Ordenable groups and 3-manifolds
Adam Clay
a group is LO if \exists a strict total order $<$ of its ells st,

$$
g<h \Rightarrow f_{g}<f h \quad \forall f_{<g, h} \in G
$$

(RO sone, just pick <o)
a group is BO if it's $L 0$ and $g<h \Rightarrow g f<h f$ a group is $\angle 0$ if $\exists P C G$ st.
(i) $P \cdot P \subset P$
(ii) $\left.p \Perp p^{-1}=G \backslash\{i d\}\right\} \Rightarrow L 0$
(iii) $g^{P_{g}-1} \subset P \quad \forall g \in G$ then its $B O$

$$
\begin{aligned}
& <\longmapsto\{g \in G: g>i d\} \\
& P \longmapsto g<h \Leftrightarrow g^{-1} h \in P
\end{aligned}
$$

Ex: \mathbb{Z}^{2}

Ex: $F=$ free gl on $\left\{x_{1}, x_{2}, \ldots\right\}$ (Magnus)

$$
\Lambda=\mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]
$$

define $\left.\mu: F \rightarrow \mathbb{Z} \llbracket x_{1}, x_{2}, \ldots\right]$

$$
\mu\left(x_{2}\right)=1+x_{i} \quad \mu\left(x_{2}^{-1}\right)=1-x_{2}+x_{2}^{2}-\ldots
$$

lemma: μ is injective
lemma: The group of elements of 1 of the form $1+O(1)$ is bi-ordenable
\therefore F biorderable

Prop: Suppose $P_{K} \subset K, P_{H} \subset H$ are positive cones, and

$$
\{i d\} \rightarrow K \xrightarrow{i} G \xrightarrow{q} H \rightarrow\{(d\} \text { is } a
$$

short exact sequence
then $P=i^{-}\left(P_{K}\right) \cup q^{-1}\left(P_{H}\right)$ is a pos cone in G
ex: $G=\left\langle x, y \mid \times y x^{-1}=y^{-1}\right\rangle$

$$
\begin{aligned}
& \mid \rightarrow\langle y\rangle \rightarrow G \rightarrow \mathbb{Z} \rightarrow 0 \\
& \mathbb{Z} \text { Si } \\
& \Rightarrow G \text { is } L 0, \text { not } B O
\end{aligned}
$$

a group action of G on X is effective if $g \cdot x=x \forall x \in X$

$$
\Longrightarrow g \text { gid }
$$

IL $\underline{m}:$ A group is $L O$ iffy it acts effectively on a totally ordered set (orden-preserving)

Pf: $(\Rightarrow$ act on itself
\Leftrightarrow Suppose G acts on $(X,<)$
Choose a well-order \prec on X (Axiom of choice!) For each $g \in G \backslash\{i d\}$ set

$$
x_{g}=\min _{\alpha}\{x \in X \mid g \cdot x \neq x\}
$$

declare $g \in P \leftrightarrow g \cdot x_{g}>x_{g}$
check P pos cone
The : If G countable, then $G L O \Leftrightarrow \exists G \hookrightarrow$ tome $_{+}(\mathbb{R})$
Pf: (\Leftarrow) last result

$$
\Leftrightarrow \sigma<0
$$

enumerate $G=\left\{1 d=g_{0}, g_{1}, \ldots\right\}$
build $t: G \rightarrow \mathbb{R}$

$$
t\left(g_{0}\right)=0
$$

suppose $+\left(g_{i}\right)$ dove for $1 \leq K$

$$
\begin{aligned}
& t\left(g_{k+1}\right)=\max \left\{+\left(g_{2}, \ldots,+g_{k}\right)\right\}+1 \text { if } g_{k+1}>g_{i} \forall_{2}=1, \ldots, k \\
& \min \{" \quad "\}-1 \text { if } g_{k+1}<g_{i} \forall_{1}=1, \ldots, k \\
& \frac{f\left(g_{j}\right)+f\left(g_{2}\right)}{2} \\
& \text { if } g_{j}<g_{k+1}<g_{i}
\end{aligned}
$$

and no other g_{l} between $9,9_{i}$ for $l=1 . \ldots k$
define $p: G \rightarrow$ Home $_{+}(\mathbb{R})$ by

- $\rho(g)(t(h))=t(g h)$
- extend to $\overline{F(0)}$ by continuity
- If gaps remain, extend affinely

