Lecture 3 - Construction of HF
last time:
Heegaard diagram $\left(\Sigma_{g}, \bar{\alpha}, \bar{\beta}\right)$
$\pi_{\bar{a}} \cap \pi_{\bar{\beta}}$ in $\operatorname{sym}^{9}\left(\Sigma_{g}\right)$

$$
\begin{array}{cc}
\alpha_{1} \times \ldots \times \alpha_{g} & \beta_{1} \\
\beta_{1} \times \ldots \times \beta_{g}
\end{array}
$$

def: Whiny disk from \bar{x} to $\bar{y} \in \mathbb{\pi}_{a} \wedge \pi_{\beta}$

$\pi_{2}(\bar{x}, \bar{y})=$ homotory classes of dishes \bar{x} to \bar{y}
Defining $\widehat{C F}$

1) think of $\operatorname{Sym}^{g}\left(\Sigma_{g}\right)$ as a complex manifold (not really, but ok for)
2) pick $\underset{\uparrow}{z} \in \Sigma_{g}-\left(\alpha_{1} \cup \ldots \cup \alpha g \cup \beta_{1} \cup \ldots \cup \beta_{g}\right)$
$t_{\text {base point }}$

$$
V_{z}=\{z\} \times S_{y m}{ }^{g-1}\left(\Sigma_{g}\right) \subset S_{y m}{ }^{9}\left(\Sigma_{g}\right)
$$

V_{z} is g-tuples with one coord $=z$
colin 2 submonifold of Sym $^{g}\left(\xi_{g}\right)$
Def: a holomorphic Whitney disk is a Whitney disk which is holomorphic
Def: for $\Phi \in \pi_{2}(\bar{x}, \bar{y})$ define

$$
n_{z}(\Phi)=\text { alg intersection between } \Phi \text { and } V_{z}
$$

Def: let $\Phi \in \pi_{2}(\bar{x}, \bar{y})$
define $M(\Phi)=\{$ holomorphic whitney disk in $\Phi\}$
$M(\Phi)$ admits an \mathbb{R}-action

can reparameterize
this guess \mathbb{R}-action
if "thins" are sufficiently generic, then $M(\Phi)$ is a manifold define $\hat{\delta}$ "cunts holomorphic disk in Sym $9\left(\Sigma_{g}\right)$ "

$$
\begin{aligned}
& \hat{\partial} \bar{x}=\left.\sum_{\bar{y} \in \mathbb{T}_{\alpha} \cap \bar{\pi}_{\beta}}[(m(\Phi) / \mathbb{R})) \bmod 2\right] \bar{y} \\
& \\
& \Phi \in \pi_{r}(\bar{x}, \bar{y}) \\
&\text { s.t. } 1) n_{z}(\Phi)=0
\end{aligned}
$$

2) $m(\underline{\text { I }}) \operatorname{dim} 1$
examples:

$$
s^{3}
$$

$\widehat{C F}=\mathbb{F}$ gen by ore point

$$
\hat{\jmath}=0
$$

$L(p, 1)$

$$
\begin{aligned}
& \widehat{C F}=\mathbb{F}^{P} \\
& \hat{\partial}=0 \\
& \widehat{H F}=\mathbb{F}^{p}
\end{aligned}
$$

use Riemann mopping th ${ }^{m}$ each disk hor one hold disk

$$
\begin{gathered}
\partial a=b \\
\partial c=b \\
\widehat{H F}=\mathbb{F} \text { gen by } a+c
\end{gathered}
$$

note

now $\partial a=0$

$$
\partial c=b
$$

so $\widehat{H F}=\mathbb{F}$ gen by a

Th ${ }^{\underline{m}}\left(O_{z s}\right.$ raith $\left.-S_{z a b \delta}\right)$

1) $\hat{\partial}^{2}=0$
2) $(\widehat{C F}, \hat{\partial})$ is indep of choices
detining CF-

$$
\begin{aligned}
& C F^{-}=\operatorname{span}_{\mathbb{F}[u]}\left\langle\pi_{\alpha} \cap \pi_{\beta}\right\rangle \\
& \partial^{-\bar{x}}=\sum_{\bar{y} \in \pi_{\alpha} \cap \pi_{\beta}}(\# p((\bar{\pi}) / \mathbb{R})) U^{n_{z}(\Phi)} \bar{y} \\
& \Phi \in \pi_{2}(\bar{x}, \bar{y})
\end{aligned}
$$

dimi $M(I)=1 \quad$ extard lisecrly over $\mathbb{F}[u]$
example:

$$
\begin{gathered}
C F^{-}=s p a n^{F}[u]\{a, b, c\rangle \\
\partial a=b \\
\partial c=b
\end{gathered}
$$

$$
H F^{-}=\mathbb{F}[0] \text { gen by } a+c
$$

CF^{-}as above

$$
\begin{aligned}
& \partial a=U b \\
& \partial c=b
\end{aligned}
$$

cycles are b and $a+U_{c}$
$a+U c$ generates $H F^{-}=\mathbb{F}[0]$

Example: algebraic example

$$
\begin{gathered}
\operatorname{span}_{\mathbb{F}[U]}\langle a, b, c\rangle \\
\partial a=0 \\
\partial b=U_{c}
\end{gathered}
$$

CF^{-}

Tḧ every free chain complex over $\mathbb{F}[u]$ is homotopy equivalent to a chain complex

(4)

note: $(\widehat{C F}, \hat{\delta})$ is just $\left.(C F,)^{-}\right)$with $U=0$
so each free town gives an F in $\widehat{H F}$ each torsion tower glues $2 \mathbb{F s}_{s}$ in $\widehat{H F}$ if you don't use base point then for homology spheres always get \mathbb{F}
Idea for grading: \bar{x}, \bar{y}

$$
\Phi \in \pi_{2}(\bar{x}, \bar{y})
$$

compute dim $M(\Phi)$
define "relative" "grading to be dim $m(\Phi)$
if $g \geq 2$ there are many elements of $\pi_{2}(x, \bar{y})$
and these have different $M(\Phi)$ dimensions
Fact: $H_{2}\left(\operatorname{Sym}^{g}\left(\Sigma_{g}\right)\right)$

$$
\pi_{2}\left(5_{y m}{ }^{\prime \prime}\left(\xi_{g}\right)\right)=\mathbb{Z}
$$

in $S_{y m}{ }^{g}\left(\Sigma_{y}\right)$
given

$\cdots \operatorname{gen} \pi_{2}\left(\operatorname{sym}^{9}\left(\tau_{g}\right)\right)$
also get

expected $\operatorname{din}\left(\Phi \# S^{2}\right)=$ expected $\operatorname{dim}(\Phi)+2$ (by reparom. of S^{2})
so how do define "relative "grading but when you sum with S^{2} increase \cap with V_{z} so this fixed "rel" grading problem

