen, 2003]

a finitely generated module over 
the polynomial ring . %2 [&]



K ⊂ S3 HFK−(K)

Proof relies on knot Floer homology…
[Ozsváth-Szabó, Rasmussen, 2003]

a finitely generated module over 
the polynomial ring . %2 [&]

The module  decomposes non-canonically as
.

HFK−(K)
HFK−(K) ≅ %2[&] ⊕ HFK−

red (K)



Suppose that 

.HFK−(K) ≅ %2[&] ⊕
N

⨁
i=1

%2[&]/(&ni)

Proof relies on knot Floer homology… (cont’d)



Suppose that 
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Suppose that 

.HFK−(K) ≅ %2[&] ⊕
N

⨁
i=1

%2[&]/(&ni)

Proof relies on knot Floer homology… (cont’d)

Theorem [Alishahi-Eftekhary, 2018]
Ord .u(K) ⩾ (K)

Define the torsion order of  as
Ord . 

K
(K) := max

i
{ni}
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XK = S3∖ν(K)
a collection of immersed 
curves in  
(each decorated with a 

local system)

∂XK − {pt}

[Hanselman-Rasmussen-Watson, 2017]
… and immersed curves.



XK = S3∖ν(K)
a collection of immersed 
curves in  
(each decorated with a 

local system)

∂XK − {pt}

[Hanselman-Rasmussen-Watson, 2017]
… and immersed curves.

e.g., S3∖ν(T2,3) μ

λ



Thank you!
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L-space conjecture (Juhász, Boyer-Gordon-Watson):
Let M be an irreducible QHS3. The following are equivalent:
(1) M supports a coorientable taut foliation;
(2) M is not an L-space;
(3) π1(M) is left-orderable.
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THE MAIN THEOREM

Theorem A (S. ’23):

Let L be a fibered hyperbolic two-bridge link and let M be a
manifold obtained as Dehn surgery on L. Then M admits a coo-
rientable taut foliation if and only if M is not an L-space.
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A CLASSIFICATION RESULT

Theorem B (S. ’23):

If a fibered hyperbolic two-bridge link L has a (finite) surgery
that is an L-space, then L is isotopic, as unoriented link, to one
of the links {Ln}n≥1 or their mirrors.
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TAUT FOLIATIONS AND WHITEHEAD DOUBLES

Definition: Let P ⊂ D2 × S1 be the Whitehead pattern and let
Φ : D2 × S1 → νK be an orientation preserving diffeomorphism, where
K is a knot in S3. The knot K′ = Φ(P) is a Whitehead double of K.

Theorem C (S. ’23):

Let K be a nontrivial knot and let K′ be a Whitehead double of K.
Then all nontrivial surgeries on K′ support a coorientable taut
foliation.
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