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Abstract—As the electric vehicle (EV) is becoming a significant 
component of the loads, an accurate and valid model for the EV 
charging demand is the key to enable accurate load forecasting, 
demand respond, system planning, and several other important 
applications. We propose a data driven queuing model for 
residential EV charging demand by performing big data 
analytics on smart meter measurements. The data driven model 
captures the non-homogeneity and periodicity of the residential 
EV charging behavior through a self-service queue with a 
periodic and non-homogeneous Poisson arrival rate, an 
empirical distribution for charging duration and a finite calling 
population. Upon parameter estimation, we further validate the 
model by comparing the simulated data series with real 
measurements. The hypothesis test shows the proposed model 
accurately captures the charging behavior. We further acquire 
the long-run average steady state probabilities and simultaneous 
rate of the EV charging demand through simulation output 
analysis.  

Index Terms--Electric vehicles, load modeling, data mining, 
queuing analysis  

I. INTRODUCTION  
Electric vehicles (EVs) draw and store energy from an 

electric grid to supply propulsive energy for the vehicle [1]. 
Since the US federal government highlighted electricity as a 
promising alternative to petroleum in the transportation sector 
in 2009 [2], the strong policy support has made US the leader 
of EV market. As of September 2014, the United States has 
the largest fleet of highway-capable EVs in the world, with 
about 260,000 plug-in electric cars sold since 2008 [3].  

Many researchers have shown that in a high EV 
penetration environment, uncoordinated EV charging behavior 
could have a significant impact on distribution grids, 
especially on residential level [4-5]. Meanwhile, with a proper 
control strategy, the battery of the EV could potentially 
provide additional services to the grid through demand 
controls, such as flatting the peak load, providing voltage 
support and frequency regulation. In order to achieve these 
goals, it is crucial to develop an advanced model that captures 

the charging behavior of EVs for both operational and 
planning purposes. 

Various research papers [6-10] model the EV charging as a 
queuing system. In reference [6], the EV charging time and 
duration are determined in a deterministic manner by some 
market signals and a fixed distance distribution. In reference 
[7], a 𝑀𝑀/𝑀𝑀/𝑁𝑁max queue is introduced, where the EV arrives 
as a Poisson process with an exponentially distributed 
charging time, and 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  is the total charging capacity. 
Reference [8] employs an 𝑀𝑀/𝑀𝑀/∞ queue to capture the fact 
that residential EV charging is a self-service system. Both 
reference [7] and [8] assume that the EV charging arrival rate 
is not related to the number of EVs that are already in 
charging. The 𝑀𝑀/𝑀𝑀/𝑠𝑠 models in reference [9] and [10] are 
based on the assumption that the arrival process of EV 
charging event is a homogeneous Poisson process with a 
constant rate, and that the charging duration is exponentially 
distributed. Although we can derive the long-run average 
properties of the abovementioned models analytically, most of 
these models are based on some unrealistic assumptions 
without validation.  

Thanks to the widely installed smart meters and 
corresponding infrastructure, for the first time, researchers and 
utilities have been able to gain access to the energy 
consumption patterns of consumers of a great resolution and at 
such a large scale [11]. In this paper, we propose a novel data 
driven approach to establish a valid model for residential EV 
charging demand by applying big data analytics on 
measurements directly collected from EV charging decks. 
Although EV charging behaviors is related to factors such as 
location, customer job, or even the gas price, the smart meter 
reading alone can be a good indicator which summarizes all 
these social factors. The proposed model allows us to capture 
the non-homogeneity and periodicity of the EV charging 
demand. Moreover, we estimate the EV charging duration 
with an empirical 𝑝𝑝𝑝𝑝𝑝𝑝  generated from the real smart meter 
data.  

The proposed new model does not require any of the pre-
assumption mentioned above. And the model can be further 
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utilized by electric utilities for enhanced projection of EV 
demand and deployment of advanced coordination 
applications as part of demand response and grid services 
procurement.   

The remainder of this paper is structured as follows. In 
Section 2, we derive the proposed model by removing 
unrealistic assumptions made by the simplest 𝑀𝑀/𝑀𝑀/∞ queue. 
In section 3, we estimate the parameters for the proposed 
model using real EV charging measurements and validate the 
model through a hypothesis test. In Section 4, we further 
illustrate the charging behavior of residential EVs and 
calculate the simultaneous rate through long-run average 
steady state statistics. And we conclude the paper in Section 5. 

