A unified Casson-Lin invariant for the real forms of SL(2)

Nathan Dunfield (University of Illinois)

Joint with Jake Rasmussen

Based on arXiv:2209.03382

Notes already posted at: https://dunfield.info/tech2023.pdf

A unified Casson-Lin invariant for
the real forms of SL(2)

studying reps $\pi_1 M^3 \rightarrow G$ for G one of:

 $SU_2 = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \mid |a|^2 + |b|^2 = 1 \right\}$

Much learned about 3-manifolds by

 $\mathrm{SL}_2\mathbb{C} = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mid a,b,c,d \in \mathbb{C}, \ \det = 1 \right\}$

Nathan Dunfield (University of Illinois)

Joint with Jake Rasmussen

Based on arXiv:2209.03382

Notes already posted at:

https://dunfield.info/tech2023.pdf

SL₂ℝ

A unified Casson-Lin invariant for the real forms of SL(2)

Nathan Dunfield (University of Illinois)

Joint with Jake Rasmussen

Based on arXiv:2209.03382

Notes already posted at: https://dunfield.info/tech2023.pdf Much learned about 3-manifolds by studying reps $\pi_1 M^3 \rightarrow G$ for G one of:

Hyperbolic geometry [Thurston, ...]

$$\begin{aligned} \mathrm{SL}_2\mathbb{C} &= \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \;\middle|\; a,b,c,d \in \mathbb{C}, \; \mathrm{det} = 1 \right\} \\ &\approx \mathrm{Isom}^+(\mathbb{H}^3) \end{aligned}$$

Gauge Theory [Casson, Floer, ...]

$$\begin{split} SU_2 = & \left\{ \left(\begin{array}{cc} a & b \\ -\bar{b} & \bar{a} \end{array} \right) \; \middle| \; |a|^2 + |b|^2 = 1 \right\} \\ \approx & \mathsf{Isom}^+ \big(S^2 \big) = SO_3. \end{split}$$

Left-Orderability

$$\mathrm{SL}_2\mathbb{R} \approx \mathrm{Isom}^+(\mathbb{H}^2).$$

 SU_2 and $SL_2\mathbb{R}$ are the real forms of SL_2

Much learned about 3-manifolds by studying reps $\pi_1 M^3 \rightarrow G$ for G one of:

Hyperbolic geometry [Thurston, ...]

$$\begin{split} \mathrm{SL}_2\mathbb{C} &= \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \;\middle|\; a,b,c,d \in \mathbb{C}, \; \mathsf{det} = 1 \right\} \\ &\approx \mathsf{Isom}^+ \big(\mathbb{H}^3 \big) \end{split}$$

Gauge Theory [Casson, Floer, ...]

$$SU_2 = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \middle| |a|^2 + |b|^2 = 1 \right\}$$

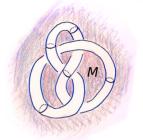
$$\approx Isom^+(S^2) = SO_3.$$

Left-Orderability

$$SL_2\mathbb{R} \approx Isom^+(\mathbb{H}^2).$$

 SU_2 and $SL_2\mathbb{R}$ are the real forms of SL_2

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.



$$\begin{split} &\text{Set } A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G \text{ for } \theta \in \left(0,\pi\right) \\ &\text{which rotates by } 2\theta \text{, conj to } \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \text{ in } \\ &\text{SL}_2\mathbb{C}. \text{ Have } &\text{SU}_2 \cap \text{SL}_2\mathbb{R} = \{A_{\theta}\} = S^1. \end{split}$$

Much learned about 3-manifolds by studying reps $\pi_1 M^3 \rightarrow G$ for G one of:

$$\begin{aligned} \mathrm{SL}_2\mathbb{C} &= \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \;\middle|\; a,b,c,d \in \mathbb{C}, \; \mathsf{det} = 1 \right\} \\ &\approx \mathsf{Isom}^+\big(\mathbb{H}^3\big) \end{aligned}$$

Gauge Theory [Casson, Floer, ...]

$$SU_2 = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \middle| |a|^2 + |b|^2 = 1 \right\}$$

$$\approx Isom^+(S^2) = SO_3.$$

Left-Orderability

$$SL_2\mathbb{R} \approx Isom^+(\mathbb{H}^2)$$
.

