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Abstract— This paper proposes a novel time-variant load model 
based on data-mining of a historical smart meter database. As 
part of the ongoing smart grid transformation, smart meters 
have been widely installed producing massive amount of data 
and information yet unexplored. One of the critical needs for 
distribution system operations and planning applications is 
enhanced modeling of the load, in particular, its dependence on 
the voltage. Under the typical smart meter recording resolution 
(15-minutes), the load’s P-V and Q-V properties are buried in 
the spontaneous load changes caused by random customer 
behaviors. To overcome this, the concept of load condition is 
introduced and data mining techniques such as Kullback-
Leibler divergence and K-subspace are implemented. The 
proposed model is tested on a large database for the Georgia 
Tech campus, and the results demonstrate that the new model 
captures the time-variant property of the load on the building 
level without additional investment. 

Index Terms—Load modeling; data mining; databases; load 
management; parameter estimation 

I. INTRODUCTION 
As one of the essential elements toward the future smart 

grid, smart meters have been widely installed in the developed 
world. It is the first time that utilities and system planners 
have access to measurements for customers at the building 
level with great time resolution. The massive historical 
database created by smart meters contains a wealth of 
information which has not been fully explored or exploited. 
One of the critical needs for enhanced distribution system 
operations and planning is a better load model. This paper 
proposes a new possibility of building a time-variant load 
model by implementing data mining techniques on smart 
meter historical database. 

From a mathematic point of view, a load model is a 
formula of the relationship between bus voltage and power 
(real and reactive) [1]. Compared with the modeling of 
generators and the transmission system that have been studied 
in detailed, an accurate time-variant load model has been 
difficult to achieve due to the uncertainty of the load and the 
limitation of data available. 

There are two popular approaches to establish a load 
model: measurement-based approach [2,3] and component-
based approach [4,5]. The measurement-based approach 
determines the load model by recording the load responses 
directly through system voltage stage tests and actual system 
transients. Although accurate, the measurement-based 
approach is costly and unable to capture the time-variant 
properties of the load. The component-based approach 
estimates the system load’s P-V and Q-V properties by 
aggregating typical load components to represent the ratio of 
each type of load in the system. This approach avoids costly 
system tests by taking surveys and building load profiles, but 
the accuracy of the approach strongly depends on the accuracy 
of the load components ratios and the specific models of the 
typical components.  

The main contribution of this paper is exploring an 
alternative for load modeling using the historical data 
collected by the widely installed smart meters. The time-
variant load model proposed in this paper has a wide range of 
applications. The most immediate application is conservation 
voltage reduction (CVR) [6], where the total energy 
consumption is controlled through voltage regulation 
according to loads’ P-V and Q-V properties. Moreover, the 
dynamic nature of the new model provides valuable 
information for load forecasting and management; since the 
energy consumption pattern and power factor are collected for 
each customer, the new model allows a more flexible and 
detailed tariff strategy. Finally, when combined with the 
distribution network and GIS database, more accurate power 
flow analysis can be achieved by using the proposed voltage-
dependent load model for both scenario study and time series 
simulation. 

Generally, there are two major barriers for a data mining 
based approach. First, the load reading resolution for current 
smart meters ranges from 15 minutes to 1 hour. Data collected 
on such a resolution level cannot distinguish the effects from 
instantaneous load changes and from system voltage 
deviations, both of which are responsible for changes of real 
power and reactive power consumption of the load. Based on 
previous research by EPRI, this resolution of data is not 
enough to determine the load composition in detail to allow 
immediate implementation of the component-based load 
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model [7]. As a result, instead of seeking the decomposition of 
the load into specific load components, this paper introduces 
the concept of load condition and focuses on modeling the P-
V and Q-V properties of the load as a whole. Second, the 
historical smart meter readings from the massive database 
need to be clustered, in order to prepare data for meaningful 
and high-quality load model parameter identification. As a 
result, multiple data mining techniques such as Kullback-
Leibler divergence and K-subspace method are implemented 
to facilitate the modeling process.  

