Lecture 2
Heegaard splitting decomposition of $Y=H_{1} \cup \mathrm{H}_{2}$
example: $S^{3}=B^{3} \cup B^{3}$ glue 2

example:

$$
\left.\left.\begin{array}{rl}
\mu & \mapsto \mu \\
\lambda & \mapsto \lambda
\end{array}\right\} \longrightarrow S^{1} \times S^{2} \quad \begin{array}{rl}
\mu & \mapsto \lambda \\
x & \mapsto \mu
\end{array}\right\} \longrightarrow S^{3} \quad \text { note: } \begin{aligned}
S^{3} & =\partial B^{4} \\
& =\partial\left(B^{2} \times B^{2}\right) \\
& =\left(\left(B^{2}\right) \times B^{2}\right) \cup\left(B^{2} \times \partial B^{2}\right) \\
& =\left(S^{1} \times B^{2}\right) \cup\left(B^{2} \times S^{\prime}\right)
\end{aligned}
$$

exercise: every 3-manifold has a Heegaard splitting
another way to build M

$$
H_{1} \longrightarrow \Sigma_{g} \times I \nleftarrow H_{z}
$$

only reed to say where red and blue curves go smie can glue "thickend disks" along nblut of curves
what is left is a 3-boll only ore way to do this
def": a Heegaard diogrom (of genus g) is a surface Σ_{g} (of genus g) and two collections $\bar{\alpha}$ and $\tilde{\beta}$ sit.

1) $\bar{\alpha}$ is a collection of g simple, closed, disjoint, non-seff-intersecting curves on \sum_{g} $\bar{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{g}\right)$ st. $\alpha_{1}, \ldots, \alpha_{g}$ are lin.
in dependent in $H_{1}(\Sigma, z, z)$
2) $\bar{\beta}$ " "

exercise: attaching thickened disks (2-handles) along $\alpha_{1} \ldots \alpha_{g}$ results in boundary S^{2} iff $\alpha_{1}, \ldots \alpha_{g}$ are lin. ides. in $H_{1}\left(\Sigma_{g}\right)$

Remark:

1) can always reparometaize Σ_{g} so ore set of curves is standard

2) any 3-manifold admits many Heegaard sphttings
Th":
every 3-maifold Y admits a leegaard splitting (dicigramn)
3 a set of Heegaad moves st. any two Heegaard splittings are rebated by some sequence of Heegaid moves
example

exercise This is $L(p, q)$
let Y be a 3-manifold w/ Heegaard diagram

$$
\left(\Sigma_{g}, \bar{\alpha}, \bar{\beta}\right)
$$

Consider $\operatorname{Sym}^{g}\left(\Sigma_{g}\right)=\overbrace{\Sigma_{g} \times \ldots \times \Sigma_{g} / s^{g}}^{g \text { copies }}$
set of unordered symmetric group g-tuples of points on Σ_{g}

$$
\pi_{\alpha}=\alpha_{1} \times \ldots x \alpha_{g} \subset \operatorname{Sym}^{g}\left(\Sigma_{g}\right)
$$

$\tau_{\text {set of unordered }} g$-tuples $\left(x_{1}, \ldots, x_{g}\right)$
65. each x_{i} lies an distort α_{j}.

$$
\pi_{\beta}=\beta_{1} \times \ldots \times \beta_{g} \subset \operatorname{sym}^{9}\left(\Sigma_{g}\right)
$$

Exercise: $\operatorname{sym}^{g}\left(\Sigma_{g}\right)$ is a $2 g$-dimil manifold
locally looks like $\underset{\text { Sym }}{ }{ }^{g}(\sigma)$

$$
\begin{aligned}
\left(\alpha_{1}, \ldots, \alpha_{g}\right) \longleftrightarrow & \left(z-\alpha_{1}\right) \ldots\left(z-\alpha_{g}\right) \\
& z^{g}+b_{g}, z^{\prime-1}+\ldots+b_{1} z+b_{0}
\end{aligned}
$$

look at $\pi_{\alpha} \cap \pi_{\beta}$
example:

genus 1 trivial
exconple: genus 2

$$
\operatorname{sym}^{2}\left(\Sigma_{2}\right)
$$

exerase:

$$
\begin{aligned}
\text { Sym }^{2}\left(\Sigma_{2}\right)= & T^{4} \# G P^{2} \\
& {[\text { Abel-Jacobi] }}
\end{aligned}
$$

$\pi_{\alpha}, \pi_{\beta}$ are $\tau^{2} s$ in here What are $\pi_{\alpha}, \pi_{\beta}$

the points of $\pi_{\alpha} n \pi_{\beta}$ are g-tuples $\left(x_{1}, \ldots, x_{g}\right)$ St. each x_{i} is on a distinct α_{j}
each x_{i} い $r \beta_{k}$
one point must be D (since ore blue only has D) other point cant be C (since red curve already used by D)
so get (A, D) and (B, D)

$$
\widehat{C F}=\operatorname{span}_{\mathbb{F}}\left\{\pi_{\alpha} \cap \pi_{\beta}\right\}
$$

Whitney dish $\left(x_{1}, \ldots, x_{g}\right)$
det^{n} : let $\bar{x}, \bar{y} \in \mathbb{\pi}_{\alpha} \cap \mathbb{\pi}_{\beta}$
a lelitney disk from \bar{x} to \bar{y} is a continuous map

$$
\phi: D^{2} \rightarrow \operatorname{Sym}^{g}\left(\Sigma_{g}\right)
$$

1)

$$
\begin{aligned}
& \phi(-i)=\bar{x} \\
& \phi(i)=\bar{y}
\end{aligned}
$$

乙)

$$
\begin{aligned}
& \phi\left(\gamma_{r}\right) \subset \pi_{\alpha} \\
& \phi\left(\gamma_{l}\right) \subset \pi_{\beta}
\end{aligned}
$$

given \bar{x}, \bar{y} denote $\pi_{2}(\bar{x}, \bar{y})=$ honotory classes of Whitney dishes \bar{x} to \bar{y}
examples:

$$
\begin{aligned}
& \pi_{2}(A, B)=\{1 \text { dish }\} \\
& \pi_{2}(C, B)=\{1 \text { dish }\} \\
& \pi_{2} \text { others }=\varnothing
\end{aligned}
$$

$$
\pi_{2}(x, y)=\{2 \text { disks }\}
$$

$$
\pi_{2}(y, x)=\phi
$$

examples: genus -2 portion of decigram is

generators: $(A, D),(B, C)$ $\frac{u}{x} \quad \frac{u}{y}$
let $r=$ reflection though center of square

$$
\mathbb{D}=\{(x, r x) \mid \times \text { in above square }\} \subset \operatorname{sym}^{2}\left(\Sigma_{2}\right)
$$

this contains an are a from \bar{x} to $\bar{y} \subset \pi_{\alpha}$

$$
" \quad \text { "b from } \bar{x} \text { to } \bar{y} \subset \pi_{\beta}
$$

