Lecture 4

a slope α is an element of $PH_{1}(\partial M; R)$ where $\alpha \in H_{1}(\partial M; R) \setminus \{0\}$

if M is a knot complement, then H, (∂M;Z)=Ti, (∂M) has generators {M, }}

any [x] with a & T. (M) can be written $\mu^{p}\lambda^{q} \leftrightarrow l_{q}$

We'll address $\pi_i(M(Pl_q))$ where $M(Pl_q) = M \cup_f(s' \times D^2)$ Dehn fill and therefore $\pi_i(M(Pl_q)) = \frac{\pi_i(M)}{\langle \langle \mu^P \lambda^P \rangle \rangle}$ $\hat{\tau}_i \in \mathcal{H}_i s \text{ left orderable or not ?}$

Here, we get homology Z/pZ, and we get irreducible almost always

We should get:
Conj: M a knot complement
if
$$\exists r \in \mathbb{R} \ r = 0 \ st. \ Ti(M(r)) \ is \ \underline{not} \ LO$$

then $T_i(M(P_{4})) \ is \ LO \ (\Rightarrow P_{4} \in (-\infty, \ 2g(K) - 1))$
(special case of L-space conjecture)
Take away: Sometimes LO
Sometimes not
need tools for each
To show Dehn fillings are LO:
(1) somehaw create $f_s: \ T_i(M) \rightarrow \ Homeo_+(s') \ w/ \ non \ abola.$
(ii) given $\kappa = w^n \lambda^p$ find $s \ st. \ P_r \ factors$

To show Dehn fillings are LO!
(1) somehow create
$$fs: \pi_i(M) \rightarrow Homes_i(S')$$
 w/ non abolian
(ii) given $\kappa = \mu^p \lambda^p$ find $s \neq f_s$ factors
 $\pi_i(M) \xrightarrow{Ps} Homes_i(S')$
 $\pi_i(M(A))$
(iii) conclude $\pi_i(M(A))$ is CO, adjust the CO f so that
 $Ef] = id G H^2$

lemma:

Every non-abelian CO group is infinite <u>Pf</u>: if f is a circular order on a finite group G consider $0 \rightarrow \mathbb{Z} \rightarrow \tilde{C}_{f} \rightarrow C \rightarrow 1$ from last time => Ge is torsion free, virtually cyclic ⇒ Gg is cyclic (Stallings) > Gis cychic (so where last time needed to image but now only require non-abelian) Start with figure 8 calculate $G = \langle x, y | w x = y w \rangle$ $w = x y^{-1} x^{-1} y$

here x represents
$$\mu$$

 $\lambda = yx^{-1}y^{-1}x^{2}y^{-1}x^{-1}y$
we can find reps $p: G \rightarrow P \leq L(2, G)$
by solving the Riley polynomial
in fact, real solutions can give rep²s
into $P \leq L(2, R)$
for $S \geq \frac{1+\sqrt{5}}{2}$ and $t = \frac{1+\sqrt{(5-5^{-1})^{\frac{6}{4}}+2(5-5^{-1})^{\frac{2}{-3}}}{2(5-5^{-1})} \in R$
we get $p_{s}: G \rightarrow P \leq L(2, R)$
 $p_{s}(x) = \begin{pmatrix} S & 0 \\ 0 & 5^{-1} \end{pmatrix}$
 $p_{s}(x) = \begin{pmatrix} S & 0 \\ 0 & 5^{-1} \end{pmatrix}$
 $p_{s}(y) = \begin{pmatrix} \frac{3e_{s}!}{2} + t & \frac{5-5'}{2} + t \\ \frac{5-5'}{2} - t & \frac{5+5'}{2} + t \end{pmatrix}$

find all $l_q \in Q$ st. Is with $p_s(\mu^p \lambda^p) = \pm I$

Eventually arrive at
$$[0,4)$$
 is what works
 $1e. P_{ij} \in [0,4) \Rightarrow \exists s \ sf. \ ps \ factors$
 $Hrough \ T_{i} (M(P_{ij}))$
 $\Rightarrow T_{i} (M(P_{ij})) \ is \ CO$
all sugeries irreducible $\Rightarrow \exists a \ subgroup$
 $H \leq T_{i} (M(P_{ij})) \ Hat \ is$
 $LO \ with \ T_{i} (M(P_{ij})) \ H \ cyclic$
 $\Rightarrow [T_{i} (M(P_{ij})), T_{i} [M(P_{ij})]] \leq H \ and \ so$
 $it \ is \ LO$

