A unified Casson-Lin invariant for the real forms of SL(2)

Nathan Dunfield (University of Illinois)

Joint with Jake Rasmussen

Based on arXiv:2209.03382

Notes already posted at:
https://dunfield.info/tech2023.pdf

Much learned about 3-manifolds by studying reps $\pi_{1} M^{3} \rightarrow G$ for G one of:

A unified Casson-Lin invariant for the real forms of SL(2)

$$
\mathrm{SL}_{2} \mathbb{C}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}, \operatorname{det}=1\right\}
$$

Nathan Dunfield (University of Illinois)
Joint with Jake Rasmussen
Based on arXiv:2209.03382
Notes already posted at:
https://dunfield.info/tech2023.pdf

$$
\mathrm{SU}_{2}=\left\{\left.\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)| | a\right|^{2}+|b|^{2}=1\right\}
$$

$\mathrm{SL}_{2} \mathbb{R}$

Much learned about 3-manifolds by studying reps $\pi_{1} M^{3} \rightarrow G$ for G one of:

A unified Casson-Lin invariant for the real forms of SL(2)

Nathan Dunfield (University of Illinois)
Joint with Jake Rasmussen

Based on arXiv:2209.03382

Notes already posted at:
https://dunfield.info/tech2023.pdf

$$
\begin{aligned}
\mathrm{SL}_{2} \mathbb{C} & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}, \operatorname{det}=1\right\} \\
& \approx \operatorname{som}^{+}\left(\mathbb{W}^{3}\right)
\end{aligned}
$$

Gauge Theory [Casson, Floer, ...]

$$
\begin{aligned}
\mathrm{SU}_{2} & =\left\{\left.\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)| | a\right|^{2}+|b|^{2}=1\right\} \\
& \approx \operatorname{som}^{+}\left(S^{2}\right)=\mathrm{SO}_{3} .
\end{aligned}
$$

Left-Orderability

$$
\mathrm{SL}_{2} \mathbb{R} \approx \operatorname{lsom}^{+}\left(\mathbb{-}^{2}\right) .
$$

SU_{2} and $\mathrm{SL}_{2} \mathbb{R}$ are the real forms of SL_{2}

Much learned about 3-manifolds by studying reps $\pi_{1} M^{3} \rightarrow G$ for G one of:

Hyperbolic geometry [Thurston, ...]

$$
\begin{aligned}
\mathrm{SL}_{2} \mathbb{C} & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}, \operatorname{det}=1\right\} \\
& \approx \operatorname{Isom}^{+}\left(\mathbb{-}^{3}\right)
\end{aligned}
$$

Gauge Theory [Casson, Floer, ...]

$$
\begin{aligned}
\mathrm{SU}_{2} & =\left\{\left.\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)| | a\right|^{2}+|b|^{2}=1\right\} \\
& \approx \operatorname{som}^{+}\left(S^{2}\right)=\mathrm{SO}_{3} .
\end{aligned}
$$

Left-Orderability

$$
\mathrm{SL}_{2} \mathbb{R} \approx \operatorname{lsom}^{+}\left(\mathbb{-}^{2}\right) .
$$

SU_{2} and $\mathrm{SL}_{2} \mathbb{R}$ are the real forms of SL_{2}

Setting: K a knot in $S^{3}, M=S^{3} \backslash v(K)$, $\mu \in \pi_{1}(M)$ a meridian, $G=\mathrm{SU}_{2}$ or $\mathrm{SL}_{2} \mathbb{R}$.

Set $A_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \in G$ for $\theta \in(0, \pi)$ which rotates by 2θ, conj to $\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right)$ in $\mathrm{SL}_{2} \mathbb{C}$. Have $\mathrm{SU}_{2} \cap \mathrm{SL}_{2} \mathbb{R}=\left\{A_{\theta}\right\}=S^{1}$.

