Lecture 4 -
Knot Floer Honsology: Applications, formal properries, examples
Q. about knots

1) $D_{\text {istringuishing hots }}$ (strongen than $\Delta_{k}(t)$)
2) Detecting knots
K is mipuely determned by is kot Fben henolegy in sove castes!
$\left.\begin{array}{c}\text { [Derects the unhuot, trefolil, fig. } 8, ~ c i n g u e f i l, ~ \\ 0 \\ 0\end{array}\right]$
3) Detects Seffert genus
4) Detects fiberechess
Q. abour surfacas between knots $k_{1} \sim k_{2}$ if cobound a smoorthly enteded aruks in $s^{3} \times I$
5) Sliceness / slice genus/concondance gp.

- How big is e ?
- What hund of tasion is in C ?
- Is e generated by various classes of hnots?

2) Exotic pairs of (relative) slice surfces.
$-\Sigma_{1}, \Sigma_{2}$ (smooth) slice sultuces for k

- Σ_{1} and Σ_{2} topolbically isotpicic but not smoothly isotepicic

$$
(z \oplus \mathbb{z})
$$

HFK: a biggaded vector space over \mathbb{F}

- an Alcrouder grading
- a Masloo/honolegical grading

$$
\hat{\operatorname{HFK}(K)}=\underset{\substack{\text { alex. } \\ \text { gidijgs } s}}{\oplus} \hat{H F K}(K, s)=\underset{s}{\oplus}\left(\underset{i}{\oplus} H F K_{i}(K, s)\right)
$$

Ex. $K=u: \quad s=0: \mathbb{F}_{0}$
$(R H T) \quad S=1: \quad F_{2}$
Ex. $K=3,: \quad S=0: F_{2}$

$$
s=-1: \mathbb{F}_{0}
$$

$$
\begin{aligned}
& \text { Ex. } K=\underset{+}{W h}\left(T_{2,3}\right): \\
& S=1: \mathbb{F}_{-1}^{2} \oplus \mathbb{F}_{0}^{2} \\
& S=0: \mathbb{F}_{-2}^{4} \oplus \mathbb{F}_{-1}^{3} \\
& S=-1: \mathbb{F}_{-3}^{2} \oplus \mathbb{F}_{-2}^{2}
\end{aligned}
$$

Ex. $\quad K=4, \quad \begin{array}{lll}s=1: & \mathbb{F}_{1} \\ s=0: & \mathbb{F}_{0}^{3}\end{array}$

$$
s=-1: \underset{-1}{\mathbb{E}}
$$

$$
\text { Thn } \Delta_{K}(t)=\sum_{s} X(\hat{H F K}(K, s)) t^{s}
$$

11

$$
\underbrace{\sum_{i}(-1)^{i} \operatorname{din} H_{i} \hat{F}_{i}(K, s)}_{\text {graded Enter cheacteristic }}
$$

of $\operatorname{MFFR}(k, s)$
Abave exanples: $1, t-1+t^{-1},-t+3-t^{-1}, 1$
Thm. $\operatorname{deg}\left(\Delta_{K}\right) \leqslant g_{3}(K)$

$$
\max _{s}\{\hat{H F K}(k, s) \neq 0\}=g_{3}(K)
$$

Thn - If K is fibered, then Δ_{k} is manic.

$$
K \text { is fibeed if(f) } \quad \hat{H F K}(K, g(K))=\mathbb{F}
$$

$\mathrm{HFK}^{-}(k)$: a bigated $\mathbb{F}[u]$-module

$$
\operatorname{HFK}^{-}(k)=\bigoplus_{s \in \mathbb{Z}} \operatorname{HFK}^{-}(K, s)
$$

As before, 4 drips the Mastor grading by 2 . Somewhat canfursyty, it dips the alex. grading by 1 (So the above decomposition isn't really that helpful.)
It's actually more cavervient to define new fadings:

$$
\left\{\begin{array}{l}
g r_{u}=M_{a s l o v} \text { grinding } \\
g r_{v}=M_{a s l o v} \text { grading }-2 \cdot \text { Alexander grading }
\end{array}\right.
$$

Then multiplication by u drops gin by 2 and does not change $g r_{v}$.

[wis hin each tower, have sane $\left.g r_{v}\right]$
nontorsion tower
(again exactly are)
Ex. $K=u: \quad \mathbb{F}[u]_{(0,0)}$
Ex. $K=3,: \mathbb{F}[u]_{(0,2)} \oplus \mathbb{F}_{(2,0)}$
Ex. $K=W h_{+}(3):, \mathbb{F}[u]_{(0,-2)} \oplus \mathbb{F}_{*, *}{ }^{7}$
Def. $\tau(k)=-\frac{1}{2} \times \underset{\mathbb{F}[u] \text { the } g_{v} \text {-grading in which } 1 \text { located }}{ }$
(always starts at $g_{n}=0$)
Tho $\quad k_{1} \sim k_{2} \Rightarrow \tau\left(k_{1}\right)=\tau\left(k_{2}\right)$
Note that $\tau\left(W h_{+}(3),\right) \neq 0$, so $W h_{+}(3$,$) is not smoothly slice!$
This is investing bic ever kat $w / \Delta_{k}=1$ is tpocgicially slice.
Def. Ord" $(k)=\min _{n}\left\{u^{n} \cdot \underset{H F R_{c j}^{-}}{C_{\text {min }} \mu+}=0\right\}$
Thu. If K is a ribbon knot then any ribbon disk must have at last $O_{n} d_{n}(\ell)$ bands.

Let Σ be a concordance (or ever a higler-genus knot cobodion) fran $K_{1} \rightarrow K_{2}$. Then we get a cobudion map

$$
F_{\Sigma}: \operatorname{HFK}\left(K_{1}\right) \rightarrow \operatorname{HFK}\left(K_{2}\right)
$$

Fact : If Σ and Σ 'are smoothly isotopic rel bander, then $F_{\Sigma}=F_{\Sigma}$,.
This is a potential method for distinguishing surtocas!

- Pick a pain of surkeas Σ, Σ^{\prime} for k with you know we topelefrically sompic.
[Ie, my pain ot slice dis D ad D^{\prime} al $\pi_{1}\left(B_{1}^{1} D\right)=\pi_{1}\left(B^{9}-D^{\prime}\right)=\mathbb{Z}$.]
- Understand emit about F_{Σ} and $F_{\Sigma^{\prime}}$ to see that they differ.