<u>Remark</u>:

(7) Can produce CO f of
$$\pi_i(M(p/q))$$
 with

$$[f] = id \in H^2 \implies \pi_i(M(p'q)) \text{ is } LO$$

 $\frac{\text{Techniques for obstructing til (M(PG)) LO}{\text{for a LO group G, recall}} \\ LO(G) = \{PCG \mid P \text{ a pos cone}\} \\ \stackrel{\text{Techniques for obstruction}}{\text{Space of LO's}} \\ \text{whenever } H \leq G \text{ there's a restriction map} \\ \Gamma: LO(G) \longrightarrow LO(CH) \\ P \longmapsto P \cap H \end{cases}$

example: the space LO (Z=2) given LCR² can make a LO of Z² · irrational slope get 2 ordenings (obove or below line)

In fact, all ordenings arrise this way
given
$$P \in LO(\mathbb{Z}^2) \xrightarrow{extend} P' \in LO(\mathbb{Q}^2)$$

 $L(P) = \{x \in \mathbb{R}^2\} \text{ every ubbd of } x \text{ contains } pts \text{ of}$
 $P' \text{ and } (P')^{-1} \}$
so there is a map $LO(\mathbb{Z}^2) \longrightarrow \mathbb{R}P'$

So, if M is a knot complement, there is a map

P → [L(P)]

 $S: LO(\pi(M)) \xrightarrow{} LO(\pi(\mathcal{D}M)) \xrightarrow{} S(M)$ $\frac{1}{7}^2$ slopeson DM $\longrightarrow P \cap \pi(\partial M) \longmapsto [L(P \cap \pi(\partial M))]$ 5 is "the slope map" Prop: M knot comp if M(x) is LO then Ex] is in the mage of s Pf: use the short exact sequence 21 20 Lo Lexico, rephi LO P then check $S(P) = [\alpha]$

Trick:

Prop: Suppose piginis >0 and Plg > 1/5 >0 and M knot complement It every PELO(T, (M)) satisfies $\mu^{\rho}\lambda^{\varrho} \in P \implies \mu^{\rho}\lambda^{\varsigma} \in P$ then Halb E (ris, Pla), then TI, (M(a/b)) is not LO "Pf: Ti(dM) from hypothesu can't be LO 0

Example:
$$(p,q)$$
 torus knots
here, the group is $G = \langle a, b \mid a^{p} = b^{q} \rangle$
 $\mu = b^{j}a^{j}$ $p_{j} + q^{j} = 1$
 $p > i > 0$
 $0 > j > -q$
 $\lambda = \mu^{-pq}q^{p}$
assume $\mu^{p}\lambda = q^{p} > id \implies q, b > id$
 $(\mu^{pq}\lambda)\mu^{-1} = a^{p}a^{-1}b^{-1} = a^{p-1}b^{-j} > id$
 $\implies \mu^{pq-1}\lambda$ to $\mu^{pq}\lambda$
have no LO fillings
is if true that
 $\pi_{i}(M(k))$ is $LO \iff E \cong I$ is in the image of s?
No! the Dehomoy ordering (pos cone P_{D}) is a LO
 $of \langle a, b | q^{3} = b^{-2} \rangle = B_{3}$ braid group

It satisfies $s(P_0) = \mu$

can show all fillings in (-m, 1) are LO $(-\infty, 1) \subset Im(5)$

5: LO(T,(M)) -> 5(M)

50 mage contains [-00,1]