Lecture 5
Observation:
$\mathcal{F}=$ tronsversly orientable Reebless $\{$ leaves all
$M=$ non taken (ie. no incompressible) $\}$ non compact shes
associate to F a compact object
Def n: a Branched surface $B \subset M^{3}$ (compact) is a compact space locally modred by

$p=$ triple post
Question:
given $F \underset{\text { associate }}{ } B$ branched surface
by choosuig a fine enough triangulation carefully enough
(tetrahedra in folccited chart with vaticies in distinct lights)

leaf 1 tetrahedron

- contain verticies
- disks 風 (10U)

If leaf intersect vertex, do Derjoy vertex

Prick normally isotopic Hakes disks to get a branch surface

Gabai-Ortel: $M \neq s^{\prime} \times s^{2}, 7$ Reebless can choose B to be essential

Li: $\mu \neq s^{\prime} x s^{2}, T^{3}, \exists$ Reed less, can choose B laminar
associate to B an I-fibered able N(B)

a folcition (fully) F is carried by B if after some Denjoy blow ip the leaves of 7 can be isotoped to lie in $N(B)$ everywhere \# I-fibers (and every fiber sees 1)
hierarchies:
M taken $\Rightarrow \exists$ hierarchy

$$
M_{0} \xrightarrow{S_{1}} M_{1} \xrightarrow{S_{2}} \ldots \xrightarrow{S_{n}} M_{n}=11 B^{3} S_{s}
$$

S_{i} incompressible, oriented, a-ricompressible, properly embedded in M_{i-1} $M_{i}=\mu_{2-1} \backslash S_{i}$
elementary observation:
associated to a hierarchy is a branched surface

adding S_{i}
 can still smooth

$$
U S_{i} \xrightarrow{\text { smooth }} B=\left\langle s_{1}, \ldots, s_{n}\right\rangle
$$

Thㅡㅡㄴ (Gabai)
M compact, oriented, irreducible
$\partial M=\Perp T^{2}$ (maybe \varnothing)
$S=$ Thurston norm min in $H_{2}(M, \partial M) \backslash\{0\}$
\exists taut fol ns $7_{0}, 7_{1}$ of M st.
(i) $s=l e$ af of 7_{i}
(ii) $\left.\mathcal{F}_{0}\right|_{2 \mu}, \mathcal{F}_{1} l_{\partial \mu}$ have no Reel annuli
(iii) 70 is finite depth
(iv) \mathcal{F}_{1} is C^{∞} except possibly along T^{2} components of S

Cantwell-Conlon:
$\exists M=s^{3}-i(K)$ examples
s.t. \exists tact finite depth and C^{2}

$$
\left.\Rightarrow f\right|_{\partial N(k)} \text { not a fol } 1 \text { by circles }
$$

Cantwell-Conlon-R:
if $\partial M \neq \varnothing$ then Gabai's construction con be chosen to yield C^{2} finite depth foll

Proof of Gabai Thus: taunt groomed

1) Show \exists "nice" hierarchies

- existence statement
- finiteness

2) use" niceness" to show co.0rient. brach surface fully carries a fol

$$
\begin{aligned}
& M_{0} \xrightarrow{S_{1}} M_{1} \longrightarrow \ldots \\
& B_{1}=\left\langle S_{1}, \ldots, S_{i}\right\rangle \\
& M_{i}=M-N\left(B_{i}\right) \\
& \therefore \partial M_{i}=\partial N\left(B_{2}\right)=\partial_{v} \cup \partial_{h} \\
& \underbrace{}_{\substack{\text { naticial part } \\
\text { annuli }}}
\end{aligned}
$$

keep track of rentical boundary

$$
\left(M_{0}, \varnothing\right) \xrightarrow{S_{1}}\left(M_{1}, \partial_{v} N\left(B_{1}\right)\right) \xrightarrow{S_{2}} \ldots \xrightarrow{S_{n}}\left(M_{n}, \partial_{v} N\left(B_{n}\right)\right)
$$

def ": a sutwed mfd is a pair (M, γ) $r=$ disjoint union of annuli

$$
\partial M-\gamma=R_{+}(\gamma) \cup R_{-}(\gamma)
$$

def n: a sutwed manifold hiérarchy
is a hierarchy of surtered manifolds

$$
\left(M_{0}, \varnothing\right) \xrightarrow{S_{1}}\left(\mu_{1}, \gamma_{1}\right) \xrightarrow{S_{2}} \ldots\left(\mu_{n}, \gamma_{n}\right)=\left(\Perp\left(D^{2} \times I\right), \Perp\left(\partial D^{2} \times I\right)\right)
$$

$S_{2}=$ oriented, incompressible surface
Cremove 2 -incompressible
so need to be careful
process ends)
"defn:" $(M, \gamma)=$ tacet sutured manifold
$\Leftrightarrow R_{ \pm}(\gamma)$ are normminivileing
(need extra...)

$$
(\mu, \gamma), z \in H_{2}(M, \partial \mu)-\{0\}
$$

Claims: $\exists S \in[S]=Z$ and given (M, γ) tact and $(M, \gamma) \xrightarrow{S}\left(M_{1}^{\prime} \gamma^{\prime}\right)$, then $\left(M_{1}^{\prime} \gamma^{\prime}\right)$ taut

Proof: Thurston norm ball
Hint: see Scharemann's lie in his notes
fritteress: observation \exists tweak to orientable top hierarchy can only cut finitely many times with
S_{2} not homologous to a union of disks for a hondlebody can use meridian' discs
to see B_{n} eventually stabilizes
\therefore complies regions $D^{2} \times I$

