1) Conjécture:
ansther equivalence in in L-space conjecture
Y is BSF (both symplecticolly fillable) meoning Y and $-Y$ have strongly syypecticully fillable contait strwectures (and as plone fields homotopio)
eg Poincará homology sphere y
Y strangly fillable
-4 not even hare tight
2uestion: we Heegaard Floer contact elts to prove not-L-space?
Probably kuown for SFS (Lisca-Matzi?) next: try graph mifd
2) are there prove $\mathbb{Z}+s^{3} L$-spaces other thou S^{3} and $\pm P$ Ht S^{3}
What about L-space conjecture tor \mathbb{Z} ts 3 ?
for HHS^{3}; CTF $\Rightarrow \angle O$
(Euler class obstr vanishes)
3) a) Toroidal gluing condition
$D_{E}:=$ closure of see of slopes α is *-detected ${ }^{f} f$ behan filling along α has \forall

$$
*=\angle 0, C T F, N L S
$$

$Y=Y, U_{1} Y_{2} \leftarrow$ always an interval NLS (6
Y han * iff is detected on both sides
known for $*=N L S$
true for $B=\angle O, L T F$ for graph melds
b) say literally anything about this for genus 2 gluing $Y=Y_{1} U_{\Sigma_{2}} Y_{2}$
Question: $Y=Y_{1} U_{\Sigma_{2}}$ genus 2 -noodle body NLS

$$
\Rightarrow Y=Y_{1} U_{\Sigma_{2}} Y_{2} N L S
$$

c) analog of \otimes for 2 fillings?
say anything
4) note $Y=Y, U_{T}{ }^{2} S^{\prime} \times D^{2}$ not C-space
then $Y_{1} U_{\tau}{ }^{2} Y_{2}$ not C-space if 1 -space conjecture true get θ
(since degree one mas $Y_{1} \cup_{T} u_{2}$ onto $Y_{1} \cup S^{\prime} \times D^{2}$)
5) Is every $Q H S^{3}$, Q how ology cobordont to an l-space?
$\left(Y_{1}, Y_{2}\right.$ are Q-ho ology mordant if \exists smooth W^{4} st.

1) $2 w=-y_{1} \Perp y_{2}$
2) $\left.\tau_{x}: H_{*}\left(Y_{i} ; Q\right) \rightarrow H_{x}(W ; Q)\right)$

- not true for $\mathbb{Z}, \mathbb{Z} \nmid \mathbb{Z}$ honolagy wbodisin
- Probably false?

6) Ribbon cobord: Y Quts ${ }^{3}$
can you add a gen, n nell to $\pi_{1}(Y)$ to make LO?
$\tau(2,3,11)$ potential counterexample
7) $\exists \psi L 0$ ste no representations
to Home o S^{\prime}
ne. didn't come from lifting action on 5^{\prime}
would imply strategy CTF $\Rightarrow \angle O$
wouldnt work all the tine
Hope answer No!
I finitely presented G with this property
8) is $S_{0}^{3}(k) \mathbb{Z}$ homology cobordant to $S_{0}^{3}(\sigma)$
for 5 a l-space knot?
recall: V is an L-space knot if $S_{1}^{3}(J)$
is L-space for some n
9) J? hyperbolic Y with CTF but has no co-orient foliation st. assoc universal circle action lifts to an action on \mathbb{R}
10) Which properties of the $C O$ coming from CTF hove in $H^{2}(Y ; Z)$?
are they trivial or not in $H_{b o u n d e d ? ~}^{2}$ "secret LO;"
11) K L-space knot are fibered L-space lith

$$
\begin{gathered}
\left(L n \text {-copporets, } \exists k_{1}, \ldots k_{n} s t .\right. \\
S_{p_{1}, \ldots p_{n}}^{3}(c) L \text {-space } \\
\left.\forall \rho_{2} \geq k_{i}\right)
\end{gathered}
$$

don't hare to be fibered but are complements always fibered (Agol, chair mail links)
(2) knot K with biondenable π
$\Rightarrow K$ is not an L-space knot Question: $S_{r}^{3}(K)<0$?
how to use BO to produce Lo surgery?
13)
π_{1} (weens mfd) not CO
2vestwon: Bother examples?
14) Is every knot concordant to ore with biorderable π_{1} ?

I BO knots that are slice, in finite order,...