II.  MODELING OF EV CHARGING DEMAND 
A. Data observation 

The key advantage of the data driven EV model is that the 
model is supported by real smart meter measurements. The 
smart meter data not only provide us with the knowledge of 
residential EV charging patterns, but also plays a vital role in 
model validation. 

 
Figure 1.  Observation of the EV charging behavior 

Figure 1 is some general observations of 37 independent 
EVs behaviors collected by Pecan Street Inc. [12], Austin, 
Texas. The data were collected every 15 minutes directly from 
EV charging deck. In Figure 1.1, Black bars represent 
charging behaviors for the 37 EVs; Figure 1.2 shows the 
number of charging EVs through time; Figure 1.3 visualizes 
the number of EVs that start charging during each 15 minutes 

time interval; Figure 1.4 shows the energy consumption of all 
EVs. By observing the four plots, we claim the key of 
modeling EV charging demand (shown in Figure 1.4) is the 
modeling of Figure 1.2 through time, which can be further 
derived from EV charging duration (shown in Figure 1.1) and 
EV charging arrival rate (shown in Figure 1.3). 

B.  General 𝑀𝑀1/𝑀𝑀2/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  model 
The 𝑀𝑀1/𝑀𝑀2/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  queue is the most widely adopted 

stochastic model for EV charging demand. In the model: 

• 𝑀𝑀1 means that the arrival of EV charging events follow a 
Poisson process with rate 𝜆𝜆; 

• 𝑀𝑀2  means that the EV charging durations are 
independently and identically distributed (i.i.d.) with an 
exponential distribution of rate 𝜇𝜇;  

• ∞ refers to the infinite number of servers in the queuing 
system. In other words, the residential EV charging 
system is a self-service system with no waiting time; 

• 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  refers to the total number of EVs in the 
community. 

Let 𝑋𝑋(𝑡𝑡) be the number of charging EVs at time 𝑡𝑡, and the 
state space of 𝑋𝑋(𝑡𝑡)  be 𝑆𝑆 , where 𝑆𝑆 = {1, 2, … ,𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚} . Then, 
Figure 2 illustrates the transition diagram of the 𝑀𝑀1/𝑀𝑀2/∞/
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  queuing system. 
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Figure 2.  Transition diagram of 𝑀𝑀1/𝑀𝑀2/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 queue 

The advantage of using 𝑀𝑀1/𝑀𝑀2/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  model lies in 
that researchers can derive the long-run average steady state 
probabilities of the system analytically. Let 𝑃𝑃𝑛𝑛  denote the 
system’s long-run average steady state probability of having 
𝑛𝑛 EVs charging simultaneously, then 𝑃𝑃𝑛𝑛 can be given directly 
as 

𝑃𝑃𝑛𝑛 = 𝐶𝐶𝑛𝑛
𝑒𝑒𝜆𝜆 𝜇𝜇⁄ , (1) 

where 𝐶𝐶𝑛𝑛 = 𝜆𝜆𝑛𝑛

𝑛𝑛!𝜇𝜇𝑛𝑛
  and 𝑛𝑛 = 1, 2, … ,𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 . 

However, some pre-assumptions made by the 𝑀𝑀1/𝑀𝑀2/∞/
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  model are not necessarily realistic, which requires 
further discussions. 

C. 𝑀𝑀1/𝑀𝑀2/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 queue with finite calling population 
To begin with, the 𝑀𝑀1/𝑀𝑀2/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  model assumes the 

arrival rate of new EV charging event remains the same no 
matter how many EVs are already in the charging state. 
However, this is not true as long as the number of EVs is 
finite. In a community with finite number of EVs, the potential 
new arrival rate of new EV charging event decreases as the 
number of charging EVs increases. In other words, let 𝜆𝜆𝑖𝑖 be 
the arrival rate when there are 𝑖𝑖 EVs in the system, for any two 
integers {𝑎𝑎, 𝑏𝑏: 0 ≤ a < b ≤ 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚}, we have 𝜆𝜆𝑎𝑎 > 𝜆𝜆𝑏𝑏.  

