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ABSTRACT
Process monitoring of multivariate quality attributes is important in many industrial applications,
in which rich historical data are often available thanks to modern sensing technologies. While mul-
tivariate statistical process control (SPC) has been receiving increasing attention, existing methods
are often inadequate as they are sensitive to the parametricmodel assumptions ofmultivariate data.
In this paper, we propose a novel, nonparametric k-nearest neighbours empirical cumulative sum
(KNN-ECUSUM) control chart that is a machine-learning-based black-box control chart for monitor-
ing multivariate data by utilising extensive historical data under both in-control and out-of-control
scenarios. Our proposed method utilises the k-nearest neighbours (KNN) algorithm for dimension
reduction to transformmultivariate data into univariate data and then applies the CUSUMprocedure
to monitor the change on the empirical distribution of the transformed univariate data. Extensive
simulation studies and a real industrial example based on a diskmonitoring systemdemonstrate the
robustness and effectiveness of our proposed method.
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1. Introduction

Due to the rapid development of sensing technolo-
gies, modern industrial processes are generating large
amounts of real-time measurements taken by many dif-
ferent kinds of sensors to reflect system status. For
instance, in chemical factories, the boiler temperature, air
pressure and chemical action time are all recorded in real
time during the boiler heating process. For the purpose of
quality control, it is important to take advantage of these
real-time multivariate measurements and develop effi-
cient statistical methods that can detect undesired events
as quickly as possible before the catastrophic failure of the
system.

The early detection of undesired events has been
investigated in the subfield of statistical process con-
trol (SPC), and the corresponding statistical methods are
often referred to as control charts. In general, a con-
trol chart computes a real-valued monitoring statistic at
each time step, and raises an alarm whenever this mon-
itoring statistic exceeds a pre-specified control limit. In
the SPC framework, the performance of a control chart
is often measured by two kinds of average run lengths
(ARLs): one is in-control (IC) ARL, and the other is
out-of-control (OC) ARL. Here the IC and OC ARLs
are defined as the average amount of time steps (or the
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average number of observations) from the start of mon-
itoring to the first alarm, respectively, when the system
is IC or OC. For a given IC ARL, a control chart with a
smaller OC ARL will be able to monitor processes more
efficiently.

In the context of monitoring multivariate data, many
control charts have been developed in the literature under
certain assumptions on the data distributions, see Lowry
and Montgomery (1995), Lu et al. (1998) and Woodall
and Montgomery (2014) for excellent literature reviews.
To bemore specific, there are two families of multivariate
control charts. The first one is parametric, e.g. under the
assumption that the data are multivariate normally dis-
tributed. These include the multivariate cumulative sum
(MCUSUM, Woodall and Ncube 1985; Crosier 1988),
the multivariate exponentially weighted moving average
(MEWMA, Lowry et al. 1992), the regression-adjusted
control chart (Hawkins 1991) and charts based on vari-
able selection (Zou and Qiu 2009; Wang and Jiang 2009).
The second family is nonparametric or model-free con-
trol chart that often makes a less restrictive assumption
on the data distribution, e.g. the data distribution is uni-
modal or symmetric under the null, see Chakraborti, Van
der Laan, and Bakir (2001) and Qiu (2018) for reviews. A
selective list of references includes (Sun and Tsung 2003;

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2020.1812750&domain=pdf&date_stamp=2021-09-27
mailto:ymei@isye.gatech.edu


6312 W. LI ET AL.

Hwang, Runger, and Tuv 2007; Camci, Chinnam, and
Ellis 2008; Qiu 2008; Sukchotrat, Kim, and Tsung 2010;
Ning and Tsung 2012; Zou, Wang, and Tsung 2012; Li
et al. 2017). In particular, for simplicity and comparison
purpose, the multivariate sign exponentially weighted
moving average (MSEWMA) control chart proposed by
Zou and Tsung (2011) will be chosen as the baseline
method in our paper.

In this paper, we develop a nonparametric or distribu
tion-free control chart for monitoring multivariate data.
Our approach is different from the existing nonpara-
metric SPC methods in the sense that we adopt a
machine-learning-type black-box approach for moni-
toring. Instead of making any model assumptions, we
assume that rich historical in-control (IC) and out-of-
control (OC) data are available. Such an assumption on
data is reasonable in many modern processes thanks to
the development of modern sensing technology. A con-
crete motivating example of our paper is the hard disk
drive monitoring system (HDDMS), a computerised sys-
tem that records various attributes related to disk failure
and provides early warnings of disk degradation. In such
an application, both IC and OC data are available in the
historical dataset, and the challenge is how to take full
advantage of these historical IC and OC data for effective
online monitoring. In the traditional SPC, or more gen-
erally, statistical, literature, extensive data are often used
to build multivariate models, which are then used for
monitoring. Here we propose to bypass the model of the
original multivariate data and develop the control charts
directly based on the historical data themselves through
machine-learning techniques. Also see Zhang, Tsung,
and Zou (2015) for related research but with different
machine learning techniques.