Non LO? torsion groups are not $\angle O$
try to find more intaesting
consider

$$
\begin{aligned}
& G=\langle a, b| b a b a b a^{-1} b^{2} a^{-1} \\
& \left\{\begin{array}{c}
1 \\
\left.\pi b a b a b^{-1} a^{2} b^{-1}\right\rangle \\
\pi \text { (weeks manifold) }
\end{array}\right.
\end{aligned}
$$

hyperbolic so torsion free
not $L 0$! rewrite rel $\frac{1}{s}$ to get $(b a)^{2}=a^{-1} b a^{-2} b$ suppose a sid

Case 1: $b<i d$

Case 2: id $<b<a$
Case 3: id <arb
for Case 2: $\quad a^{-1} b<i d$

$(b a)^{2}$	$=(a-1 b) a^{-1}\left(a^{-1} b\right)$
pos	$\hat{4}$
now try other cases	

A property that semigroup $P \subset G$ can hove:
(*) for every finite set $\left\{g_{1}, \ldots, g_{n}\right\}<G \backslash\{i d\}$ $\exists \varepsilon_{2}= \pm 1$ st. $1 d \in \operatorname{sg}\left(P \backslash\{i d\}, g_{1}, \ldots, g_{n}^{\varepsilon_{n}}\right)$
Thㅡ․: Given a semigroup $Q \subset G$, there is a pos. Lone $P \subset G$ with $Q \backslash\{c d\} \subset P$ iff Q has (*)
Proof: (\Leftrightarrow) easy fist choose ε_{1} so $g_{2}{ }^{\varepsilon_{i}}>0$ (\Leftrightarrow) suppose Q has (*) Observe: if $g \in G \backslash\{1 d\}$ then one of $s g(Q \backslash\{d\}, g)$ or

$$
\left.\operatorname{sg}(Q)\{d\}, g^{-1}\right) \text { has (*) }
$$

if not $\exists h_{1}, \ldots, h_{n}$ and f_{1}, \ldots, f_{m} St.
id $\in \operatorname{sg}\left(Q \backslash\{i d\}, g, h_{1}, \ldots, h_{n}^{\varepsilon_{2}}\right)$
no matter the ε_{i} 's and

$$
i d \in \operatorname{sg}\left(Q,\{i d\}, g^{-1}, f_{1}^{v_{1}^{v}}, \ldots, f_{m}^{v_{m}}\right)
$$

no watt en the V_{i} 's

$$
\Rightarrow i d \in \operatorname{sg}\left(Q \backslash\{1 d\}, g^{t}, h_{1}^{\xi}, \ldots h_{n}^{\varepsilon_{n}}, f_{1}^{\nu_{1}}, \ldots f_{m}^{\nu_{m}}\right)
$$

no matter ε_{2} 's, $\nu_{2} \xi$ so Q fails $(*)$
Set $M=\{$ semi groups PCG, with $Q \subset P$ satisfying $(*)\}$
M nonempty, ordered by incluscin, and chains have uperbounds by taking unions $\Rightarrow \exists$ moxinial $P \in M$
check $P \backslash\{a d\}$ is a pos. cone

$$
\begin{array}{r}
G \backslash\left\{(d\}=P \cup P^{-1}\right. \\
P \cap P^{-1}=\{1 d\}
\end{array}
$$

Cor: G is $L 0$ iff $\forall\left\{g_{1}, \ldots, g_{n}\right\} \in G \backslash\{i d\}$

$$
\exists \varepsilon_{2}= \pm 1 \text { st. ct } \& \operatorname{sg}\left(g_{1}^{\varepsilon_{1}}, \ldots, g_{n}^{\varepsilon_{n}}\right)
$$

Cor: A group is $L 0$ iff all fig. subgroups are $\angle 0$
Con: All forswin free abehin groups are $\angle 0$
The (Burns-ltale):
A group G is LO ifs
$\forall f . g . H \leq G \exists$ a homom $H \rightarrow L$ (onto)
where L is nontriwicil $L 0$ group
Proof: argue by induction that if the subgp
wand is sotistied, we can always find the necessary ε_{i} 's for any $\left\{g_{1}, \ldots, g_{n}\right\} \subset G \backslash\{i d\}$

Can you do a BO ression of any of this? mostly Yes but no Burns-thale

$$
\text { eg. } \begin{aligned}
G & =\left\langle x, y \mid x y x^{-1}=y^{-1}\right\rangle \\
& \rightarrow \mathbb{E} \rightarrow G \rightarrow \mathbb{E} \rightarrow 1
\end{aligned}
$$