 SU_2 and $\text{SL}_2\mathbb{R}$ are the real forms of SL_2

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

$$\begin{split} &\text{Set } A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G \text{ for } \theta \in \left(0,\pi\right) \\ &\text{which rotates by } 2\theta, \text{ conj to } \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \text{ in } \\ &\text{SL}_2\mathbb{C}. \text{ Have } \text{SU}_2 \cap \text{SL}_2\mathbb{R} = \{A_{\theta}\} = S^1. \end{split}$$

Much learned about 3-manifolds by studying reps $\pi_1 M^3 \rightarrow G$ for G one of:

Hyperbolic geometry [Thurston, ...]
$$\mathrm{SL}_2\mathbb{C} = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \;\middle|\; a,b,c,d \in \mathbb{C}, \; \det = 1 \right\}$$
$$\approx \mathrm{Isom}^+(\mathbb{H}^3)$$

Gauge Theory [Casson, Floer, ...]

$$SU_2 = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \middle| |a|^2 + |b|^2 = 1 \right\}$$

 $\approx \text{Isom}^+(S^2) = SO_3.$

Left-Orderability

$$SL_2\mathbb{R} \approx lsom^+(\mathbb{H}^2).$$

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

$$\begin{split} \text{Set } A_{\theta} &= \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G \text{ for } \theta \in \left(0,\pi\right) \\ \text{which rotates by } 2\theta, \text{ conj to } \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \text{ in } \\ \text{SL}_2\mathbb{C}. \text{ Have } \text{SU}_2 \cap \text{SL}_2\mathbb{R} &= \{A_{\theta}\} = S^1. \end{split}$$

Let $X_G^{\theta}(M)$ be

$$\{\rho\colon \pi_1M\to G\mid \rho(\mu) \text{ conj to } A_\theta\}$$

"modulo conjugation by G". Set

$$D_{M} = \left\{ \theta \in (0, \pi) \mid \Delta_{M}(e^{2i\theta}) = 0 \right\}$$

 SU_2 and $\text{SL}_2\mathbb{R}$ are the real forms of SL_2

studying reps $\pi_1 M^3 \rightarrow G$ for G one of: Hyperbolic geometry [Thurston, ...]

Much learned about 3-manifolds by

$$\begin{aligned} \mathrm{SL}_2\mathbb{C} &= \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \;\middle|\; a,b,c,d \in \mathbb{C}, \; \mathsf{det} = 1 \right\} \\ &\approx \mathsf{Isom}^+\big(\mathbb{H}^3\big) \end{aligned}$$

$$SU_2 = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \mid |a|^2 + |b|^2 = 1 \right\}$$

$$\approx Isom^+(S^2) = SO_3.$$

Left-Orderability
$$SL_2\mathbb{R} \approx Isom^+(\mathbb{H}^2)$$
.

Set $A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in G$ for $\theta \in (0, \pi)$ which rotates by 2θ , conj to $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ in

 $SL_2\mathbb{C}$. Have $SU_2 \cap SL_2\mathbb{R} = \{A_\theta\} = S^1$. Let $X_G^{\theta}(M)$ be

 $\{\rho: \pi_1 M \to G \mid \rho(\mu) \text{ conj to } A_\theta\}$ "modulo conjugation by G". Set

 $D_M = \left\{ \theta \in (0, \pi) \mid \Delta_M(e^{2i\theta}) = 0 \right\}$

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$,

 $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

A rep $\rho: \pi_1(M) \to \operatorname{SL}_2\mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^2 .