To be more specific, our proposed method applies the
k-nearest neighbours (KNN) algorithm for dimension
reduction to convert original multivariate data into one-
dimensional categorical random variables, as monitoring
univariate data are well studied in the SPC literature. For
simplicity, here we use the CUSUM procedure to mon-
itor the transformed one-dimensional categorical vari-
ables based on the estimated empirical probability mass
function (p.m.f.) under both IC and OC states, although
many other control charts can also be combined with our
proposed KNN-based dimension reduction.

Our proposed monitoring scheme has the following
advantages: (i) it is robust, data-driven and thus can
be easily adapted to monitor any multivariate or high-
dimensional data; (ii) it takes full advantage of historical
IC and OC data and holds desirable performance; (iii) it
is statistically appealing since it is based on the empirical
p.m.f. of the derived one-dimensional categorical vari-
able; (iv) it is easy to interpret if one treats our key idea of

KNN learning as dimension reduction. This opens a new
research direction when monitoring high-dimensional
data in the SPC literature by adopting modern machine
learning techniques as a dimension reduction tool com-
bined with existing multivariate or univariate control
charts.

The remainder of this paper is organised as follows.
The problem of monitoring multivariate data is stated in
Section 2, and our proposed KNN-based control chart
is presented in Section 3. Extensive simulation studies
are reported in Section 4, and the case study involv-
ing the HDDMS data is presented in Section 5. Several
concluding remarks are made in Section 6, and some of
the technical or mathematical details are provided in the
appendix.

2. Problem description and literature review

Following the standard SPC literature, we monitor a
sequence of p-dimensional random vectors {x1, x2, . . . ,
xi, . . .} over time from some process. Initially, the process
is in the IC state, and the cumulative distribution func-
tion (c.d.f.) of the xi is F(x; θ0) for some IC parameter
θ0. At some unknown time point τ , the process is OC
in the sense that the xis have another c.d.f. F(x; θ1) for
some OC parameter θ1. In other words, the distributions
of multivariate data xi can be described by the following
change-point model:

xi ∼
{
F(x; θ0) for i = 1, . . . , τ
F(x; θ1) for i = τ + 1, . . .

(1)

Here we assume that the data xis are independent over
time, but the p components within a given data can be
cross-correlated. That is, in terms of spatial-temporal
data analysis, we assume that data are correlated over
the spatial domain, and independent over the time
domain. In practice, the temporal independence assump-
tion might not be as restrictive as one might think, since
one can monitor independent residuals from some time
series model that de-correlates the temporal correlation.

When monitoring the multivariate data xi, our goal
is to raise an alarm as soon as possible after the process
changes from the IC state to the OC state at time τ . This
can be formulated as testing the simple null hypothesis
H0 : τ = ∞ (i.e. no change) against the composite alter-
native hypothesis H1 : τ = 1, 2, . . . (i.e. a change occurs
at some finite time), but with the twist that we must
test these hypotheses at each time point until we feel we
have enough evidence to reject the null hypothesis and
declare that a change has occurred. To be more specific,
a control chart raises an OC alarm at time point T based
on the first T observations, and the expectation, E(T) is
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often referred as the IC or OC average run length (ARL),
depending on whether the process is in the IC or OC
state. One would like to develop a control chart that min-
imises the OC ARL, Eoc(T), subject to the following false
alarm constraint under the IC state:

Eic(T) ≥ γ . (2)

where γ > 0 is a pre-specified constant. In other words,
the control chart is required to process at least γ obser-
vations on average before raising a false alarm when all
observations are IC.

This problem is well studied in cases when the distri-
butions of xi under the IC and OC states are fully speci-
fied, and one classical method is the CUSUM procedure
developed by Page (1954). To define the CUSUM proce-
dure, denote by gic(·) and goc(·) the probability density
functions (p.d.f.s) of the xi under the IC and OC states,
respectively.Next, define theCUSUMstatistic recursively
over time t as

Wt = max
{
Wt−1 + log

goc(xt)
gic(xt)

, 0
}
, t = 1, 2, . . . ,

(3)
where W0 = 0. Then the CUSUM procedure raises an
alarm at the first time point t whenever the CUSUM
statisticWt ≥ L, where the pre-specified threshold L>0
is chosen to satisfy the IC ARL constraint in (2). It is
well known that the CUSUM statistic Wt is actually the
logarithm of the generalised likelihood ratio statistic of
all observations up to time point t, {x1, . . . , xt}, and the
CUSUM procedure enjoys certain exactly optimal prop-
erties (Moustakides 1986). Unfortunately, the CUSUM
procedure requires complete information of the IC and
OCp.d.f.s, gic(·) and goc(·), and thus itmay not be feasible
in practicewhen it is nontrivial tomodel the distributions
of multivariate data.

