Lecture 5
JJ decomposition
M 3-manifold (irreducible)
\exists collection τ of tori in M st.

$$
M \backslash T=M_{1} \cup \ldots \cup M_{n}
$$

each M_{i} is seifert fibered on atoroidal
$\underset{\substack{\text { graph of } \\ \text { groups }}}{\Rightarrow}\left\{\pi_{1}(M)\right.$ has vertex groups $\pi_{1}\left(M_{1}\right) ~ \Leftarrow$ each $L 0$
amalgams: A, G, H groups, infective homom

$$
\phi_{1}: A \rightarrow G, \phi_{2}: A \rightarrow H
$$

set $S C G * H$

$$
S=\left\{\phi_{1}(a) \phi_{2}\left(a^{-1}\right) \mid a \in A\right\}
$$

then $G{ }_{\phi_{i}} H=G * H /\langle\langle s\rangle\rangle$
example: twisted I-bundle over Klein bundle consider $f(x, y, z)=(x+1, y, z)$

$$
\begin{gathered}
g(x, y, z)=(-x, y+1,-z) \\
N=\left(\mathbb{B}^{2} \times[-1 / 2,1 / z]\right) / k \\
\quad \text { K= group gen by } f, g \\
\partial N=\tau^{2} \quad
\end{gathered}
$$

observe that $f g f^{-1}=g^{-1}$ so

$$
\begin{aligned}
\pi_{1}(N) & =K=\left\langle x, y \mid x y x^{-1}=y^{-1}\right\rangle \\
\pi_{l}(\partial N) & =\left\langle x^{2}, y\right\rangle
\end{aligned}
$$

a LO fact about K :
it has only 4 LO's, all coming from

$$
1 \rightarrow\langle y\rangle \rightarrow K \rightarrow \mathbb{Z} \rightarrow 0
$$

take copies K_{1}, K_{2} of $K, A=\mathbb{Z} \oplus \mathbb{Z}$
define $\phi_{1}: A \rightarrow K_{1} \quad \phi_{2}: A \rightarrow K_{2}$

$$
\begin{array}{ll}
\phi_{1}(0,1)=y_{1} & \phi_{2}(0,1)=x_{2}^{2} \\
\phi_{1}(1,0)=x_{1}^{2} & \phi_{2}(1,0)=y_{2}
\end{array}
$$

$$
\text { try to LO } \quad K_{1} *_{\phi_{i}} K_{2}
$$

eg supposing $1<y_{1}<x_{1}<x_{1}{ }^{2}$

$$
\frac{\mathbb{1}}{x_{2}^{2}}<\frac{\pi}{y_{2}}
$$

this causes a problem, sine any ordering of K_{2} is lex., where y_{2} is "infinitely small" can be made concrete
Conclusion: It is not $L O$ and π_{1} of a 3-manifold

Recall $L O(G)=\{P \subset G \mid P$ a pos cone $\}$
this has a G action: $g \cdot P=g P_{g}^{-1}$ call a subset $N \subset \operatorname{LO}(G)$ normal if it is G-invariant

The (Bludov-Glass):
Suppose A, G, H are groups with ing homom as above

$$
\phi_{1}: A \rightarrow G, \phi_{2}: A \rightarrow H
$$

then $G *_{\phi_{i}} H$ is $L O$
\Leftrightarrow
\exists normal families $N_{1} \subset L O(O), N_{2} \subset L O(H)$ s.t.
$\forall P \in N_{i}, \exists Q \in N_{j}$ sit. $\phi_{2}^{-1}(P)=\phi_{j}^{-1}(Q)$ for every $1, j \in\{1,2\}$
$\frac{\text { Corollary: }}{A, G, H}$
$A_{1}, G_{1} H$ as above
If A is infinite cyclic, then $O{ }_{\phi_{2}} H$ is $L O$ if G, H are
Pf:

$$
\begin{aligned}
& N_{1}=L O(G) \\
& N_{2}=L O(H)
\end{aligned}
$$

If $P \in N_{1}$, then $\left\{\phi_{1}^{-l}(P), \phi_{1}^{-1}\left(P^{-1}\right)\right\}=L O(A)$
$Q \in N_{2}$, then $\left\{\phi_{2}^{-1}(Q), \phi_{2}^{-1}\left(Q^{-1}\right)\right\}=L O(A)$
so matching or "compatibility" is easy

Th ${ }^{m}$ (C, Lidman, Watson):
M_{1}, M_{2} 3-manifolds, incompressible boundaries

$$
\begin{aligned}
& \phi: \partial M_{1} \rightarrow \partial M_{2} \\
& W=M_{1} v_{\phi} M_{2}
\end{aligned}
$$

if $\exists \alpha$ st. $\pi_{1}\left(M_{1}(\alpha)\right)$ and $\pi_{1}\left(M_{2}\left(\phi_{*}(\alpha)\right)\right)$ are $L O$
and W is irreducible
then $\pi_{l}(w)$ is $L 0$
Pf: let $G_{i}=\pi_{1}\left(M_{2}\right)$

$$
\begin{gathered}
f_{i}: \mathbb{Z} \oplus \mathbb{Z} \rightarrow G_{i} \text { inclusion of } \pi_{1}\left(\partial \mu_{i}\right) \\
\text { st. } \phi_{*} \circ f_{1}=f_{2}
\end{gathered}
$$

