Immersed curve bordered invariants from knot floes homology

Tech Topology Summer school, July 2023

Plan: I) Knot Floes as immersed curves

- curve invariant
- surgery formula
- invariance
- pairing theorem
II) Application: L-space criterion for toroidal gluing

Remarks: - some done, some in progress

- built on earlier joint work w/ 2. Rasmussen (application from that work)

Advantages of new approach:

- not restricted to hat version $\}$ not helpful for
- not restricted to $\mathbb{F}=\mathbb{Z} / 2 \mathbb{Z}\}$ L-space conjecture
- don't need to define bordered floes homology

Recall:
Heegaard Floer homology
closed or. 3-mfd $Y$
$\xrightarrow[\uparrow]{\longrightarrow}$ graded module $\mathrm{HF}_{\|}^{-}(Y)$ over $\mathbb{\mathbb { F }}[U]$ uses pointed
(t) $\mathrm{HF}^{-}(Y ; S)$

$$
s \in \operatorname{Sin}(Y)
$$

Simpler version: set $U=0 \rightarrow \hat{H F}(Y)$

Knot Floer homology
uses doubly pointed bigraded chain $\left(p \times\right.$ over $\mathbb{F}[U, V]=: R^{-}$ Heegand diagram

$$
C F K_{R^{-}}(Y, K)=\underset{S \in \operatorname{Sin}^{c}(Y)}{ } \operatorname{CFK}^{-}(Y ; S)
$$

$$
K \subset Y
$$


flip isomorphism both $\cong$ to $\mathrm{HF}^{-}(Y)$

$$
\begin{aligned}
& \psi=\oplus \Psi_{S}:\left.\left.C F K^{-}\left(Y, K_{j} s\right)\right|_{V=1} \longrightarrow C F K^{-}(Y, K ; s+P D(K))\right|_{V=1}
\end{aligned}
$$

Note: $\psi$ boring when $Y=S^{3}$
Simpler version: set $U V=0 \leadsto C F K_{\hat{R}}(Y, K)$

$$
(\hat{R}=\mathbb{F}[u, V] / U V=0)
$$

Knot Floer homology Examples:

$$
\begin{array}{ll}
\text { - } T_{2,3} \subset S^{3} \leadsto & \begin{array}{l}
\partial(a)=0 \\
\partial(b)=U a+V b \\
\partial(c)=0
\end{array} \\
\text { - Fig } 8 \subset S^{3} \leadsto \begin{array}{l}
\partial(a)=V c \\
\partial(b)=U a+v e \\
\partial(c)=0 \\
\partial(d)=0 \\
\partial(e)=U c
\end{array}
\end{array}
$$


$\psi:\langle c\rangle \stackrel{\cong}{\cong}\langle a\rangle$ $\psi:\langle d\rangle \xlongequal{\cong}\langle d\rangle$

$$
\begin{array}{ll}
\text { - dual knot } \\
\text { in } S_{1}^{3}\left(-T_{2,3}\right) & \begin{array}{l}
\partial(a)=V b \\
\partial(b)=0 \\
\partial(c)=U V b+V V d \\
\\
\\
\\
\\
\\
\partial(d)=0 \\
\end{array}(e)=U d
\end{array}
$$



Theorem 1 (H.) Given $K \subset Y^{3}$
(a) $\left(\begin{array}{c}C p x \text { over } \mathbb{F}[U, V] \\ + \\ \text { flip isomorphism }\end{array}\right) \longleftrightarrow \frac{\text { decorated immersed multicurve }(\Gamma, b)}{a}$ in marked torus $T$ in marked torus $T$

- grading
- bounding chain b (lin. comb. of self int. pts of $\Gamma$ )
(b) If $\mathbb{F}$ is field, over $\mathbb{F}[U V]$
we can choose $(\Gamma, b)$ so that $\hat{b}=b_{u v=0}$ contains only points of following form:

such $(\Gamma, \hat{b})$ is well defined (up to homotopy of $\Gamma$ ) for each chain homotops equiv. class of complex/flip map

