Lecture 5

Constructing CFK
def -: A doubly pointed Heegaard diagram for $K \subset s^{3}$ is

- a Heegaard diagram for $S^{3},\left(\Sigma_{g}, \bar{\alpha}=\left\{\alpha_{1}, \ldots, \sigma_{g}\right\}, \bar{\beta}=\left\{\beta_{1}, \ldots, \beta_{g}\right\}\right)$
- a pair of base points

$$
w, z \in \Sigma_{g}-\left(\alpha_{1} v_{\ldots} \cup \alpha_{g} \cup \beta_{1} v \ldots \beta_{g}\right)
$$

how does a daily pointed diagram determine a knot?
Imagine have an embedded Heegaard diagram
example:

connect w to z by a boundary parallel arc"inside Σ_{g} " which does not intersect the α-curves/disks connect z to w by a boundary parallel arc "outsole \sum_{g} " which does not intersect the β-curves/disks

still unknot

Fact: Every $K \subset S^{3}$ admits a doubly pointed diagram
"Proof"

thicken knot to a solid torus smash crossing together

unknotted hardlebody
exercise: complement is also a handlebody draw α carves as follows

note α_{i} bounds a disk in interior
sude véw

β curves obvous

$$
\begin{aligned}
& \text { Defining } C F K_{\mathbb{F}\{U, v]}{ }^{(K)} \\
& \text { CFK } \mathbb{F}_{[u, v]}=\operatorname{span}_{\mathbb{F}[u, v]}\left\{\pi_{\alpha} \cap \pi_{\beta}\right\} \\
& \begin{array}{ccc}
2 \text { grading } & g_{u} & g r_{v} \\
\text { mult } U & -2 & 0 \\
\text { mult } V & 0 & -2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& V_{z}=\{z\} \times \operatorname{ssmm}_{y-1}^{g-1}\left(\Sigma_{g}\right) \\
& V_{w}=\{w\} \times \operatorname{sym}^{g-1}\left(\Sigma_{g}\right) \\
& n_{z}(\Phi)=V_{z} \cap \operatorname{im} \Phi \\
& n_{w}(\Phi)=V_{w} \cap \operatorname{im} \Phi
\end{aligned}
$$

$$
\begin{aligned}
& \partial \bar{x}= \sum_{\bar{y} \in T_{\alpha} \cap \pi_{\beta}}(\#(M(\Phi) / \mathbb{R})) U^{n_{w}(\Phi)} V^{n_{z}(\Phi)} \bar{y} \\
& \Phi \in \pi_{2}(\bar{x}, \bar{y}) \\
& \operatorname{dim}^{-} m(\Phi)=1
\end{aligned}
$$

∂ reduces gro and gro by 1
example:

disk c to b

$$
\partial c=V b
$$

$$
\operatorname{disk} a \text { to } b \quad \partial a=U b
$$

$$
\begin{gathered}
\widehat{C F K}=C F K_{\mathbb{F}[u, v] /(u=0, v=0)} \\
\text { so } \hat{\partial}=0
\end{gathered}
$$

recall Maslov $=$ gro

$$
\text { Alexander }=\frac{1}{2}\left(g r_{u}-g r_{v}\right)
$$

so $\widehat{H F K}$ has 3 efts and in 3 different. Alexander gradings

$$
\begin{gathered}
C F K^{-}=C F K_{\mathbb{F}}[u, v] /(v=0) \\
\partial^{-} c=0 \\
\partial^{-} a=U b
\end{gathered}
$$

Surgery formula:

$$
\begin{aligned}
& Y=S_{P / q}^{3}(K) \\
& C F K(K) \xrightarrow{\text { calculate }} C F\left(S_{P_{q}}^{3}(K)\right)
\end{aligned}
$$

Th<compat>m(large integer surgery formula)
let $n \geq 2 g_{3}(k)-1$
example:
$C F^{-}\left(S_{t i}^{3}\right.$ (right trefoil))

$$
b, V_{a}, \cup_{c}
$$

$$
\lambda_{B}^{\lambda}{ }_{A}^{\lambda}{ }_{C}^{\lambda}
$$

$$
\begin{aligned}
& \partial B=0 \\
& \partial A=U B
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x} \in C F K_{\mathbb{F}[0, v]}(k) \\
& \text { with } g r_{v}(x)=g r_{v}(x) \\
& \text { single grading } g r_{u}=g r_{v} \\
& U=U \cdot v
\end{aligned}
$$

$$
\partial C=U B
$$

cycles are B

$$
A+B
$$

