Immersed curve bordered invariants from knot Floer homology

Jonathan Hanselman

Princeton University

Remarks: . some done, some in progress
. built on earlier joint work ~/ 2. Watson
(application from that work)
Advantages of new approach:
. not restricted to hat version 2 not helpful for
. not restricted to
$$F = \mathbb{Z}/2\mathbb{Z}$$
 S L-space conjecture
A don't need to define bordered Floer homology

Recall: [

Knot Floer homology
uses builty pointed bigraded chain cpx over
$$\mathbb{F}[U,V] =: \mathbb{R}^{-1}$$

Heegand diagram
 $K \subset Y$
 $K \subset Y$
 $K \subset Y$
 $K \subset Y$
 $Flip isomorphism$
 $Heegand moves$
 $\Psi: H_{\kappa} (U=1 \text{ complex}) \longrightarrow H_{\star} (V=1 \text{ complex})$
 $ignore w$
 $basepoint$
 $\Psi = \bigoplus \Psi_{S} : CFK^{-}(Y,K_{S}S)|_{U=1} \longrightarrow CFK^{-}(Y,K;S+iPD(K))|_{V=1}$
Note: Ψ boring when $Y=S^{3}$
 $Simpler version: Set UV = O \longrightarrow CFK_{\widehat{R}}(Y,K)$
 $(\widehat{\chi} = \mathbb{F}[U,V]/UV=0)$

 $\mathbb{F}=\mathbb{Z}/_{\mathbb{Z}}$ Knot Floer homology Examples: $\psi: \langle c \rangle \xrightarrow{\simeq} \langle a \rangle$ $\mathcal{J}(\alpha) = 0$ • T_{2,3} CS³ ~) $\mathcal{D}(b) = \mathcal{O}\alpha + \mathcal{V}b$ $\partial(c) = 0$ • Fig 8 C 53 ~))(a) = V⊂ $\psi: (d) \xrightarrow{2^{2}} (d)$ $\Im(b) = \bigcup a + \bigvee e$ $\Im(c)=0$ (d) = 0 $\partial(e) = Uc$ • dual knot \longrightarrow in $S_1^3(-T_{2,3})$ $\mathcal{L}(\alpha) = \sqrt{b}$ $\Im(\mathcal{V}) = O$ D(c)= UVb+UVd O = (b) C $\psi: Span(a,b,c) \longrightarrow Span(sc,d,e)$ $\partial(e) = \bigcup d$ α ⊢ → C 6 -----> d C → e

Theorem 1 (H.) Given KCY³
(Cpx over F[U,V]) (A decorated immersed multicurve ([, b))
in marked torns T
grading
bounding chain b
(lin. comb. of self int. ph of [])
(b) If F is field,
we can choose ([, b) so that
$$b = blov=0$$
 contains only
points of following form:
Such ([, b]) is well defined (wp to homotopy of [])
for each chain homotopy equive class of
complex/flip map

Theorem (H.) Criven KCY3
(Knot Floer data]
$$\longleftrightarrow$$
 decorated immersed multicurve (Γ , b)
in marked torus T
(b) F field => = (Γ , b) so \hat{b} contains only
such(Γ , \hat{b}) is unique
Rmts:
(a) \leftarrow is immediate (Floer honology)
(a) \leftarrow is easy (but messy representative)
So Theorem is really (b)
(UV =0 knot Floer data (Γ , \hat{b}) marinet of K
UV = 0 knot Floer data (Γ , \hat{b}) marinet of K
UV = 0 knot Floer data (Γ , \hat{b}) marinet of K
UV = 0 knot Floer data (Γ , \hat{b}) marinet of K
(UV = 0 knot Floer data (Γ , \hat{b}) marinet of K
(UV = 0, F=Z/dz version of Theorem of
H. - Rasmusser - Watson
(onvenient to work in covering space of T

Aside: Floer honology of (decorated) curves in surfaces
• Criven curves
$$\Gamma_0 \hbar \Gamma_1$$
 in surface Σ , define chain epx
 $CF(\Gamma_0, \Gamma_1)$: •generated by $\Gamma_0 n \Gamma_1$
 $coefficients F, F(U)$, or $F(U,V)$ based on
 $\#$ of marked points
• differential: bigons $\#V$
 Γ_0, Γ_1 may be immersed as long as they satisfy
 $zero$ monogon condition
 $\#$ of model good
• For (Γ_0, b_0), (Γ_1, b_1)
 $differential counts "generalized bigons"
 ψ (Γ_1, b_1) must satisfy
 $zero generalized monogon condition
 ψ (Γ_1, b_2) must satisfy
 $zero generalized monogon condition
 ψ (Γ_1, b_2) must satisfy
 $zero generalized monogon condition
 ψ (σ of ψ (σ), ψ (ϕ), ψ ($$$$