To model the finite number of residential EVs, we 
introduce the finite calling population model [13] for the 
𝑀𝑀1/𝑀𝑀2/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 queue. Assume each EV arrives 
independently according to a Poisson process with rate 𝜆𝜆, then 
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𝜆𝜆𝑖𝑖 = (𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑖𝑖)𝜆𝜆. Figure 3 shows the transition diagram of 
the system with finite calling population. 
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Figure 3.  Transition diagram of the finite calling population model 

Another advantage of adopting the finite calling 
population strategy is making the model scalable and more 
robust. Under the finite calling population strategy, instead of 
estimating the behavior of all 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  EVs, we estimate the 
behavior of every single EV. As long as the assumption that 
all EVs behavior independently holds, we could easily fit the 
model into systems with arbitrary number of EVs. 

D. Non-homogeneous Poisson arrive rate 
Another assumption made in 𝑀𝑀1/𝑀𝑀2/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  model is 

that the arrival rate of EV charging events is a constant 
throughout the time. However, according to Figure 1.3, the 
arrival rate of EV charging events is not constant through time 
and has a period of 24 hours. Figure 4 shows the daily average 
EV charging arrival rate of the 37 residential EVs.  

 
Figure 4.  Av. daily arrival rate of nonhomogeneous Piosson model 

To illustrate the periodicity of the arrival rate, Figure 5 
shows the autocorrelation of the arrival rate with the lag 
resolution of every 15 minutes. Since the autocorrelation 
sequence has the same cyclic characteristics as the original 
arrival rate sequence, Figure 5 can serve to determine and 
verify the daily periodicity. As expected, the autocorrelation 
peaks in Figure 5 verify the daily periodicity of the arrival 
rate. 

 
Figure 5.  Lag autocorrelation plot of the arrival rate series (30 days) 

To capture the time-variant property of EVs, we adopt a 
non-homogeneous Poisson process with a time dependent rate 
𝜆𝜆(𝑡𝑡). Let 𝑚𝑚(𝑡𝑡) = ∫ 𝜆𝜆(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡

0 , according to the property of non-
homogeneous Poisson process, the number of new arrivals 
from 𝑡𝑡 = 𝑡𝑡0 to 𝑡𝑡 = 𝑡𝑡1 follows the Poisson distribution of rate 
𝜆𝜆 = 𝑚𝑚(𝑡𝑡1) −𝑚𝑚(𝑡𝑡0).  

E. General 𝑀𝑀1/𝐺𝐺/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  model 
Another assumption made by the 𝑀𝑀1/𝑀𝑀2/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  model 

is that the charging duration of EVs is exponentially 
distributed. We will show this assumption is not valid through 
the memoryless property of the exponential distribution [14]. 

Assume an EV starts charging at time 𝑡𝑡 = 0. Let 𝑃𝑃(𝑡𝑡 > 𝑇𝑇) 
stand for the probability that the charging duration 𝑡𝑡 is greater 
than 𝑇𝑇  hours, and 𝑃𝑃(𝑡𝑡 > 𝑇𝑇 + 𝑆𝑆|𝑡𝑡 > 𝑆𝑆)  the conditional 
probability of the charging more than 𝑇𝑇 + 𝑆𝑆  hours given S 
hours of charging. According to the memoryless property of 
the exponential distribution, 𝑃𝑃(𝑡𝑡 > 𝑇𝑇) = 𝑃𝑃(𝑡𝑡 > 𝑇𝑇 + 𝑆𝑆|𝑡𝑡 > 𝑆𝑆). 
This contradicts to the common knowledge of EV charging 
behavior, since the battery capacity of EVs is limited.  

To better model the EV charging duration, we adopt an 
empirical charging time distribution estimated from real EV 
charging measurements. 

III. MODEL ESTIMATION AND VALIDATION 
As mentioned in the previous section, the data driven 

model developed in this paper is based on the historical data of 
37 residential EVs for two months. One month of data are 
used for model training and parameter estimation (training 
data set), and the other month of data model validation 
(validation data set). 