Theorem (H.) Given $K \subset Y^{3}$
(a) [knot floes data] $\longleftrightarrow$ decorated immersed multicurve $(\Gamma, b)$
(b) $\mathbb{F}$ field $\Rightarrow \exists(\Gamma, b)$ so $\hat{b}$ contains only $\operatorname{such}(\Gamma, \hat{b})$ is unique

Ranks:

- (a) $\longleftarrow$ is immediate (floes homology)
- (a) $\rightarrow$ is easy (but messy representative)

So Theorem is really (b)

- $U V=0$ knot floes data

$$
\longrightarrow(\Gamma, \hat{b}) \text { burring of } k
$$

- UV =O knot floes data " $\longleftrightarrow$ "bordered floes hamolony
- $U V=0, \mathbb{F}=\mathbb{Z} / 2 \mathbb{Z}$ version of The 1 is analogous to (equivalent to) Theorem of H. - Rasmussen - Watson
- Convenient to work in covering space of $T$

$$
\left.\begin{gathered}
\because: \widetilde{T} \\
\downarrow \\
\vdots \\
\vdots
\end{gathered} \right\rvert\, \bar{T} \leftarrow \ngtr
$$

$$
\stackrel{\downarrow}{\underset{i+1}{*}} T
$$

Aside: Floes homology of (decorated) curves in surfaces

- Given curves $\Gamma_{0} \pitchfork \Gamma_{1}$ in surface $\sum$, define chain cp $C F\left(\Gamma_{0}, \Gamma_{1}\right)$ : eqenerated by $\Gamma_{0} \cap \Gamma_{1}$
coefficients $\mathbb{F}, \mathbb{F}[U]$, or $\mathbb{F}[U, V]$ based on \# of marked points
- differential: bigons

Decorated curves $\longrightarrow c p x$ over $\mathbb{F}[U, V]+$ Elis map
in $\bar{T}=$ infinite marked cylinder
(1) Draw vertical line $\mu$ through marked points
(2) Replace each marked point with pair

(3) complex: Fleer homology of $(\Gamma, b)$ with $\mu$
(4) Flip map: (roughly) how curve matches up on back of cylinder
egg.


$$
\Rightarrow
$$


$\psi: c \longmapsto a$
e.



$$
\Rightarrow
$$



$$
\psi: d \longmapsto d
$$

Decorated curves $\longrightarrow c p x$ over $\mathbb{F}[U, V]+E 1 . p$ map
eg.

$\Longrightarrow$

$\psi: \subset \mapsto a$

$\psi: d \longmapsto d$


$$
\psi: \begin{aligned}
& a \longmapsto c \\
& b \longmapsto d \\
& c \longmapsto e
\end{aligned}
$$

More examples
$T_{2,3 ; 2,1}$
(component of invt for)


Surgery formula
Ozavath-Szabo: $\exists$ way to compute ${H F^{-}\left(Y_{p / q}^{3}(K)\right)}^{(K)}$ "Mapping cone from knot fleer data for $K \subset Y$ formula"

$$
H F^{-}\left(Y_{P / Q}^{3}(K)\right)=H_{*}
$$



For $\quad S_{1 / 3}^{3}\left(T_{2,3}\right):$


Surgery formula
Theorem (H.): $\mathrm{HF}^{-}\left(Y_{p / q}^{3}(K)\right)$ is isomorphic to the Floes homology (in marked torus $T$ ) of $(\Gamma, b)$ with $l_{p / a}$.

pf idea:
perturb so
Floes cpl $=\begin{gathered}\text { mapping } \\ \text { cone } \\ c p x\end{gathered}$


Surgery formula
Theorem (H.): $\mathrm{HF}^{-}\left(Y_{p / q}^{3}(K)\right)$ is isomorphic to the Floes homology (in marked torus $T$ ) of $(\Gamma, b)$ with $l p / q$.
in $\bar{T}$, need $\rho$ different lifts of $\mathrm{P} / \mathrm{q}$ this gives spinal decomposition
e. $9 \quad S_{3}^{3}\left(-T_{2,3}\right)$