let $q_{1}: G_{1} \rightarrow G_{1} /\langle\langle\alpha\rangle\rangle \quad q_{2}: G_{2} \rightarrow G_{2} /\left\langle\left\langle\phi_{*}(\alpha)\right\rangle\right\rangle$
now consider cases: What are the possibilities for $\langle\langle\alpha\rangle\rangle \cap \pi_{1}\left(\partial \mu_{1}\right)$ and $\left\langle\left\langle\phi_{*}(\alpha)\right\rangle\right\rangle \cap \pi_{1}\left(\partial \mu_{2}\right)$?
could be $\underset{\substack{\notin \\ \text { gees tor gui so not } \\ \text { LO }}}{\underset{\text { easy }}{\mathbb{E} n \mathbb{Z}}, \underset{\mathbb{Z}}{\mathbb{Z}},}$, cyclic
if both cyclic, use

$$
\bar{\phi}: q_{1}\left(\pi_{1}\left(\partial \mu_{1}\right)\right) \rightarrow q_{2}\left(\pi\left(\partial m_{2}\right)\right)
$$

we get

\& $L O$ by last result (asdic amalgam)
becaus of LO quotient, $\pi_{1}(w)$ is LO
How strong is this?
Th $m(C, L, W)$: completely handles integer homology
sphere graph manifolds
so they have $L 0 \pi_{i}$ (except $S^{3}, \sum(2,3,5)$)
Question: Are there examples where this is not enough?
Yes
example: This technique fails in general
ie. $\exists \mu_{1}, \mu_{2} \phi: \partial \mu_{1} \rightarrow \partial \mu_{2}$ st. $\pi_{1}\left(\mu_{1} v_{\phi} \mu_{2}\right)$ is $L 0$ but $\exists \alpha$ st. $\pi_{1}\left(\mu_{1}(\alpha)\right)$ is $L O$ and

$$
\pi_{1}\left(M_{2}\left(\phi_{*}(\alpha)\right)\right) \text { is }<0
$$

the pieces $\mu_{1}=$ trefoil complement

$$
\pi_{1}\left(\mu_{1}\right)=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$

$\mu_{2}=$ twisted I-bundle oven Kleni bottle

$$
\begin{aligned}
& \pi_{1}\left(\mu_{2}\right)=\left\langle x, y \mid x y x^{-1}=y^{-1}\right\rangle \\
& \pi_{1}\left(\partial \mu_{1}\right)=\begin{array}{cc}
\left\langle\sigma_{2}, \lambda\right\rangle & \lambda=\Delta^{\prime 2} \sigma_{2}^{-6} \\
\mu & \Delta \approx \sigma_{1} \sigma_{2} \sigma_{1}
\end{array}
\end{aligned}
$$

$\pi_{1}\left(\partial \mu_{2}\right)=\left\langle y, x^{2}\right\rangle$ this map is

$$
\begin{aligned}
& \phi\left(\sigma_{z}\right)=y^{-1} \\
& \phi\left(\Delta^{2}\right)=y^{-1} x^{2}
\end{aligned}
$$

this is ty surgery on fig 8
Prop: $\pi_{1}(w)$ cannot be left ordered by above th m

$$
\left(w=\mu_{1} u_{\phi} \mu_{2}\right)
$$

Pf: only $\phi_{*}(\alpha) \in\left\langle y_{1} x^{2}\right\rangle$ that gives

$$
\begin{aligned}
& \pi_{1}\left(\mu_{2}\left(\phi_{k}(\alpha)\right)<0\right. \text { is } \\
& \phi_{*}(\alpha)=y
\end{aligned}
$$

So on M_{1} side, $\pi_{1}\left(\mu_{1}\left(\mu_{1}\right)\right)$ would hove to be LO
but its not
Conclusions: need to build normal families this can be done using Dehornoy ordering
In general, if we are trying to LO $G *_{\phi_{i}}$ It
the "best case scenario" would be if

$$
\exists P \in G, Q \subset H \text { st. } \phi_{1}^{-1}(P)=\phi_{2}^{-1}(Q)
$$

$$
? \Downarrow ?
$$

$$
\sigma^{{ }^{*} \phi_{2}} H \text { is } \angle 0
$$

Conjecture: if $\mu_{1}, \mu_{2}, \phi: \partial \mu_{1} \rightarrow \partial \mu_{2}$
then $\pi_{1}\left(M_{1} v_{\phi} M_{2}\right)$ is <0

$$
\Leftrightarrow
$$

$$
\begin{aligned}
& \exists P \in \pi_{1}\left(M_{1}\right), Q \subset \pi_{1}\left(M_{2}\right) \\
& \text { st. } \phi^{-1}(Q)=P \quad \text { (1.e. they agree) }
\end{aligned}
$$

another version:

$$
\begin{aligned}
& \pi_{1}(\mu) \cup L O \\
& \Leftrightarrow \\
& \phi_{x} \circ S_{1}\left(L O\left(\pi_{1}\left(\mu_{1}\right)\right)\right) \cap S_{2}\left(L O\left(\pi_{1}\left(\mu_{2}\right)\right)\right)=
\end{aligned}
$$

hero s_{1}, s_{2} are slope maps
if you ask for a $P \subset \pi_{1}\left(M_{1}\right)$ st.

$$
s(P) c s\left(g P_{g}-1\right)
$$

then we say $s(P)$ is order-detected.