 SU_2 and $SL_2\mathbb{R}$ are the real forms of SL_2

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

Set $A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G$ for $\theta \in (0,\pi)$ which rotates by 2θ , conj to $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ in $SL_2\mathbb{C}$. Have $SU_2 \cap SL_2\mathbb{R} = \{A_{\theta}\} = S^1$.

Let
$$X_G^{\theta}(M)$$
 be

$$\{\rho \colon \pi_1 M \to G \mid \rho(\mu) \text{ conj to } A_\theta\}$$

"modulo conjugation by G". Set

$$D_{M} = \left\{ \theta \in (0, \pi) \mid \Delta_{M}(e^{2i\theta}) = 0 \right\}$$

A rep $\rho \colon \pi_1(M) \to \operatorname{SL}_2\mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^2 .

[Lin, Herald, Heusner-Kroll '90s] For $\theta \notin D_M$. can define

$$h_{SU_2}^{\theta}(M) = \text{signed count of } X_{SU_2}^{\theta, irr}(M)$$

Moreover, $h_{\mathrm{SU}_2}^{\theta}(M) = -\frac{1}{2}\sigma_K(e^{i2\theta})$, which is constant outside of D_M .

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

$$\begin{split} &\text{Set } A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G \text{ for } \theta \in \left(0,\pi\right) \\ &\text{which rotates by } 2\theta, \text{ conj to } \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \text{ in } \\ &\text{SL}_2\mathbb{C}. \text{ Have } \text{SU}_2 \cap \text{SL}_2\mathbb{R} = \{A_{\theta}\} = S^1. \end{split}$$

Let $X_G^{\theta}(M)$ be

"modulo conjugation by G". Set

$$D_M = \left\{ \theta \in (0, \pi) \mid \Delta_M(e^{2i\theta}) = 0 \right\}$$

 $\{\rho: \pi_1 M \to G \mid \rho(\mu) \text{ conj to } A_\theta\}$

A rep $\rho \colon \pi_1(M) \to \operatorname{SL}_2\mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^2 .

[Lin, Herald, Heusner-Kroll '90s] For $\theta \notin D_M$, can define

$$h_{\mathrm{SU}_2}^{\theta}(M) = \text{signed count of } X_{\mathrm{SU}_2}^{\theta,\mathrm{irr}}(M)$$

Moreover, $h_{SU_2}^{\theta}(M) = -\frac{1}{2}\sigma_K(e^{i2\theta})$, which is constant outside of D_M .

[D-Rasmussen] Suppose M is small, i.e. has no closed essential surface. Then for $\theta \notin D_M$, can define

$$h_{\mathrm{SL}_2\mathbb{R}}^{\theta}(M) = \text{signed count of } X_{\mathrm{SL}_2\mathbb{R}}^{\theta,\mathrm{irr}}(M)$$

Setting: K a knot in S^3 , $M = S^3 \setminus v(K)$, $\mu \in \pi_1(M)$ a meridian, $G = SU_2$ or $SL_2\mathbb{R}$.

$$\begin{split} &\text{Set } A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \in G \text{ for } \theta \in \left(0,\pi\right) \\ &\text{which rotates by } 2\theta, \text{ conj to } \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \text{ in } \\ &\text{SL}_2\mathbb{C}. \text{ Have } &\text{SU}_2 \cap \text{SL}_2\mathbb{R} = \{A_{\theta}\} = S^1. \end{split}$$

Let $X_G^{\theta}(M)$ be

"modulo conjugation by
$$G$$
". Set

(- (-)

$$D_{M} = \left\{ \theta \in (0, \pi) \mid \Delta_{M}(e^{2i\theta}) = 0 \right\}$$

 $\{\rho: \pi_1 M \to G \mid \rho(\mu) \text{ conj to } A_\theta\}$

A rep $\rho \colon \pi_1(M) \to \mathrm{SL}_2\mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^2 .