The remainder of this paper is structured as follows: In 
section 2, the smart meter database on the Georgia Tech 
campus is introduced, and a novel time-variant load model is 
proposed; in section 3, data mining techniques are introduced, 
and load modeling process are explained in detail; in section 4, 
the new modeling method is implemented and evaluated on 
real data from the Georgia Tech campus. Section 5 concludes 
the paper and point out possible future research directions. 

II. THE TIME-VARIANT LOAD MODEL 

A. Smart Meter Data Collection 
The data used in the study of this paper comes from a 

historical smart meter reading database collected by smart 
meters installed on the Georgia Tech campus. In order to 
enhance monitoring and reliability of the campus power 
network, smart meters were widely installed on Georgia Tech 
campus starting from in 2011. Currently, there are over 400 
smart meters installed on the campus, covering each of the 
200 buildings. Similar to most of the smart meters in the world, 
the data are recorded every 15 minutes including 
measurements of: real and reactive power (P, Q), power factor, 
voltage (V), and current for each phase. To illustrate the new 
modeling approach, different buildings are selected in this 
study, covering various load types such as commercial, 
residential and industrial loads.  

B.  ZIP Model 
Traditionally, the voltage dependency of loads is expressed 

by exponential or polynomial models with constant 
coefficients. In this paper a time-variant load model is 
developed based on the traditional ZIP model [8], which is 
shown in (1) and (2). 
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Where, P and Q stands for the active and reactive power of 
the load, and V=V’/V0 is the per unit voltage or the ratio 
between voltage V’ and its nominal value V0; P0 and Q0 are 
active and reactive power of the load at nominal voltage; In 
ZIP model, pi and qi represent the proportions of the 
corresponding components, which satisfy 1

i i
p q= =∑ ∑ .  

C. Load Condition Assumption 
For the purpose of this paper, a load composition is the 

state of the total aggregate load, including total real/reactive 
power and the precise connected individual loads that 

represent this aggregate load value.  Technically, each load 
composition can be modeled by a set of parameters using (1) 
and (2). However, due to the number of individual loads in a 
large building, the number of possible load compositions of 
which devices are connected is significantly large. In practice, 
a fixed and rigid ZIP model for a building is not accurate 
enough to model the dynamically changing nature of the load, 
because the load composition changes over seasons of the 
year, days of the week, and hours of the day.  

In traditional measurement-based load modeling, data is 
collected at a very high frequency (1000Hz) before and after 
the voltage deviation [9]. As a result, the load composition is 
assumed to be fixed, and only voltage is responsible for the 
load’s real and reactive power changes. However, for most 
smart meter databases, the data is logged at a resolution of 
several minutes or hourly, and load composition is subject to 
changes between different readings. In other words, voltage is 
no longer the only factor that influences the power 
consumption of the load. In this paper, an assumption about 
the load condition is made to justify that it is possible to filter 
out the instantaneous load changes, and build the P-V and Q-
V model through data mining techniques. 

To begin with, by definition, the number of load 
compositions is 2n, where n is the number of appliances. Every 
smart meter reading for the load is measured under one of 
those load compositions. In this paper, load condition is 
defined as a group of load compositions sharing the similar P-
V and Q-V properties. As a result, the smart meter readings 
can be clustered accordingly into several load conditions. 

The energy consumption of customers can be separated 
into random behaviors (such as turning on a light or making a 
cup of tea) and routine behaviors (such as eating breakfast in 
the morning or turning on the heater in winter). It is assumed 
that routine-behavior loads are usually the dominant factor in 
energy consumption and are strongly correlated to time, such 
as seasons and working hours. In contrast, random-behavior 
loads can be interpreted as additional small loads on top of the 
energy consumption of routine behaviors. Compared with 
routine behaviors, random behaviors change more frequently 
and are responsible for the frequent instantaneous load 
changes. 