Invariance
Knot floes data is an invariant of pair ( $Y, K$ )
Equivalently, an invariant of pair $(M, \mu)$

$$
3 \mathrm{mfl} w / \partial M=T^{2}
$$

Conj: Actually, does not depend on meridian $\therefore$ invariant of $M$
$(\Gamma, b)$ viewed as living in $(\partial M, z)$
Need: Understand how to get knot fleer data for ( $M, M^{\prime}$ ) from knot floes data for $(M, \mu)$
$\rightarrow$ Have for $\mathrm{CFK}^{-}$(Hedden-Levine)
$\rightarrow$ Need for $\psi$

Pairing Theorem:
Consider $\mathbb{O H} S^{3} \quad Y=M_{1} u_{p} M_{2}$

- pick slope $\mu_{i}$ an each $\partial M_{i}$ identified by gluing
- Consider $\left(Y_{i}, K_{i}\right)$ corresponding to $\left(M_{i}, \mu_{i}\right)$
- Fact: $Y \cong$ integer surgery on $K_{1} \# K_{2}$ in $Y_{1} \# Y_{2}$

To compute ${H F^{-}}^{(Y)}$ from knot fleer data for $K_{i}$, need:

- surgery formula
- connected sum formula for knot floes data
- $\operatorname{CFK}\left(K_{1} \# K_{2}\right) \cong \operatorname{CFK}\left(K_{1}\right) \otimes \operatorname{CFK}\left(K_{2}\right) /$ (Ozruäth-Szabó)
- $\psi_{k_{1}+K_{2}} \cong \psi_{k_{1}} \otimes \psi_{k_{2}} \quad \sqrt{ }$ (zante)

Pairing Theorem:
Consider $\mathbb{O H S}^{3} \quad Y=M_{1} u_{p} M_{2}$

$$
\mu_{2}=\varphi\left(\mu_{1}\right), \quad\left(M_{i}, \mu_{i}\right) \leftrightarrow\left(Y_{i}, K_{i}\right)
$$

Theorem (H.) If $\left(\Gamma_{i}, b_{i}\right) \subset\left(\partial \mu_{i}, z_{i}\right)^{\simeq T}$ is decorated curve representing knot floe data for $K_{i} C Y_{i}$, $\mathrm{Hf}^{-}(Y)$ isom. to floes homology $\left(\operatorname{in}\left(\partial M_{2}, z_{2}\right)\right)$ of $\varphi\left(\Gamma_{1}, b_{1}\right)$ and $\left(\Gamma_{2}, b_{2}\right)$ $\zeta \mid \operatorname{dim} \hat{H F}(Y)=i\left(\varphi\left(\Gamma_{1}\right), \Gamma_{2}\right)$ $\binom{$ Spin decomposition comes from }{ different lifts to $\bar{T}}$
END PART I
key points:
(1) For $M^{3}$ with $\partial M=T^{2} \quad \exists$ invariant $\Gamma_{\mu}$, a utpy class of immersed multicurve in $(\partial M, z)$

$$
\Gamma_{\mu}=\frac{\|}{s \in \operatorname{Spsin}^{c}(\mu)} \quad \Gamma_{\mu_{j} s}
$$

Fact: For any $s,\left[\Gamma \mu_{s}\right]=[\lambda] \in H_{1}(\partial \mu)$
(2) $\operatorname{dim} \hat{H F}\left(M_{1} \cup_{\varphi} \mu_{2}\right)=i\left(\varphi\left(\Gamma_{\mu_{1}}\right), \Gamma_{\mu_{2}}\right)$ lifts to $\bar{T}$ determine spin ${ }^{c}$ decomposition

PART IL Toroidal L-spaces

Strategy for $L$-spare conjecture for toroidal mfds:

- Understand NLS, CTF, LO on pieces
- understand how these properties behave under gluing
Def A graph manifold is a 3-mfd for which each piece in JSJ decomposition is Seifert fibered
understand well

$$
\begin{aligned}
& \text { Boyer-Rolfsen-Wiest } \\
& \text { Lisca-Stipsicz } \\
& \text { Boyer-Gordon-Watson }
\end{aligned}
$$

