Lecture 2
$M^{n} \quad n \leq 3 \quad C^{\infty}$ structure
unique pto differ
(Hatcher: The Kirby torus trick)
for surfaces
$F=\operatorname{din} k$ in M^{n}
call $\exists C^{r}$ if $\exists C^{r}$ foliated atlas to rule out pathologies $T \rightarrow$ exists and is c°

Hector-Hirsch $(n=2)\}$ can always sotop 7 so that Calagari $(n=3)$ TF is C°
leaves C^{∞} immersed
Th m :
let 7 be a codimi 1 for ln of closed M st $T \nrightarrow$ is C° then \exists transverse $C^{\infty} 1$-drill fol ${ }^{n} \Phi$

Pf: Fix Riemonion metric on M

v^{1} be c^{0}-vector field
perpendicular to TF
approximate by c^{∞} vector field ω
ω close enough to $v^{\perp} \Rightarrow$ non vanishing
lutyrote to get Φ
eg: find Φ in excoptes from yesterday
An important operation
Denjoy blow-up
7 , L =leaf Cor countably many leaves L_{i})
replace L_{i} with $L_{i} \times[0,1]$
to get a new foliation
eg: $M^{\prime}=s^{\prime}$

$$
f=\frac{11}{\theta \in S},\{\theta\}
$$

$L_{2}=$ countable union of leaves

add close intervals
exercié: you get circle back

$$
\begin{aligned}
& S_{\text {new }}^{\prime}=\left(S^{\prime} \times\left\{z_{i}\right\}\right) \cup\left(\begin{array}{ll}
\cup & \left.J_{i}\right) \\
2
\end{array}\right. \\
& \text { need } \Sigma l\left(J_{i}\right)<\infty
\end{aligned}
$$

Hintisee Cantor function
speciol case

$$
f: S^{\prime} \rightarrow S^{\prime} \quad z_{0} \in S^{\prime}
$$

inrational rotation

$$
\left\{z_{i}\right\}=\left\{f^{i}\left(z_{0}\right)\right\}_{i \in \mathbb{Z}}
$$

Derijoy's Example
$F=$ fols of τ^{2} given by suspending $f=$ irrationd rotation

$$
\left\{z_{0}\right\} \times[0,1]
$$

$$
\begin{aligned}
& T=S^{\prime} \times[0,1] /(x, 0) \sim(f(x), 1) \\
& y=\frac{11}{} \theta \times[0,1]
\end{aligned}
$$

$$
L=\operatorname{leaf}\left(11 f^{n}\left(x_{0}\right) \times\left[0_{01}\right] / \sim\right)
$$

replace by $\angle x I$

$$
S_{\text {new }}^{1} x[0,1] /(x, 0) \sim(g(x), 1)
$$

on polis $S_{\text {new }}^{\prime}-U J_{n}$

$$
\begin{gathered}
g(z)=f(z) \\
\text { on } \sigma_{n} \times\{0\} \xrightarrow{g \text { is }} v_{n+1} \times\{0\} \\
7^{\prime}=\frac{L 1}{} \theta \times[0,1] /(x, 0) \sim(g(x), 1)
\end{gathered}
$$

$S_{\text {new }}^{\prime}-V$ int J_{n} is a Cantor set
L leaf of \exists^{\prime} NOT $L x\{t\} \quad t \in\{0,1]$

$$
\Rightarrow\left[\leq T^{2}\right.
$$

def ${ }^{7}$: a minimal set X of a foliation is a closed union of leaves that is minimal with respect to in elusion
equivalently, \forall leaf L is $X, L=X$
Thu:
let $X=$ minimal set of coding 1 foliation then X has one of the following forms
(1) $X=$ compact leaf
(2) $x=7$
(3) $X=$ transversely Cantor
\uparrow called exceptional
Denjoy: $g=$ foll of T^{2} is $c^{2} \Rightarrow \exists$ does not contain an exceptional mini set
with care, the to l's above is C^{\prime}
Sacksteder: an example of c^{∞} fol ${ }^{1} \mathcal{F}$ in M^{3}
that has an exceptional set
generalization of Derjoy (incomplete version)
$\exists=c^{2}$ codimi 1 foll that has an exceptional min'l
set X has a resilient leaf (in X)
def : a leaf L of a codimi 1 fol \mathcal{F} is resilient if \exists loop γ in L and ray $\rho![0, \infty) \rightarrow L$ in L st. $\gamma<\bar{\rho}$

exercise: give an example of a codim 1 foll of a 3 -mfd that has an exceptional min'l set with out resilient leaf
errencise: given an example of a codion 1 fol ${ }^{n}$ of a 3 -mid that is not C^{2} but has exceptional set w/ resilient leaf