[Lin, Herald, Heusner-Kroll '90s] For $\theta \notin D_M$, can define

$$h_{SU_2}^{\theta}(M) = \text{signed count of } X_{SU_2}^{\theta, \text{irr}}(M)$$

Moreover, $h_{SU_2}^{\theta}(M) = -\frac{1}{2}\sigma_K(e^{i2\theta})$, which is constant outside of D_M .

i.e. has no closed essential surface. Then for $\theta \notin D_M$, can define

[**D-Rasmussen**] Suppose M is small,

$$h_{\mathrm{SL}_2\mathbb{R}}^{\theta}(M) = \text{signed count of } X_{\mathrm{SL}_2\mathbb{R}}^{\theta,\mathrm{irr}}(M)$$

Moreover, there exists $h(M) \in \mathbb{Z}$ with

$$h(M) = h_{SU_2}^{\theta}(M) + h_{SL_2\mathbb{R}}^{\theta}(M)$$

for all $\theta \notin D_M$.

[Lin, Herald, Heusner-Kroll '90s] For $\theta \notin D_M$. can define

$$h_{SU_2}^{\theta}(M) = \text{signed count of } X_{SU_2}^{\theta, \text{irr}}(M)$$

Moreover, $h_{SU_2}^{\theta}(M) = -\frac{1}{2}\sigma_K(e^{i2\theta})$, which is constant outside of D_M .

[D-Rasmussen] Suppose M is small, i.e. has no closed essential surface. Then for $\theta \notin D_M$, can define

$$h_{\mathrm{SL}_2\mathbb{R}}^{\theta}(M) = \text{signed count of } X_{\mathrm{SL}_2\mathbb{R}}^{\theta,\mathrm{irr}}(M)$$

Moreover, there exists $h(M) \in \mathbb{Z}$ with

$$h(M) = h_{\mathrm{SU}_2}^{\theta}(M) + h_{\mathrm{SL}_2\mathbb{R}}^{\theta}(M)$$

for all $\theta \notin D_M$.

Cor. If M is small with σ_K nonconstant, then there is an irred $\rho: \pi_1 M \to \mathrm{SL}_2 \mathbb{R}$.

Pf. As
$$\sigma_K$$
 is nonconst., so is $h_{\mathrm{SU}_2}^{\theta}(M)$ $\Rightarrow h_{\mathrm{SL}_2\mathbb{R}}^{\theta}(M)$ nonconstant \Rightarrow some θ_0 with $h_{\mathrm{SL}_2\mathbb{R}}^{\theta_0}(M) \neq 0$ $\Rightarrow X_{\mathrm{SL}_2\mathbb{R}}^{\theta_0}(M)$ is nonempty.

[Lin, Herald, Heusner-Kroll '90s] For $\theta \notin D_M$. can define

$$h_{SU_2}^{\theta}(M) = \text{signed count of } X_{SU_2}^{\theta, \text{irr}}(M)$$

Moreover, $h_{SU_2}^{\theta}(M) = -\frac{1}{2}\sigma_K(e^{i2\theta})$, which is constant outside of D_M .

[D-Rasmussen] Suppose M is small, i.e. has no closed essential surface. Then for $\theta \notin D_M$, can define

$$h_{\mathrm{SL}_2\mathbb{R}}^{\theta}(M) = \text{signed count of } X_{\mathrm{SL}_2\mathbb{R}}^{\theta,\mathrm{irr}}(M)$$

Moreover, there exists $h(M) \in \mathbb{Z}$ with

$$h(M) = h_{\mathrm{SU}_2}^{\theta}(M) + h_{\mathrm{SL}_2\mathbb{R}}^{\theta}(M)$$

for all $\theta \notin D_M$.

Cor. If M is small with σ_K nonconstant, then there is an irred $\rho: \pi_1 M \to \operatorname{SL}_2 \mathbb{R}$.

Pf. As σ_K is nonconst., so is $h_{SU_2}^{\theta}(M)$ $\Rightarrow h_{SL_2\mathbb{R}}^{\theta}(M)$ nonconstant \Rightarrow some θ_0 with $h_{SL_2\mathbb{R}}^{\theta_0}(M) \neq 0$ $\Rightarrow X_{SL_2\mathbb{R}}^{\theta_0}(M)$ is nonempty.