Under this assumption, all load compositions within a load 
condition are considered to be different random behaviors on 
top of the same routine behavior. As the result, data mining 
techniques can be implemented to identify different load 
conditions by clustering all smart meter readings. When all 
data is clustered, a static ZIP model is built for every load 
condition using (1) and (2). 

D. Time-Variant Model Structure and Data Label 
In this paper the time-variant model consists of multiple 

static ZIP models, all of which are assigned with a label. The 
label contains information about the load type, time and load 
condition. In other words, the proposed model has a tree 
structure that branches through three layers: load type layer, 
time layer and load condition layer. All the smart meter 
readings in the database are also labeled and clustered 
correspondingly, TABLE I.   



TABLE I.  TIME-VARIANT LOAD MODEL AND DATA STRUCTURE 

Model 
Struc.

Data 
Label

Load Type Season

Commercial,
Residential,
Industrial

Spring,
Summer,

Fall,
Winter

Day

Weekday,
Weekend,
Holiday

Hour
Hr. Group 1,
Hr. Group 2,

...
Hr. Group K

Load Cond.
Condition 1,
Condition 2,

…
Condition K

First Layer Second Layer Third Layer

 
On the first layer, all loads are classified into commercial, 

residential and industrial loads. Ideally, a data mining based 
load modeling method does not require a user to specify the 
load types as long as the load is equipped with smart meters. 
However, marking the data with load types can help us better 
understand the different time-variant properties among 
different types of load. 

On the second layer, for each individual load, all the smart 
meter readings are marked with time labels. Different time 
labels are good indicators for customer routine behaviors.  

On the third layer, smart meter readings with the same 
time label will further be clustered and marked with different 
load conditions. On this layer, the ZIP model parameters are 
identified using smart meter data of the same load condition 
label. 

III. DATA MINING BASED MODELING 
During the load modeling process, data mining and 

machine learning techniques are implemented. To be specific, 
KL (Kullback-Leibler) divergence is used to identify and 
merge different time labels into hour groups on the second 
layer in TABLE I; K-subspace method is used to cluster data 
into different load conditions on the third layer in TABLE I. 

A. Time Label Identification and KL Divergence 
Since customer routine behaviors have a strong correlation 

with time. The dynamic model is marked by different season 
of the year, different day type (weekday, weekend, and 
holiday), and different hour of the day. All data collected by 
smart meters are marked with the corresponding time labels. 

The basic time label unit is set to be one hour blocks. On 
the one hand, higher resolution of time labels can identify 
more detailed routine load behaviors. On the other hand, 
higher resolution time labels will leave fewer smart meter 
readings to each time label for regression. In order to 
overcome this issue, KL divergence is introduced. KL 
divergences of real power, reactive power, and voltage 
distributions of all pairs of time labels are evaluated. And 
different time labels with similar routine load behaviors are 
identified and merged. 

KL divergence is a non-symmetric measure of the 
difference between two distributions. Let P1(x) and P2(x) be 
two distinct distributions, the KL divergence of the two 
distributions KL(P1(x), P2(x)) is given by (3) [10]. 

( )[ ]1 2 1 1 2( ( ), ( )) log( ( ) / ( ))
x X

KL P x P x P x P x P x
∈

= ⋅∑         (3) 

A symmetric variant of KL divergence [11] given by (4) is 
used in this paper to quantify the divergence of load behaviors 
throughout different time labels. After computing KL 

divergence among all pairs of time labels, a KL divergence 
matrix can be constructed. 

[ ]1 2 1 2 2 1( ( ), ( )) ( ( ), ( )) ( ( ), ( )) 2symKL P x P x KL P x P x KL P x P x= +  (4) 

Fig. 1 shows the hourly weekday P-V plots for a 
commercial building on campus for the fall of 2012. KL 
divergence matrices are computed to merge those hours with 
highly consistent energy consumption patterns (consistent 
routine behaviors).  Fig. 2 visualizes three normalized KL 
divergence matrices for three distributions respectively: real 
power, reactive power and voltage. Three specific KL 
divergence thresholds will be set for the P, Q and V KL 
divergence matrices to determine hours that can be merged. 
The final hour partition results are the intersection based on 
the three KL divergence matrices after their individual 
thresholds have been applied. 