Much learned about 3-manifolds by studying reps $\pi_{1} M^{3} \rightarrow G$ for G one of:

Hyperbolic geometry [Thurston, ...]

$$
\begin{aligned}
\mathrm{SL}_{2} \mathbb{C} & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}, \operatorname{det}=1\right\} \\
& \approx \operatorname{Isom}^{+}\left(\mathbb{-}^{3}\right)
\end{aligned}
$$

Gauge Theory [Casson, Floer, ...]

$$
\begin{aligned}
\mathrm{SU}_{2} & =\left\{\left.\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)| | a\right|^{2}+|b|^{2}=1\right\} \\
& \approx \operatorname{som}^{+}\left(S^{2}\right)=\mathrm{SO}_{3} .
\end{aligned}
$$

Left-Orderability

$$
\mathrm{SL}_{2} \mathbb{R} \approx \operatorname{lsom}^{+}\left(\mathbb{-}^{2}\right) .
$$

SU_{2} and $\mathrm{SL}_{2} \mathbb{R}$ are the real forms of SL_{2}

Setting: K a knot in $S^{3}, M=S^{3} \backslash v(K)$, $\mu \in \pi_{1}(M)$ a meridian, $G=\mathrm{SU}_{2}$ or $\mathrm{SL}_{2} \mathbb{R}$.

Set $A_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \in G$ for $\theta \in(0, \pi)$ which rotates by 2θ, conj to $\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right)$ in $\mathrm{SL}_{2} \mathbb{C}$. Have $\mathrm{SU}_{2} \cap \mathrm{SL}_{2} \mathbb{R}=\left\{A_{\theta}\right\}=S^{1}$.

Much learned about 3-manifolds by studying reps $\pi_{1} M^{3} \rightarrow G$ for G one of:

Hyperbolic geometry [Thurston, ...]

$$
\begin{aligned}
\mathrm{SL}_{2} \mathbb{C} & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}, \operatorname{det}=1\right\} \\
& \approx \operatorname{Isom}^{+}\left(\mathbb{-}^{3}\right)
\end{aligned}
$$

Gauge Theory [Casson, Floer, ...]

$$
\begin{aligned}
\mathrm{SU}_{2} & =\left\{\left.\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)| | a\right|^{2}+|b|^{2}=1\right\} \\
& \approx \operatorname{som}^{+}\left(S^{2}\right)=\mathrm{SO}_{3} .
\end{aligned}
$$

Left-Orderability

$$
\mathrm{SL}_{2} \mathbb{R} \approx \operatorname{lsom}^{+}\left(\mathbb{-}^{2}\right) .
$$

SU_{2} and $\mathrm{SL}_{2} \mathbb{R}$ are the real forms of SL_{2}

Setting: K a knot in $S^{3}, M=S^{3} \backslash v(K)$, $\mu \in \pi_{1}(M)$ a meridian, $G=\mathrm{SU}_{2}$ or $\mathrm{SL}_{2} \mathbb{R}$.

Set $A_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \in G$ for $\theta \in(0, \pi)$ which rotates by 2θ, conj to $\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right)$ in $\mathrm{SL}_{2} \mathbb{C}$. Have $\mathrm{SU}_{2} \cap \mathrm{SL}_{2} \mathbb{R}=\left\{A_{\theta}\right\}=S^{1}$.

Let $X_{G}^{\theta}(M)$ be

$$
\left\{\rho: \pi_{1} M \rightarrow G \mid \rho(\mu) \text { conj to } A_{\theta}\right\}
$$

"modulo conjugation by G ". Set

$$
D_{M}=\left\{\theta \in(0, \pi) \mid \Delta_{M}\left(e^{2 i \theta}\right)=0\right\}
$$

Much learned about 3-manifolds by studying reps $\pi_{1} M^{3} \rightarrow G$ for G one of:

Hyperbolic geometry [Thurston, ...]

$$
\begin{aligned}
\mathrm{SL}_{2} \mathbb{C} & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}, \operatorname{det}=1\right\} \\
& \approx \operatorname{Isom}^{+}\left(\mathbb{-}^{3}\right)
\end{aligned}
$$

Gauge Theory [Casson, Floer, ...]

$$
\begin{aligned}
\mathrm{SU}_{2} & =\left\{\left.\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)| | a\right|^{2}+|b|^{2}=1\right\} \\
& \approx \operatorname{som}^{+}\left(S^{2}\right)=\mathrm{SO}_{3} .
\end{aligned}
$$

