Lecture
$$3 - Defining HF$$

The situation so for:
Let Y be a 3-mfbl. and $(\Sigma_{g}, \overline{\alpha}, \overline{\beta})$ be a Heegaard bigram for Y. Consider:
 $T_{\alpha} \cap T_{\beta} \in symf(\Sigma_{g})$
 $q_{X} \sim x_{g} \quad p_{X} \sim g_{g}$
These intersection points will be the generators of \widehat{CF} .
 $\underline{Df} \land \underline{Whiney \ bk} \quad form \ \overline{x} \ tr \ \overline{y} \quad (\overline{x}, \overline{y} \in \overline{L} \cap \overline{T_{\beta}})$ is a continuous map
 $\varphi: D \rightarrow symf(\Sigma_{g})$
 $st.$
 $\stackrel{0}{=} \varphi(t_{i}) = \overline{x} \text{ and } \varphi(t_{i}) = \overline{y}$
 $a) \varphi(t_{i}) \in T_{\alpha} \text{ and } \varphi(T_{\alpha}) \in T_{\beta}$.
Let $\pi(\overline{x}, \overline{y})$ be the set of humany closes of disks from \overline{x} to \overline{y} .

- 1) We may give $Sym^{2}(Z_{j})$ a complex structure. (Slight lie Actually, it is an almost-complex structure.)
- 2) Choose any point $z \in \Sigma_g (\chi_1 \cup \dots \cup \chi_g \cup \beta_1 \cup \dots \cup \beta_g)$ note: V_z is $V_z = SzS \times Sym^{d-1}(\Sigma_g) \subset Sym^{d-1}(\Sigma_g)$ This is a low low log Suff(Σ_g) We will a generic of lowing

This is a codmension - 2 submitted of
$$Symt(Z_g)$$
. We call Z a choice of basepoint

$$\frac{\text{Def.}}{\phi} = A \quad \frac{\text{holomorphic}}{\phi} \quad Whirney \quad \text{disk} \quad (\text{from } \overline{x} \rightarrow \overline{y}) \quad \text{is a } Whitney \quad \text{disk} \\ \phi : \quad \overline{D}^2 \rightarrow \quad \text{Sym}^2(\overline{z}_g) \quad \text{which is holomorphic}.$$

$$\underline{Def} \quad For any homotopy class \quad \overline{\Phi} \in T_2(\overline{x}, \overline{y}), \quad define$$

$$n_{\overline{z}}(\overline{\Phi}) = alg \quad intersection \quad of \quad \overline{\Phi} \quad w/ \quad V_{\overline{z}}.$$

Slyan: "I course helomorphic Whiney discs in
$$Sym^{\overline{p}}(\overline{z}_{\overline{p}})$$

Def. Let $\overline{p} \in \overline{T}_{n}(\overline{x}, \overline{y})$. The model space of helomorphic reprint \overline{d} $\overline{\underline{s}}$ is
 $\mathcal{M}(\overline{p}) = \{ p \in \overline{p} \ s. p \ a holomophic \\ \overline{s} \ (har tag) = \{ p \in \overline{p} \ s. p \ a holomophic \\ (har tag) \\ how make genericly called $\overline{s} \ (har tag)$.
Note that $M(\overline{p})$ has an R -action:
 $\bigcup_{\substack{p \in \overline{p} \ s. p}} f = \frac{1}{2} (f_{n-1}(\overline{x}, \overline{y}))$.
Note that $M(\overline{p})$ has an R -action:
 $\bigcup_{\substack{p \in \overline{p} \ s. p}} f = f = \frac{1}{2} (f_{n-1}(\overline{p}, \overline{s}))$.
We can now helf define $\widehat{\sigma}$ on $\widehat{C} = point \\ \overline{s} \ T_{n-1}(\overline{p}, \overline{s})$.
 $\overline{Def.}$ $\widehat{\partial}\overline{x} = \sum_{\substack{p \in \overline{T} \setminus \overline{p} \ s. p}} (f_{n-1}(\overline{s}), \overline{T}) \quad [event F-tent]$
 $\overline{g} \ e^{\overline{T} \cdot \overline{T}} \ (e^{\overline{T} \cdot \overline{T}} \ s. n \ moment.$
The (es)
1) \widehat{S} is a differential on \widehat{C}
a) The chan homopy type of $(\widehat{C}, \widehat{S})$ is independent of all choices (if addisolv genere), including \overline{p} .
 \overline{Ex} : $\widehat{CF} = F$
 $\sum_{\substack{s = 1 \ s}} f = F$
 $\widehat{CF} = F^{p}$
 $\widehat{CF} = F^{p}$
 $\widehat{C} = F^{p}$
 $\widehat{C} = f^{p}$.
 $\widehat{C} = f^{p}$ $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$ $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{C} = f^{p}$
 $\widehat{$$

We now define CF:

$$CF = gen_{gives} \{T,T_{i}\}$$
 for each else in $T_{i}T_{i}$,
 $induce as FUG-sum of generations.$
 $\hat{\sigma} \vec{x} = \sum_{i} + (n(\vec{x})/n) \cdot n^{n(i)} \vec{y}$ [und $T[n] - hondy$]
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$ [und $T[n] - hondy$]
 $\vec{y} = T_{i}n\vec{y}$ $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$
 $\vec{y} = T_{i}n\vec{y}$

Relative gradings and the reason to \overline{z} . (Sketch) Given \overline{x} and \overline{y} , how would we define the relative grading blw \overline{x} and \overline{y} ? Assume \overline{x} and \overline{y} are in the same spin - structure \Rightarrow there is an <u>expected dimension</u> of holomophic dists from \overline{x} to \overline{y} using the Arrivah-Siger index formula. Or is there? <u>Problem</u>: if $g \ge 2$, then in fact there will be <u>many</u> homomorpy classes of disk from \overline{x} to \overline{y} , and each will have a different expected holomophic dister. Recall $Sym^2(\overline{z}_2) = T^{4} \oplus Op^2$. More generally, can show $T_2(Sym^2(\overline{z}_1)) = H_2(Sym4(\overline{z}_1)) = \mathbb{Z}$.

Exercise 3 Convince yourself that

$$exp. dim. (\Phi * s^2) = exp. dim. (\Phi) + 2$$

This is had is up con't inst define the collative conditions

This seens bad: we can't just define the relative grading by calculating "the" expected dimension! (Although we get a Z/2Z grading.)

Key observation: These different moduli spaces will have different n_2 -values! (Can show that $V_2 = 2 \times \text{Sym}^2(Z_3)$ has intersection 1 w/ the generator of $\Pi_2(\text{Sym}^2(Z_3))$.) We use the condition $N_2 = 0$ to pick one of these to define the relative proding!