Compare:

[Kronheimer-Mrowka] A nontrivial K has an irred $\rho: \pi_1M \to SU_2$.

Cor. If M is small with σ_K nonconstant, then there is an irred $\rho \colon \pi_1 M \to \mathrm{SL}_2 \mathbb{R}$.

Pf. As σ_K is nonconst., so is $h^{\theta}_{\mathrm{SU}_2}(M)$ $\implies h^{\theta}_{\mathrm{SL}_2\mathbb{R}}(M)$ nonconstant \implies some θ_0 with $h^{\theta_0}_{\mathrm{SL}_2\mathbb{R}}(M) \neq 0$ $\implies X^{\theta_0}_{\mathrm{SL}_2\mathbb{R}}(M)$ is nonempty.

Compare:

[Kronheimer-Mrowka] A nontrivial K has an irred $\rho: \pi_1 M \to SU_2$.

Motivation: L-space conjecture, orderability of 3-manifold groups, translation extension locus [Culler-D].

Let $\Sigma_n(K)$ be the *n*-fold cyclic cover of S^3 branched over K.

Cor. If K is a small knot with non-constant σ_K then $\pi_1(\Sigma_n(K))$ is left-orderable for all $n \ge \pi/w_K$, where w_K depends on D_M .

Cor. If K is 2-bridge with $\sigma_K(-1) \neq 0$, then either $\pi_1(M(\alpha))$ is left-orderable for all $\alpha \in (-\infty, 1)$ or for all $\alpha \in (-1, \infty)$.

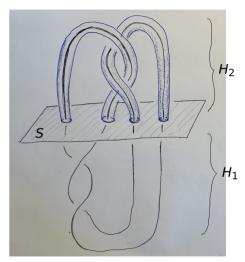
Motivation: L-space conjecture, orderability of 3-manifold groups, translation extension locus [Culler-D].

Let $\Sigma_n(K)$ be the *n*-fold cyclic cover of S^3 branched over K.

Cor. If K is a small knot with non-constant σ_K then $\pi_1(\Sigma_n(K))$ is left-orderable for all $n \ge \pi/w_K$, where w_K depends on D_M .

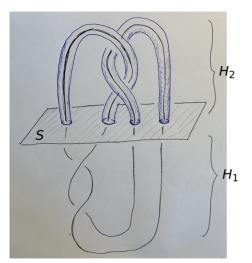
Cor. If K is 2-bridge with $\sigma_K(-1) \neq 0$, then either $\pi_1(M(\alpha))$ is left-orderable for all $\alpha \in (-\infty, 1)$ or for all $\alpha \in (-1, \infty)$.

Casson-Lin signs. Write $M = H_1 \cup_S H_2$ using an n-bridge diagram for K:

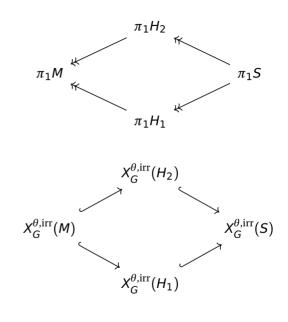


S is a 2-sphere minus 2n disks H_i are genus-n handlebodies

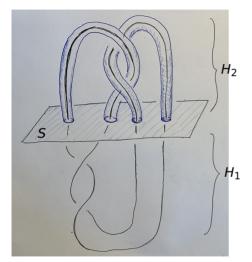
Casson-Lin signs. Write $M = H_1 \cup_S H_2$ using an *n*-bridge diagram for K:



S is a 2-sphere minus 2n disks H_i are genus-n handlebodies



Casson-Lin signs. Write $M = H_1 \cup_S H_2$ using an *n*-bridge diagram for K:



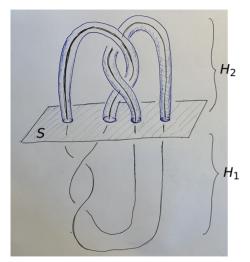
S is a 2-sphere minus 2n disks H_i are genus-n handlebodies

 $X_G^{\theta, \text{irr}}(S)$ is a smooth (4n-6)-manifold with $X_G^{\theta, \text{irr}}(H_i)$ submflds of dim 2n-3.