Left-Orderability

$$
\mathrm{SL}_{2} \mathbb{R} \approx \operatorname{lsom}^{+}\left(\mathbb{-}^{2}\right) .
$$

SU_{2} and $\mathrm{SL}_{2} \mathbb{R}$ are the real forms of SL_{2}

Setting: K a knot in $S^{3}, M=S^{3} \backslash v(K)$, $\mu \in \pi_{1}(M)$ a meridian, $G=\mathrm{SU}_{2}$ or $\mathrm{SL}_{2} \mathbb{R}$.

Set $A_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \in G$ for $\theta \in(0, \pi)$ which rotates by 2θ, conj to $\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right)$ in $\mathrm{SL}_{2} \mathbb{C}$. Have $\mathrm{SU}_{2} \cap \mathrm{SL}_{2} \mathbb{R}=\left\{A_{\theta}\right\}=S^{1}$.

Let $X_{G}^{\theta}(M)$ be

$$
\left\{\rho: \pi_{1} M \rightarrow G \mid \rho(\mu) \text { conj to } A_{\theta}\right\}
$$

"modulo conjugation by G ". Set

$$
D_{M}=\left\{\theta \in(0, \pi) \mid \Delta_{M}\left(e^{2 i \theta}\right)=0\right\}
$$

A rep $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2} \mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^{2}.

Setting: K a knot in $S^{3}, M=S^{3} \backslash v(K)$, $\mu \in \pi_{1}(M)$ a meridian, $G=S U_{2}$ or $\mathrm{SL}_{2} \mathbb{R}$.

Set $A_{\theta}=\left(\begin{array}{c}\cos \theta-\sin \theta \\ \sin \theta \\ \cos \theta\end{array}\right) \in G$ for $\theta \in(0, \pi)$ which rotates by 2θ, conj to $\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right)$ in $\mathrm{SL}_{2} \mathrm{C}$. Have $\mathrm{SU}_{2} \cap \mathrm{SL}_{2} \mathbb{R}=\left\{A_{\theta}\right\}=S^{1}$.

Let $X_{G}^{\theta}(M)$ be

$$
\left\{\rho: \pi_{1} M \rightarrow G \mid \rho(\mu) \text { conj to } A_{\theta}\right\}
$$

"modulo conjugation by G ". Set

$$
D_{M}=\left\{\theta \in(0, \pi) \mid \Delta_{M}\left(e^{2 i \theta}\right)=0\right\}
$$

A rep $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2} \mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^{2}.

[Lin, Herald, Heusner-Kroll '90s]

 For $\theta \notin D_{M}$, can define$$
h_{\mathrm{SU}_{2}}^{\theta}(M)=\text { signed count of } X_{\mathrm{SU}_{2}}^{\theta, \text { irr }}(M)
$$

Moreover, $h_{\mathrm{SU}_{2}}^{\theta}(M)=-\frac{1}{2} \sigma_{K}\left(e^{i 2 \theta}\right)$, which is constant outside of D_{M}.

Setting: K a knot in $S^{3}, M=S^{3} \backslash v(K)$, $\mu \in \pi_{1}(M)$ a meridian, $G=\mathrm{SU}_{2}$ or $\mathrm{SL}_{2} \mathbb{R}$.

Set $A_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \in G$ for $\theta \in(0, \pi)$ which rotates by 2θ, conj to $\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right)$ in $\mathrm{SL}_{2} \mathbb{C}$. Have $\mathrm{SU}_{2} \cap \mathrm{SL}_{2} \mathbb{R}=\left\{A_{\theta}\right\}=S^{1}$.

Let $X_{G}^{\theta}(M)$ be

$$
\left\{\rho: \pi_{1} M \rightarrow G \mid \rho(\mu) \text { conj to } A_{\theta}\right\}
$$

"modulo conjugation by G ". Set

$$
D_{M}=\left\{\theta \in(0, \pi) \mid \Delta_{M}\left(e^{2 i \theta}\right)=0\right\}
$$

A rep $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2} \mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^{2}.