 
Fig. 1.  P-V plots for each hour on weekdays for a commerical load. 

 
Fig. 2.  Normalized KL divergence matrices for real power, reactive power, 
and voltage. 

For the case in Fig. 1, 24 hours of the commercial load 
(Atlanta local time) are partitioned into working hours (red), 
off-working hours (blue), and hours in between (green). Since 
load behaviors within working hours and off-working hours 
are highly consistent, these hours are merged. As a result, the 
number of models on the second layer of TABLE I is reduced 
and the data for each time label increases correspondingly. 
Similarly, residential load and industrial load can be processed 
in the same way but not necessarily into the same hour 
partition results as the commercial loads.  



B. K-subspace Clustering 
In practice, multiple load conditions can exist under the 

same load type and time label. As a result, on the third layer of 
the model, smart meter readings are clustered into several load 
conditions so that each of the load conditions can be modeled 
by a static ZIP model.  

Traditional K-means algorithm [12] clusters data based on 
their relative Euclidean distance to the nearest cluster center 
with an iterative process to adjust the centroid. The clusters’ 
shapes are determined by the perpendicular lines between 
centroids.  However, the smart meter readings of different load 
conditions are distributed in a very specific line-shaped pattern 
close to each other.  

K-subspace method [13] allows the detection and 
clustering of line-shaped data by assigning each cluster Ck 
with a unit direction vector ak and a center ck. The entire 
algorithm seeks to minimize the perpendicular distance of all 
the data points xk,i to the line defined by ak and  ck within each 
cluster, as shown in (5). 

( )
,

min ,
k k

k k

i k i k k
i C i C

Dist C α
∈ ∈

= − −∑ ∑
c a

x x c a            (5) 

Where, ( )T

k kα = −x c a  

Fig. 3 shows the Q-V and P-V plot of a commercial 
building during off-working hours on weekdays in the fall 
2012. Comparing Q-V plot with P-V plot, it can be seen that 
reactive power are more sensitive to voltage deviations than 
active power. As a result, the load conditions are clustered 
using Q-V plot. In Fig. 3 the clustering results are marked with 
different colors, where the cluster number K is set to be 3. 

 

Fig. 3.  Comparison between K-subspace method and K-means method. 

The number of load conditions K is determined by 
conducting cluster evaluation. The distance from cluster Ci to 
cluster Cj is defined as (6). Similar to KL divergence matrix, a 
cluster distance matrix can be formulated in the same manner. 
In the cluster distance matrix, small Dist(Ci,Cj) and Dist(Cj,Ci) 
indicates cluster Ci and Cj are very close to each other and 

should be merged by reducing K. On the other hand, large 
Dist(Ci,Ci) indicates larger K is required to identify all load 
conditions. 

( )1( , ) ,
i i

i j i i j
C

Dist C C C Dist C−

∈

= ∑
x

x         (6) 

Fig. 4 shows how the number of clusters K (K=3) is 
determined for the Q-V plot shown in Fig. 4. A threshold h is 
set by experience to test the accuracy of K. In this case, h  is 
set to be 0.1. The algorithm increases K until K equals 4 when 
Dist(C1,C2) and Dist(C2,C1) are both under the threshold h , 
which indicates the two clusters should be merged. 

 

Fig. 4.  Cluster Distance Matrices with Different K. 

After clustering, all smart meter data has been labeled by 
load type, time and load condition. Data with the same label is 
grouped to represent a single load condition. Then regression 
is performed to identify the parameter of the corresponding 
load condition model using (1) and (2). 