 $X_G^{\theta,\mathrm{irr}}(M) = X_G^{\theta,\mathrm{irr}}(H_1) \cap X_G^{\theta,\mathrm{irr}}(H_2).$ Everything has nat'l orientations, so define $h_G^{\theta}(M)$ to be the algebraic intersection number of the $X_G^{\theta,\mathrm{irr}}(H_i)$.

Important: Even for $G=\mathrm{SU}_2$, these manifolds are all noncpt. But $X_G^{\theta,\mathrm{irr}}(M)$ is cpt when $\theta\notin D_M$ and M small.

Casson-Lin signs. Write $M = H_1 \cup_S H_2$ using an *n*-bridge diagram for K:



S is a 2-sphere minus 2n disks H_i are genus-n handlebodies

 $X_G^{\theta, \text{irr}}(S)$ is a smooth (4n-6)-manifold with $X_G^{\theta, \text{irr}}(H_i)$ submflds of dim 2n-3.

 $X_G^{\theta,\mathrm{irr}}(M) = X_G^{\theta,\mathrm{irr}}(H_1) \cap X_G^{\theta,\mathrm{irr}}(H_2).$ Everything has nat'l orientations, so define $h_G^{\theta}(M)$ to be the algebraic intersection number of the $X_G^{\theta,\mathrm{irr}}(H_i)$.

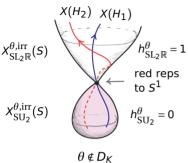
Important: Even for $G=\mathrm{SU}_2$, these manifolds are all noncpt. But $X_G^{\theta,\mathrm{irr}}(M)$ is cpt when $\theta\notin D_M$ and M small.

[DR] There exists $h(K) \in \mathbb{Z}$ with

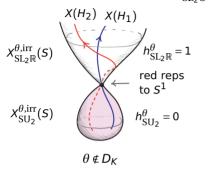
$$h(K) = h_{SU_2}^{\theta}(K) + h_{SL_2\mathbb{R}}^{\theta}(K)$$

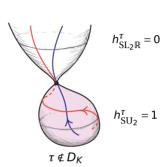
for all $\theta \notin D_K$.

Unification: look at inside $X_{\operatorname{SL}_2\mathbb{C}}^{\theta,\operatorname{irr}}(S)$.

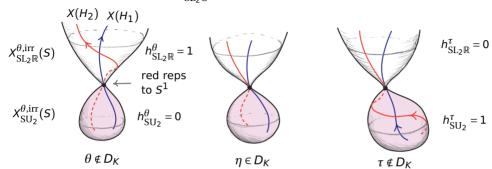


Unification: look at inside $X_{\mathrm{SL}_2\mathbb{C}}^{\theta,\mathrm{irr}}(S)$.

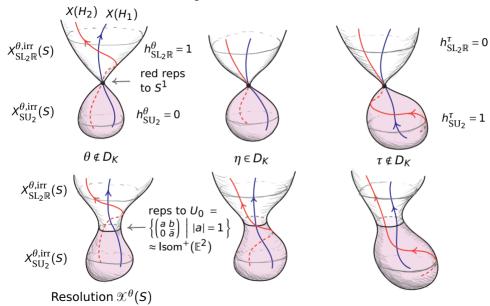




Unification: look at inside $X_{\mathrm{SL}_2\mathbb{C}}^{\theta,\mathrm{irr}}(S)$.



Unification: look at inside $X_{SL_2\mathbb{C}}^{\theta,irr}(S)$.



Moral: in resolved picture h(M) is the alg $\cap \#$ of red and blue for **all** angles.