[Lin, Herald, Heusner-Kroll '90s]

 For $\theta \notin D_{M}$, can define$$
h_{\mathrm{SU}_{2}}^{\theta}(M)=\text { signed count of } X_{\mathrm{SU}_{2}}^{\theta, \text { irr }}(M)
$$

Moreover, $h_{\mathrm{SU}_{2}}^{\theta}(M)=-\frac{1}{2} \sigma_{K}\left(e^{i 2 \theta}\right)$, which is constant outside of D_{M}.
[D-Rasmussen] Suppose M is small, i.e. has no closed essential surface. Then for $\theta \notin D_{M}$, can define

$$
h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(M)=\text { signed count of } X_{\mathrm{SL}_{2} \mathbb{R}}^{\theta, \mathrm{irr}}(M)
$$

Setting: K a knot in $S^{3}, M=S^{3} \backslash v(K)$, $\mu \in \pi_{1}(M)$ a meridian, $G=\mathrm{SU}_{2}$ or $\mathrm{SL}_{2} \mathbb{R}$.

Set $A_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \in G$ for $\theta \in(0, \pi)$ which rotates by 2θ, conj to $\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right)$ in $\mathrm{SL}_{2} \mathbb{C}$. Have $\mathrm{SU}_{2} \cap \mathrm{SL}_{2} \mathbb{R}=\left\{A_{\theta}\right\}=S^{1}$.

Let $X_{G}^{\theta}(M)$ be

$$
\left\{\rho: \pi_{1} M \rightarrow G \mid \rho(\mu) \text { conj to } A_{\theta}\right\}
$$

"modulo conjugation by G ". Set

$$
D_{M}=\left\{\theta \in(0, \pi) \mid \Delta_{M}\left(e^{2 i \theta}\right)=0\right\}
$$

A rep $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2} \mathbb{C}$ is reducible when it preserves a line in \mathbb{C}^{2}.

[Lin, Herald, Heusner-Kroll '90s]

 For $\theta \notin D_{M}$, can define$$
h_{\mathrm{SU}_{2}}^{\theta}(M)=\text { signed count of } X_{\mathrm{SU}_{2}}^{\theta, \text { irr }}(M)
$$

Moreover, $h_{\mathrm{SU}_{2}}^{\theta}(M)=-\frac{1}{2} \sigma_{K}\left(e^{i 2 \theta}\right)$, which is constant outside of D_{M}.
[D-Rasmussen] Suppose M is small, i.e. has no closed essential surface. Then for $\theta \notin D_{M}$, can define

$$
h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(M)=\text { signed count of } X_{\mathrm{SL}_{2} \mathbb{R}}^{\theta, \mathrm{irr}}(M)
$$

Moreover, there exists $h(M) \in \mathbb{Z}$ with

$$
h(M)=h_{\mathrm{SU}_{2}}^{\theta}(M)+h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(M)
$$

for all $\theta \notin D_{M}$.

[Lin, Herald, Heusner-Kroll '90s]

For $\theta \notin D_{M}$, can define

$$
h_{\mathrm{SU}_{2}}^{\theta}(M)=\text { signed count of } X_{\mathrm{SU}_{2}}^{\theta, \text { irr }}(M)
$$

Moreover, $h_{\mathrm{SU}_{2}}^{\theta}(M)=-\frac{1}{2} \sigma_{K}\left(e^{i 2 \theta}\right)$, which is constant outside of D_{M}.
[D-Rasmussen] Suppose M is small, i.e. has no closed essential surface. Then for $\theta \notin D_{M}$, can define
$h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(M)=$ signed count of $X_{\mathrm{SL}_{2} \mathbb{R}}^{\theta, \text { irr }}(M)$
Moreover, there exists $h(M) \in \mathbb{Z}$ with

$$
h(M)=h_{\mathrm{SU}_{2}}^{\theta}(M)+h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(M)
$$

Cor. If M is small with σ_{K} nonconstant, then there is an irred $\rho: \pi_{1} M \rightarrow \mathrm{SL}_{2} \mathbb{R}$.