Boyer - Clay

- defined $D_{*}(M)=$ set of $*$-detected slopes

$$
* \in\{L O, C T F, N L S\}
$$

- $D_{L O}=D_{\text {CTF }}=D_{\text {LS }}$ for leif. fibered

Conj: $M_{i}$ 3-mfd with incompressible $\partial \mu_{i}=T^{2}$

$$
Y=M_{1} U_{\varphi} M_{2} \text { is * } \Leftrightarrow \quad \varphi_{*}\left(D_{*}\left(M_{1}\right)\right) \cap D_{*}\left(\mu_{2}\right) \neq \phi
$$

- Showed for $M_{i}$ graph mfds and $\psi \in\{L O, C T F\}$
(so LO CTF for graph manifolds)
Goal: Show for NLS
Special cares: Splicing Knot complements (Hedden-Levine, H.)

$$
\underset{\sim}{\text { Special cares: }} \underset{\substack{\text { singh }}}{\Rightarrow} \text { for }\left\{\begin{array}{ll}
M_{i} & \text { fleer simple } \\
M_{i} & \text { simple loop type }
\end{array}\right. \text { (H.-Watson) }
$$

with $B C$, shows NLS $\Rightarrow$ LO, CTF for graph manifolds Ozinati-frabo + Kuzez-Roberfs, Borden shows CTF $\Rightarrow$ ILS

Detected slopes
Defin 1: $\alpha \in D_{\text {MLS }}(M)$ if $M \cup N_{2}$ is NLS Twisted I-bundle over Klein bottle $\alpha$ glues to longitude of $N_{2}$

Defin 2: $D_{\text {NLS }}(M)=\overline{\{\alpha \mid M(\alpha) \text { is NLS }\}}$
Defin 3: $D_{N L S}(M)=S(M)$
$=\frac{\text { set of tangent slopes to } \Gamma_{\mu}}{\text { all slopes if } \Gamma_{\mu} \text { has multiple curves }}$ or a non-primitive curve in any spin ${ }^{\text {es tor }}$ set of slopes tangent to any representative of $\Gamma_{\mu}$

Pegboard position
we will always "pull curves tight"
think: curve :s elastic rope radius $\epsilon$ peg at marked point


- Both curves pulled tight $\Rightarrow$ minimal position
- Helps determine S(M):
each corner determines interval of tangent slopes, converges to closed interval as $\in \longrightarrow 0$
- Lemma: $M$ is body compressible $\Leftrightarrow \Gamma_{\mu}$ has no corners when pulled tight
es. $M=D^{2} \times S^{\prime}, \Gamma_{\mu}=\left\lvert\, \bullet 1 \quad\binom{$ Pf uses that CFK }{ detects genus/Thurston norm }\right.

Theorem: $M_{1} U_{\varphi} M_{2}$ is NLS $\Leftrightarrow \exists \alpha$ with
( $\partial \mu_{i}$ incompressible)

$$
\alpha \in S\left(M_{1}\right), \varphi(\alpha) \in M_{2}
$$

- Clear that both sides are true if either $\Gamma_{\mu_{1}}$ or $\Gamma_{\mu_{2}}$ have non-primitive curve or $>1$ curve for some spine str. So may assume one primitive curve per spin str.
- "E" look at $\alpha$ tangency at peg (must have one on each side of peg)
 both intersections
on same lift $\Rightarrow$ same spine str $\Rightarrow$ NUS on same lift $\Rightarrow$ sample
-" $\Rightarrow$ "NS $\Rightarrow \exists$ lifts of curves in $\varphi\left(\Gamma_{\mu_{1}}\right)$ and $\Gamma_{2}$ that intersect twice


Let $\alpha$ be slope of sequent connecting points
By Mean Value Theorem,
$\alpha$ is tangent slope to both curves

Remains to relate different definitions of $\operatorname{D}_{\text {NLS }}(\mu)$
Prop: $\operatorname{Duss}_{T}(M)=S(M)$
Key fact: immersed curve for $N_{2}$ is

$$
S\left(N_{2}\right)=\left\{\begin{array}{l}
\lambda
\end{array}\right\}_{\text {rational longitude }}
$$


pf
Gluing theorem $\Rightarrow$

$$
\begin{aligned}
& M \underset{\alpha}{\cup} N_{2} \text { is NLS } \quad \Longleftrightarrow \quad \alpha \in S(M) \\
& \alpha \in D_{N L S}(M)
\end{aligned}
$$

