Conj: let M be a closed, orientable, irreducible 3 -manifold
$\pi_{1}(M)$ is left orderable
\Leftrightarrow
M admits a coorreitable taut fol ${ }^{2}$
def I: a foliation is taut if every leaf meets a transverse circle
if a coorient foll I has a separating leaf then not tacit
so taut \Rightarrow Reebless
relater question to Heegaard splitting
\leadsto gives presentation of $\pi_{1}(M)$

$$
\pi_{1}(m)=\left\langle g_{1}, \ldots, g_{n} \mid r_{1} \ldots r_{n}\right\rangle
$$

attaching circle for 2-handes ghees rel ${ }^{n}$ s

Th- (S. Rasmussen):
Suppose M has Heegaard genus 2 $\omega / L O \pi_{l}(M)$
If the group presentation of $\pi_{1}(M)$ from a genus 2 Heegaard splitting has no subwords that aretrwiol is $\pi_{1}(M)$ then M admits a tacet fol 1

Th \quad (L) :
if M has Heegaard genus 2
then left orderable \Rightarrow taunt to 1 n
tool: branched surface
def ': a branched surface is an object locally modeled on

or

use these to define lamination in M
(compact foliated subuntd)
locally in chart get $\mathbb{R}^{2} \times C_{\lambda}$ closed set
in \mathbb{R}

A lamination λ is carried by a branched surface B

If M / λ is an I-bundle then λ extend to a foliation

Construct a branched surface genus g Heegaard splitting: $M=H_{1} \cup \mathrm{H}_{2}$
S = Heegaard surface
H_{1} : compressing disks $U_{1}, V_{2}, \ldots, U_{g}$
$H_{2}: ~ M \quad " V_{1}, V_{2}, \ldots, V_{g}$
2-compler $\Sigma=\left(U_{1} \cup \ldots \cup U_{g}\right) \cup S \cup\left(V_{1} \cup \ldots \cup V_{g}\right)$
let $u_{i}=\partial U_{i}, v_{i}=\partial V_{i}$
assume the Heegaard diagram is "minimal"
no wave

a wave is an arc η that is nontrivial, and disjoint from Heegaard Diagram except $\partial \eta$ on one curve (and on same side of curve)
example: if you see get wave そ
a wave move

Split u_{i} to 2 carves
non trivial
curve in that not isotgrio
this siniplefies diaigrons to another u_{j}
so assume no wave

pick $x \in H_{i} \backslash \bigcup_{i=1}^{g} U_{i}$

$$
y \in t_{2} \backslash \bigcup_{2=1}^{g} v_{i}
$$

$\left\{u_{1}, \ldots, u_{g}\right\},\left\{v_{1}, \ldots, v_{g}\right\}$ cut S into disks call them $\left\{S_{0}, \ldots . S_{m}\right\}$
fix a special disk
let l_{i} be acc x to y dasjount from U_{i}, V_{j}
and $\cap S_{i}$ in ore point
get loops $\gamma_{i}=l_{0} * l_{1}^{-1}$

$$
\begin{aligned}
& {\left[\gamma_{2}\right] \in \pi_{1}(\mu, x)} \\
& \text { clearly } \gamma_{0}=1
\end{aligned}
$$

Remark: choice of S_{0} does not chang the relatwe order (different choices differ by left milt by fixed elf)
choose so to hove masinch order among $\left\{s_{0}, \ldots S_{m}\right\}$

$$
\gamma_{0}=1 \quad \gamma_{1} \geq 1 \text { for all } i
$$

for each U_{i} get dual loop g_{i}
from x to U_{2} bach to x
each V_{i} get dual loop $h_{i}=\gamma_{0} * h_{i}^{\prime} * \gamma_{0}^{-1}$
pick an orientation st. $g_{i}, h_{2} \geq 1$
for disk S_{i} pick orientation positing into H, fix orientation on each disk U_{i}, V_{i} to ague with or on g_{i}, h_{i}
now 2-complex con be turned into a branched ste
eg

take a subset of disks $\left\{s_{0}, \ldots, S_{k}\right\}$ with associated loops $\gamma_{2}=1$

Fact: cusp direction tells us $\gamma_{2}>\gamma_{j}$.
so the branch direction at ∂s_{i} must all point outwards for disks with $\gamma_{1}=1$
get $\widehat{B}=$ old branclu surface $-\left(\right.$ interior $\left.\left(S_{0} \cup \ldots \cup S_{k}\right)\right)$
Claim: \hat{B} carries a lamination
perform splitting

wverse linit is a lammation
if $g=0$ then lamination extends to a taut tol ${ }^{n}$