A. Model Parameter Estimation 
According to Section II, we seek to model the residential 

EV charging behavior through a 𝑀𝑀𝑡𝑡/𝐺𝐺/∞/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  queue with a 
finite calling population, where 𝑀𝑀𝑡𝑡  stands for the periodic 
non-homogeneous arrival rate; 𝐺𝐺  stands for the empirical 
distribution of EV charging duration; ∞ means the charging 
system is a self-serve system with no waiting time; and 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 
is the number of EVs in the community, which is known. 

1) Estimation of the non-homogeneous arrival rate 
Given the smart meter data resolution, we divide 24 hours 

of a day into 96 equal time intervals each with the length of 
Δ𝑡𝑡 , then we treat the non-homogeneous arrival rate as 
piecewise constant in each time interval. 

 
Figure 6.  Estimated charging arrival rate per EV 
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Let 𝜆𝜆(𝑘𝑘)  be the arrival rate of each EV during time 
interval ((𝑘𝑘 − 1)Δ𝑡𝑡, 𝑘𝑘Δ𝑡𝑡), where 𝑘𝑘 is a discrete integer from 1 
to 96. Let 𝑊𝑊(𝑘𝑘) and 𝑁𝑁(𝑘𝑘) be the number of existing and new 
arrivals of EVs during the time interval. Then 𝜆𝜆(𝑘𝑘)  can be 
estimated through 

𝜆̂𝜆(𝑘𝑘) = 𝑁𝑁(𝑘𝑘) Δ𝑡𝑡⁄
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑊𝑊(𝑘𝑘−1)

. (2) 

Figure 6 visualizes the daily average arrival rate for each 
EV through time using one month of training data.   

2) Estimation of EV charging duration 
Instead of using exponential distribution, we capture the 

EV charging duration through an empirical distribution 
observed from the training data set. Figure 7 shows the 
empirical probability density function ( 𝑝𝑝𝑝𝑝𝑝𝑝 ) of the EV 
charging duration.  

 
Figure 7.  The emperical 𝑝𝑝𝑝𝑝𝑝𝑝 of the EV charging duration 

B. Model Validation 
Upon the establishment of the model, we further validate 

it by comparing the simulated data with the validation data.  

 
Figure 8.  Comparison between simulated and validation data series 

Figure 8 compares our model with real measurements and 
two other widely used queuing models. From Figure 8.3, we 
see that if we model the arrival rate as a constant through time, 
we lose the periodicity and the time variant property of the 
real measurements. From Figure 8.4, we can see that adopting 

an exponentially distributed charging duration will distort the 
true charging behaviors by having charging durations longer 
than 4 hours, which is unlikely to happen [15]. From Figure 
8.2, the simulated data series generated by our model is stable 
and behavior very similar to the real measurements in Figure 
8.1. To validate the model analytically, we run the simulation 
100 times (100 replications) each with the length of 100 days. 
In each replication, the first 10 days’ data are trimmed to 
ensure the data stability.  

Let 𝐷𝐷�𝑘𝑘 be the average number of charging EVs during the 
𝑘𝑘th time interval estimated using the validation data, where 
𝑘𝑘 =  1, 2, … , 96. Similarly, let 𝐷𝐷�𝑘𝑘,𝑖𝑖 be the average number of 
charging EVs during the same time interval estimated by the 
𝑖𝑖th replication. To this end, for each replication, define the 
difference 𝐺𝐺𝑖𝑖 = 𝐷𝐷�𝑘𝑘,𝑖𝑖 − 𝐷𝐷�𝑘𝑘, where 𝑖𝑖 =  1, 2, … , 100. 

If the proposed model captures the true EV charging 
behavior well, 𝐺𝐺𝑖𝑖  should be approximately normally 
distributed with mean 𝜇𝜇𝑔𝑔 = 0  and variance 𝜎𝜎𝑔𝑔2  [16]. As a 
result, we construct a hypothesis test where, 

�
𝐻𝐻0: 𝜇𝜇𝑔𝑔 = 0
𝐻𝐻1: 𝜇𝜇𝑔𝑔 ≠ 0. (3) 

Under the null hypothesis, the statistic 

𝑡𝑡𝑁𝑁2−1 = 𝐺̅𝐺−𝜇𝜇𝑔𝑔
𝑆𝑆𝑔𝑔 �𝑁𝑁2⁄

, (4) 

follows the t distribution with 𝑁𝑁2 − 1 degrees, where 𝑁𝑁2 is the 
number of the replications, 𝐺̅𝐺  and 𝑆𝑆𝑔𝑔  are sample mean and 
sample variance [16]. TABLE I compares the statistics 𝐺̅𝐺 and 
𝑆𝑆𝑔𝑔 corresponding to the three above mentioned models. It is 
clear that the proposed model has smaller mean and variance, 
which means it’s a better model of the real EV charging 
behaviors. 

