(An algorithm for not) biorderirig links vià braids joint work in progress w / J_{i} Johnson \& N. Scherich
Why biorder (3 -mfd) group?

$$
\begin{gathered}
\pi_{1}\left(s^{3}-L\right) \cong \pi_{1}\left(s^{3}-\nu(L)\right)=: \pi_{1}(L) \\
\pi_{1}(L) \xrightarrow{\text { abel. }} H_{1}\left(s^{3}-L ; \mathbb{Z}\right) \rightarrow \mathbb{Z} \\
\mathbb{Z}^{n} \\
\left(\text { Boyer-RdIfen- } W_{1 \text { is }} \text {) } \Rightarrow \pi_{1}(L) \text { is } \angle 0\right.
\end{gathered}
$$

Question: When is $\pi_{r}(L)$ BO?
def n: G is biordenable if there is a strict total order on G invariant under both right and left multiplication
notation: L is $B O$ if $\pi_{l}(L)$ is BO
Th - (Clay-Rolfsen):
if K is BO knot, then K is not an L-space knot

Remark: there are BO links which are L-space links
Problem: given K consider $S_{K}=\left\{\Sigma_{n}(K)\right\}_{n=2}^{\infty}$
$\Sigma_{n}(k)$ cyclic n-fold branch cover
determine K so that S_{K} consists entirely of L-spaces
(i) How to show G is BO? \rightarrow find one strict total order which is invar under right, left mult.
(2) How to show G is not BO? \leadsto no strict total order exists which is invar under it, lt molt

Algorithm: "If a braided link L is not BO, then our program returns "NO" and a proof that L is not $B O$.
If L is $B O$, the program does not terminate [Calagari-Dunfield]
Braided links
a braided live is a link $L=\beta \cup$ a where
β is an n-strand braid and a is the braid axis of β

example:

is braided
the complement of L is fibered

$$
\begin{gathered}
S^{3}-\nu(a)-\hat{\beta} \text { is fibered } \\
S^{3}-\nu(a) \cong D^{\prime \prime}
\end{gathered}
$$

$M \cong S^{3}-\nu(a)-\hat{\beta}$ is fibered D_{n} over S^{\prime} \uparrow dish wi n punctures

$$
1 \rightarrow \pi_{l}\left(D_{n}\right) \stackrel{i}{\rightarrow} \pi_{l}(\mu) \rightarrow \pi_{l}\left(s^{\prime}\right) \rightarrow 0
$$

so $\pi_{l}(M)$ is $\angle O$
$\pi(M)$ is $B O$ if there is a conjugation invariant positive cone P of $\pi_{1}\left(D_{1}\right)$ so that $L(P)$ is conj-wivariont in $\pi_{1}(M)$
in this case only need to check conjugation by t

this is determined by the action β on $\pi_{1}\left(D_{n}\right)$

$$
t x t^{-1}=\beta_{t}(x)
$$

Def n: a braid is order-presenving (OP) if there is a biordening of F_{n} which β leaves invariant
2.e. Whenever $x<y$ then $\beta(x)<\beta(y)$

Th ${ }^{\underline{m}}\left(K_{\text {in }}\right.$-Rolfsen):
A braided link $L=\hat{\beta} u a$ is $B O$
of
β is onder-preserving
Kin-Rolfsen results:

- pure braids are OP
- pencodic braids
- $\sigma_{1} \sigma_{2}^{-1}$ not OP and pseuds Anosol $\sigma_{1}^{2} \sigma_{2}^{-1}$

Algorithm:
Build all positive cones of F_{n} which are conj invariant and β-invariant and

$$
\text { op }\left\{\operatorname { s o g } \left\{\begin{array}{l}
L 0\left\{\begin{array}{l}
(1) p \cup P^{-1} \cup\{(d)\}=F_{n} \quad(S T 0) \quad f<g \Leftrightarrow f^{-1} \in P \\
(2) \rho p \subset p \\
(3) g P g^{-1}<p
\end{array}\right. \\
(*) \beta(p)<p
\end{array}\right.\right.
$$

restrict to words of length at most k
Def: $P_{k} \subset F_{n}$ is a (conj, β-inst) pre-cone of length k if
(1) $P_{k} \cup P_{k}^{-1} \cup\left\{(d\}=w_{k}\right.$ words in F_{n} of length at most k
(2) $\left(P_{k} \cdot P_{k}\right) \cap W_{k} \subset P_{k}$
(3) $\left(g P_{k} g^{-1}\right) \cap W_{R} \subset P_{k}$
(*) $\beta\left(P_{k}\right) \subset P_{k}$
Prop: if P is a pos. cone invt under β, conj, then $P \cap W_{k}=P_{k}$ is a pre-cone of length $k, k \in \mathbb{Z}$ Find k so that no pre-cone exists
example:

$$
\beta=v_{1}
$$

want to show no biorden of F_{z} wis preserved by β suppose $x_{1}<x_{2} \quad\left(x_{2}<x_{1}\right)$

$$
\begin{array}{ll}
x_{1}<x_{2} & \beta\left(x_{1}\right)=x_{1} x_{2} x_{1}^{-1} \\
\Rightarrow \beta\left(x_{1}\right)<\beta\left(x_{2}\right) & \beta\left(x_{2}\right)=x_{1} \\
x_{1} x_{2} x^{-1}<x_{1} & \\
\Rightarrow x_{2}<x_{1} \otimes &
\end{array}
$$

Computer
Start trying to build precone of length k
$k=3$ with out loss of gen $x_{1} \in P$
(1) add all conjugates of thrips already in P
(2) add all iniages of things in P under β to P
(3) add all products of things in p
$k=3$ add x, $1^{\text {it }}$ tine around
(1) $x_{2} x_{1} x_{2}^{-1}, x_{2}^{-1} x_{1} x_{2}$
(2) $x_{1} x_{2} x^{-1}$
(3) $x_{1}{ }^{2}$

2nd thise around
(1) x_{2}
(2) \ldots
(3) ...

if we put id in P_{k} then $\$$
eg if add $x_{2} x_{1}^{-1}$ to P_{k}
(1) also has $x_{1}^{-1} x_{2}$ (conjugate of $x_{2} x_{1}^{-1}$)
(2) $\beta\left(x_{1}^{1} x_{2}\right)=x_{1} x_{2}^{-1} x_{1}^{-1} x_{1}$

$$
=x_{1} x_{2}{ }^{4}
$$

(3) $\therefore x_{2} x_{1}^{-1} x_{1} x_{2}^{-1}=1 d$

Improvements to the Algorithm
Prop: if β preserves some conj-miut cone of F_{n} then it presences one where all elements with positive exponents sum are in P