IV. TEST RESULTS 

A. Time label identification for different load types 
Various load types are studied to explore their differences 

in identifying the time label. In the study, a student residential 
hall and a family apartment are chosen as residential loads; an 
office building and a student center are chosen as commercial 
loads; and a chiller plant on campus is chosen as an industrial 
load. By using KL divergence matrices, their time label 
identification results for weekdays in fall are shown in 
TABLE II, where hours with consistent load behaviors are 
merged. Moreover, results shown in TABLE II also indicate 
that even under the same load type, different customers have 
their own power consumption pattern, such as the peak hours 
between student residential hall and family apartment. These 
customized properties can only be captured by performing 
smart meter data mining. 

TABLE II.  TIME LABEL IDENTIFICATION RESULTS (WEEKDAYS, FALL) 

Commercial Loads
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Residential Loads
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Industrial Loads

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Office Building
Student Center

Residential Hall
Family Apt.

Chiller Plant  
Note:    stands for working hours (peak hours);   for off-working hours (night 

hours);    for daytime hours specifically found in residential loads;    for hours that 
cannot be merged, and they are modeled on the hour basis.  



B. Data Mining Based Load Model 
One of the key advantages of the data mining based 

method is that a totally customized time-variant model can be 
built for every single customer equipped with a smart meter. 
To illustrate the idea, an office building has been chosen and 
modeled using the proposed data mining algorithm.  

Once all of the smart meter data is clustered according to 
different times and load conditions, least square estimation is 
performed on each cluster to determine the parameters in (1) 
and (2). To suppress the noise from the data and avoid over 
fitting, an exponential model [14] is adopted in regression; pi 
and qi are computed using Taylor expansion at the nominal 
voltage point. TABLE III shows the partial regression results 
for an office building during the summer season.  

TABLE III.  PARTIAL MODELING RESULTS FOR SUMMER WEEKDAYS 

Office 
Building 

Working hours Off-working hours 

P(V)  Q(V) P(V) Q(V) 

Cond. p1 p2 p3 q1 q2 q3 p1 p2 p3 q1 q2 q3 

1 4.71 -5.82 2.10 18.05 -29.57 12.52 0.42 0.704 -0.12 10.86 -16.53 6.67 
2 28.00 -63.01 36.00 26.63 -45.44 19.81 -0.01 0.03 0.98 12.17 -18.88 7.71 
3 - - - - - - - - - - - - 0.018 0.999 -0.017 11.24 -17.21 6.97 

Note: P0 and Q0 are adopted as the load real and reactive power under the nominal 
voltage. 

C. Model Evaluation 
The new modeling method offers several advantages with 

respect to existing methods. First, the dynamically changing 
nature of the load is captured in the new model. On the short 
term, the load model considered the changes brought by 
seasons, day types and times of the day; on the long term, the 
customer’s load composition changing is also considered, 
which can be more significant when comparing current load 
composition with the ones in late 90s [15]. Second, as long as 
smart meters are widely installed, there are no additional 
investments involved. There are no costly voltage stage tests, 
no load component tests, no public surveys, and no validation 
tests (the model is based on real system measurements). Third, 
the new model is fully customized for every customer 
equipped with a smart meter, thus more accurate than other 
aggregated models. 

However, the proposed model has some limitations. As a 
result of the fact that reactive power is much more sensitive to 
voltage deviations than real power [14], more advanced data 
mining techniques are required to better capture the weak 
correlation between real power usage and system voltage to 
improve the P-V model accuracy. Since the model is based on 
real system measurements, which are usually around nominal 
operating point, the model lacks the information when voltage 
deviation is very large.  

V. CONCLUSION 
This paper demonstrates a novel data-mining method using 

historical smart meter databases to build a time-variant load 
model. We conclude from the implementation and results that 

the time-variant model is able to capture the dynamically 
changing nature of load. Due to the data mining algorithms, 
the proposed model can be built automatically and without 
additional investment involved. The time-variant load model 
can be implemented in various applications such as CVR, 
distribution system power flow analysis, load management, 
voltage control and tariff negotiations.  

Further studies may include exploring the statistic 
information of the load conditions from the historical database 
and integrating the model into more advanced power system 
simulation and control applications. 
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