
 

Lecture Construction of HF Heegaardsplittings and intro

Hegaardsplitting

Let Y be a 3mfld A Heegaard splitting of Y is a splitting
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Note thatmost ofthe subtletycomesfromthe boundary diffeo

Ect every 3mfld admits a Heegaardsplitting
Slightly more abstract way of thinking about Heegaard splittings
start w the middle surface I Let's thinkabout a genus I Heegaardsplitting
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For the construction of Y it sufficesto recordtheimageof theredmeridian under f andthe
blue meridian under f To see this think of decomposing H into a diskand a ball
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Def A Ieaganddiagram ofgenusg is a closedoriented
surface Eg together with
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Exercise 3 Verify that attaching thickened disks along a ay results in
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Exercise 4 Verifythat
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Ease 5 Finda Heegaandsplitting diagramfor t s'sxs

Fact a 3mfldY will admitmany
different Heegaardsplittings

However any two splittings are related by a sequenceof Hegaardmoves
We will discuss this later

Defining
chaincomplexunderlying IF

Let Y be a 3mfld and Ig2,15 be a Heegaarddiagram for Y



Consider
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Inside Sym42g we have the totallyzealto
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Ez a genus I Heegaard diagram is straightforward
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Def The chain complex CI is spanned Cover by the intersection points of Tnt
Explicitly these are gtuples x g e SymsEg sit each x is ona distinct di and each Xi is on a distinct pi
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To define the differential 2 we must discuss Whitneydid This
will consume the rest of the lecture



Def A Whitneydisk from I to T Iif eTat is a continuous map
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Ihitney dishs andpartitioning

It turns out thattheelements ofTanTpare partitioned into IH.LY many

equivalence classes st if x and y are indifferent equivalence classes then automatically

TzGT 0 forLogicalreasons
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Then ab forman elementof H symteg If this is 0 then clearlythereare nodisks w bday a b

But perhaps we simply chosethewrong a and b Anyother arc atcity from y to ydiffers from a by anett of i Hilts Similarlyfor b
Thus we should look at the classof a b in thequotient
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If this is still 0 then clearly TaftJ 0
Excise 8 Show that
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