Pf. As σ_{K} is nonconst., so is $h_{\mathrm{SU}_{2}}^{\theta}(M)$
$\Longrightarrow h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(M)$ nonconstant
\Longrightarrow some θ_{0} with $h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta_{0}}(M) \neq 0$
$\Longrightarrow X_{\mathrm{SL}_{2} \mathbb{R}}^{\theta_{0}}(M)$ is nonempty.
for all $\theta \notin D_{M}$.

[Lin, Herald, Heusner-Kroll '90s]

For $\theta \notin D_{M}$, can define

$$
h_{\mathrm{SU}_{2}}^{\theta}(M)=\text { signed count of } X_{\mathrm{SU}_{2}}^{\theta, \text { irr }}(M)
$$

Moreover, $h_{\mathrm{SU}_{2}}^{\theta}(M)=-\frac{1}{2} \sigma_{K}\left(e^{i 2 \theta}\right)$, which is constant outside of D_{M}.
[D-Rasmussen] Suppose M is small, i.e. has no closed essential surface. Then for $\theta \notin D_{M}$, can define

$$
h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(M)=\text { signed count of } X_{\mathrm{SL}_{2} \mathbb{R}}^{\theta, \mathrm{irr}}(M)
$$

Moreover, there exists $h(M) \in \mathbb{Z}$ with

$$
h(M)=h_{\mathrm{SU}_{2}}^{\theta}(M)+h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(M)
$$

Cor. If M is small with σ_{K} nonconstant, then there is an irred $\rho: \pi_{1} M \rightarrow \mathrm{SL}_{2} \mathbb{R}$.

Pf. As σ_{K} is nonconst., so is $h_{\mathrm{SU}_{2}}^{\theta}(M)$
$\Longrightarrow h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(M)$ nonconstant
\Longrightarrow some θ_{0} with $h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta_{0}}(M) \neq 0$
$\Longrightarrow X_{\mathrm{SL}_{2} \mathbb{R}}^{\theta_{0}}(M)$ is nonempty.

Compare:
[Kronheimer-Mrowka] A nontrivial K has an irred $\rho: \pi_{1} M \rightarrow \mathrm{SU}_{2}$.
for all $\theta \notin D_{M}$.

Cor. If M is small with σ_{K} nonconstant, then there is an irred $\rho: \pi_{1} M \rightarrow \mathrm{SL}_{2} \mathbb{R}$.

Pf. As σ_{K} is nonconst., so is $h_{\mathrm{SU}_{2}}^{\theta}(M)$
$\Longrightarrow h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(M)$ nonconstant
\Longrightarrow some θ_{0} with $h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta_{0}}(M) \neq 0$
$\Longrightarrow X_{\mathrm{SL}_{2} \mathbb{R}}^{\theta_{0}}(M)$ is nonempty.

Compare:

[Kronheimer-Mrowka] A nontrivial K has an irred $\rho: \pi_{1} M \rightarrow \mathrm{SU}_{2}$.

Motivation: L-space conjecture, orderability of 3-manifold groups, translation extension locus [Culler-D].

Let $\Sigma_{n}(K)$ be the n-fold cyclic cover of S^{3} branched over K.

Cor. If K is a small knot with nonconstant σ_{K} then $\pi_{1}\left(\Sigma_{n}(K)\right)$ is left-orderable for all $n \geq \pi / w_{K}$, where w_{K} depends on D_{M}.

Cor. If K is 2-bridge with $\sigma_{K}(-1) \neq 0$, then either $\pi_{1}(M(\alpha))$ is left-orderable for all $\alpha \in(-\infty, 1)$ or for all $\alpha \in(-1, \infty)$.

Casson-Lin signs. Write $M=H_{1} \cup_{S} H_{2}$
Motivation: L-space conjecture, orderability of 3-manifold groups, translation extension locus [Culler-D].

Let $\Sigma_{n}(K)$ be the n-fold cyclic cover of S^{3} branched over K.

Cor. If K is a small knot with nonconstant σ_{K} then $\pi_{1}\left(\Sigma_{n}(K)\right)$ is left-orderable for all $n \geq \pi / w_{K}$, where w_{K} depends on D_{M}.