Decorated curves ______ cpx over
$$F[U,V] + Flip map$$

in $T = infinite$ marked cylinder
D Draw vertical line M through marked points
a Replace each marked point with pair $f'' = \int_{-\infty}^{\infty} \int_{-\infty}$

Surgery formula
Theorem (H.):
$$HF^{-}(Y_{P_{A}}^{3}(K))$$
 is isomorphic to the Floer homology
(in marked torus T) of (Γ, b) with left.
(in marked torus T) of (Γ, b) with left.
For $S_{V_{3}}^{3}(T_{2,3})$:
T: $T:$ $T:$ I $for K$
 $Fr = 5$
 $Mrsimal intersection
 $Number$
 $HF^{-} \approx H_{s}($ $v_{ss}v_{s}v_{s}v_{s}) \cong F[U] \oplus F^{2}$
 $HF^{-} \approx H_{s}($ $v_{ss}v_{s}v_{s}v_{s}) \cong F[U] \oplus F^{2}$
 $For turb 5^{0}$
 $Floer chr = mapping$$

Surgery formula
Theorem (H.):
$$HF^{-}(Y_{P_{4}}^{3}(K))$$
 is isomorphic to the Floer homology
(in marked torns T) of (Γ , b) with $l_{P_{4}}$.
In \overline{T} , need p different lifts of $l_{P_{4}}$
this gives spind decomposition
e.g. $S_{3}^{3}(-T_{2,3})$
 $\overbrace{}^{1}$
 $\overbrace{}^{2}$
 $\overbrace{}^$

Invasiance

$$\begin{array}{l} \overbrace{D} \quad For \quad M^{3} \quad \text{with} \quad \partial M = T^{2} \quad \exists \quad \text{invariant} \quad \Gamma_{M}, \\ a \quad htpy \quad class \quad oF \quad \text{immersed} \quad \text{multicurve} \quad \text{in} \left(\partial M, z\right) \\ \Gamma_{M} \quad = \quad \underbrace{\prod}_{s \in Spins(M)} \quad \Gamma_{M;S} \\ \hline \Gamma_{M} \quad = \quad \underbrace{\prod}_{s \in Spins(M)} \quad \Gamma_{M;S} \\ \hline Fact: \quad For \quad any \quad S, \quad \left[\Gamma_{M;S}\right] = \left[\int_{s} \exists \in H_{1}(\partial M)\right] \end{array}$$

Boyer-Clay
• defined
$$D_{*}(M) = set of *-detected slopes
* e { LO, CTF, NLS}
• $D_{LO} = D_{CTF} = D_{NLS}$ for seif. fibered

(Canj: M: 3-mfd with incompressible $\partial M_{i} = T^{2}$
 $Y = M_{i} \cup_{Q} M_{2}$ is $* (=) Q_{i}(D_{*}(M_{i})) \cap D_{*}(M_{2}) \neq \phi$
• Showed for M: graph infds and $* e { 2 LO, CTF }$
(so LOGECTF for graph manifolds)
(so LOGECTF for graph manifolds)
Special cases: Splicing Enot complements (Hedden-Lewine, H.)
enough for M_{i} Floer simple (Rasmussen-Rasmussen)
 M_{i} simple loop type (H.-Watson)
with BC, shows NLS => LO, CTF for graph manifolds
Deruch State + Kreez-Boberts, Barden shows CTF => NLS$$

Defected slopes
Defin 1:
$$\alpha \in D_{NLS}(M)$$
 if $M \cup N_2$ is NLS
i thursted I-budle
 α glues to
 α

· clear that both sides are true if either M, or Ma have non-primitive curve or >1 curve for some spin str. So may assume one primitive curve per spine str. "E" look at & tangency at pag (must have one on each side of pag) - ("" both intersections => same spind str => NLS •" \rightarrow " NLS \rightarrow] ifts of curves in $\varphi(\Gamma_n)$ and Γ_a that intersect twice Lef a be slope of segment connecting points By Mean Value Theorem, a is tangent slope to both curves

Remains to relate different definitions of Ding (M) $D_{\mu\nus}(M) = S(M)$ $\int_{N_{\lambda}}^{T} def'n$ Propi

$$v N_{2}$$
 is NLS $\iff x \in S(M)$
 $a \leftrightarrow \lambda$
 \widehat{T}
 $z \in D_{NLS}(M)$