TABLE I. MODEL COMPARISON  

Model Type sample mean 𝑮𝑮� sample variance 𝑺𝑺𝒈𝒈 
Constant Arrival Rate Model -0.0186 1.6199 

Constant Charging Rate Mode -0.0558 0.6345 
Proposed Model -0.0064 0.5109 

 
Given the significance level of 𝛼𝛼 = 0.05, we compute the 

confidence interval for 𝜇𝜇𝑔𝑔, which is (−0.1455,0.1991). Since 
the interval contains zero, we cannot reject 𝐻𝐻0  at the given 
significance level, which validates the proposed model as a 
good representation of the EV charging behavior. 

IV. OUTPUT ANALYSIS 
In order to obtain the long-run average steady state 

property of the proposed EV charging model, we set the 
simulation replications to 100, and each replication with the 
length of 100 days. Similarly we curtails the first 10 days of 
each replication due to stability requirements. 

A. Long-run average number of charging EVs 
Figure 9 shows the long-run average number of charging 

EVs throughout a day (blue curve). The 25th and 75th 
percentiles are also drawn respectively (red and green curves). 
All three curves suggest that the residential EV charging peak 
occurs during the night and that the span between 25th and 75th 
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percentiles are relatively small compared to the total EV 
number of 37.  

 
Figure 9.  The long-run average, 25th and 75th percentile curves 

B. Long-run average steady state probabilities 
Let a 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 × 96 matrix 𝑷𝑷 be the long-run average steady 

state probability matrix, where 𝑷𝑷(𝑛𝑛, 𝑘𝑘) denotes the long-run 
steady state probability of having 𝑛𝑛 EVs charging during time 
interval 𝑘𝑘, then for each 𝑘𝑘 = 1,2, … ,96, we have 

, ∑ 𝑷𝑷(𝑛𝑛, 𝑘𝑘)𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛=1 = 1. (5) 

We visualize the long-run probabilities of the system through 
Figure 10, where the color in the plot represents the possibility 
of have 𝑛𝑛 EV charging at a given time 𝑡𝑡. 

 
Figure 10.  Visualization of the P matrix 

Let 𝜌𝜌 be the simultaneous rate of the EV charging load. 
Define 𝜌𝜌  as 𝜌𝜌 = Charging EV number Total EV number⁄  
during the peak EV charging time. Then, the cumulative 
density function of 𝜌𝜌, which is 𝑃𝑃(𝜌𝜌 ≤ 𝜌𝜌0), provides essential 
information to estimate the simultaneous rate of EVs. For 
example, from matrix 𝑷𝑷, we have 𝑃𝑃(𝜌𝜌 ≤ 12 37⁄ ) ≥ 98.5%. 
This implies that for a community with 37 EVs, even in the 
worst case, the possibility of having 12 or more EVs charging 
simultaneously during one day is very slim (less than 1.5%). 

V. CONCLUSION 
This paper proposes a novel data driven model for 

residential EV charging demand. Compared with other 
queuing models, the proposed model allows us to capture the 
non-homogeneity and periodicity of the EV charging demand, 
and to estimate the charging duration with an empirical 𝑝𝑝𝑝𝑝𝑝𝑝. 
Upon parameter estimation, we validate the model through 
hypothesis testing and further acquire the EV charging long-
run average probabilities and simultaneous rate through 

simulation output analysis. The proposed method can be 
utilized by electric utilities for enhanced projection of EV 
demand and deployment of advanced coordination 
applications as part of demand response and grid services 
procurement. 

Further studies may include the analytical deriving of the 
long-run average steady state statistics for the EV charging 
behavior and the development of corresponding demand 
respond control based on the proposed EV load model. 
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