Cor. If K is 2-bridge with $\sigma_{K}(-1) \neq 0$, then either $\pi_{1}(M(\alpha))$ is left-orderable for all $\alpha \in(-\infty, 1)$ or for all $\alpha \in(-1, \infty)$. using an n-bridge diagram for K :

S is a 2-sphere minus $2 n$ disks H_{i} are genus- n handlebodies

Casson-Lin signs. Write $M=H_{1} \cup_{S} H_{2}$ using an n-bridge diagram for K :

S is a 2-sphere minus $2 n$ disks
H_{i} are genus- n handlebodies

Casson-Lin signs. Write $M=H_{1} \cup_{S} H_{2}$ using an n-bridge diagram for K :

S is a 2-sphere minus $2 n$ disks
H_{i} are genus- n handlebodies
$X_{G}^{\theta, i r r}(S)$ is a smooth $(4 n-6)$-manifold with $X_{G}^{\theta \text { irr }}\left(H_{i}\right)$ submflds of $\operatorname{dim} 2 n-3$.
$X_{G}^{\theta, \operatorname{irr}}(M)=X_{G}^{\theta, \text { irr }}\left(H_{1}\right) \cap X_{G}^{\theta, \text { irr }}\left(H_{2}\right)$.
Everything has nat'l orientations, so define $h_{G}^{\theta}(M)$ to be the algebraic intersection number of the $X_{G}^{\theta, \text { irr }}\left(H_{i}\right)$.

Important: Even for $G=\mathrm{SU}_{2}$, these manifolds are all noncpt. But $X_{G}^{\theta, \text { irr }}(M)$ is cpt when $\theta \notin D_{M}$ and M small.

Casson-Lin signs. Write $M=H_{1} U_{S} H_{2}$ using an n-bridge diagram for K :

S is a 2-sphere minus $2 n$ disks
H_{i} are genus- n handlebodies
$X_{G}^{\theta, \text { irr }}(S)$ is a smooth $(4 n-6)$-manifold with $X_{G}^{\theta \text { irr }}\left(H_{i}\right)$ submflds of $\operatorname{dim} 2 n-3$.
$X_{G}^{\theta, \text { irr }}(M)=X_{G}^{\theta, \text { irr }}\left(H_{1}\right) \cap X_{G}^{\theta, \text { irr }}\left(H_{2}\right)$.
Everything has nat'l orientations, so define $h_{G}^{\theta}(M)$ to be the algebraic intersection number of the $X_{G}^{\theta, \text { irr }}\left(H_{i}\right)$.

Important: Even for $G=\mathrm{SU}_{2}$, these manifolds are all noncpt. But $X_{G}^{\theta, \text { irr }}(M)$ is cpt when $\theta \notin D_{M}$ and M small.
[DR] There exists $h(K) \in \mathbb{Z}$ with

$$
h(K)=h_{\mathrm{SU}_{2}}^{\theta}(K)+h_{\mathrm{SL}_{2} \mathbb{R}}^{\theta}(K)
$$

for all $\theta \notin D_{K}$.

Unification: look at inside $X_{\mathrm{SL}_{2} \mathbb{C}}^{\theta, \text { irr }}(S)$.

$$
\theta \notin D_{K}
$$

Unification: look at inside $X_{\mathrm{SL}_{2} \mathbb{C}}^{\theta, \text { irr }}(S)$.

Unification: look at inside $X_{\mathrm{SL}_{2} \mathbb{C}}^{\theta, \text { irr }}(S)$.

Unification: look at inside $X_{\mathrm{SL}_{2} \mathbb{C}}^{\theta, \text { irr }}(S)$.

Resolution $\mathscr{X}^{\theta}(S)$

Moral: in resolved picture $h(M)$ is the alg $\cap \#$ of red and blue for all angles.

$$
h_{\mathrm{SL}_{2} \mathbb{R}}^{\tau}=0
$$

$$
h_{\mathrm{SU}_{2}}^{\tau}=1
$$

$\tau \notin D_{K}$

Resolution $\mathscr{X}^{\theta}(S)$