As mentioned in the introduction, nonparametric
control charts have been developed in the SPC litera-
ture. For instance, Qiu and Hawkins (2003) proposed
a nonparametric CUSUM chart using the anti-ranks of
observations. Boone and Chakraborti (2012) proposed
two multivariate Shewhart charts based on componen-
twise signs and Wilcoxon signed-rank sums. Zou and
Tsung (2011) and Zou, Wang, and Tsung (2012) sep-
arately adapted the multivariate spatial sign and rank
(cf., Oja 2010) to construct multivariate nonparametric
EWMA control chart. Holland and Hawkins (2014) pro-
posed a change-point detection chart based on spatial
rank. Li et al. (2017) further integrated the multivariate
spatial rank with the forward variable section for detect-
ing sparse mean shifts. More detailed literature reviews
can be found in Qiu (2018).

For the purpose of illustration and comparison, we
chose the baseline method as the multivariate sign expo-
nentially weighted moving average (MSEWMA) control
chart proposed byZou andTsung (2011). TheMSEWMA
chart is based on the multivariate sign test. The observed
p-dimensional multivariate vector xi is first transformed:

vi = A0(xi − θ0)

||A0(xi − θ0)|| , (4)

where θ0 is the affine equivariant multivariate median
proposed by Hettmansperger and Randles (2002) andA0
is the associated transformation matrix. The two param-
eters {θ0,A0} in vi are estimated from the IC dataset,
and || · || denotes the Euclidean norm. Next, it mon-
itors the transformed vectors vi’s by the exponentially
weighted moving average (EWMA) control chart with
the monitoring statistics

ωi = (1 − λ)ωi−1 + λvi and Qi = 2 − λ

λ
pω′

iωi.
(5)

Finally, an OC alarm is raised wheneverQi exceeds some
pre-specified control limit. Clearly, the MSEWMA chart,
or in fact many other nonparametric control charts, only
utilise the historical IC dataset, and raise an OC alarm
whenever the observed data do not follow the ICpatterns.
By doing so, the benefit is to be able to detect any general
OC patterns. However, the disadvantage is also obvious:
much statistical efficiency will be lost when one is inter-
ested in detecting specific OC patterns that are similar to
the historical ones.

In this article, we do notmake any parametric assump-
tions on the c.d.f.s or p.d.f.s of the multivariate data xi
under the IC or OC states. Instead we assume that two
historical datasets are available: one is an IC dataset,
denoted by XIC = {xic1, xic2, . . .}, and the other is an OC
dataset denoted by XOC = {xoc1, xoc2, . . .}. When mon-
itoring the online observation xi, we are interested in
detecting those OC patterns that are similar to the his-
torical OC patterns. Our task is to utilise these historical
IC and OC datasets to build an efficient control chart
that can effectively monitor the online observation xi
and detect OC patterns that are similar to those in the
historical OC dataset.

3. The proposed KNN-ECUSUM control chart

Let us first provide a high-level description of our pro-
posed k-nearest neighbours empirical cumulative sum
(KNN-ECUSUM) control chart which is designed for
monitoring the p-dimensional observations xi based on
the historical IC and OC datasets XIC and XOC. Our
proposed KNN-ECUSUM control chart consists of the
following three steps:
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Step 1: Use the KNN method to transform p-
dimensional data x to one-dimensional categorical data
z(x), which is the proportion of the k nearest neighbours
of x that are IC. Here Xknn

IC and Xknn
OC are the respective

subsets of historical IC andOCdata for training the KNN
classifier.

Step 2: Estimate the empirical IC andOC p.m.f.s of the
one-dimensional categorical data z(x) by using the sub-
sets of historical IC and OC data, Xemp

IC and Xemp
OC , respec-

tively, where Xemp
IC = XIC − Xknn

IC and Xemp
OC = XOC −

Xknn
OC , respectively.
Step 3: Apply the classical CUSUMprocedure to mon-

itor the one-dimensional data z(xi), where z(xi) is com-
puted for each new pieces of online observation xi as in
Step 1, and the IC and OC p.m.f.s of z(xi) are estimated
as in Step 2.

Belowwewill explain each step of our proposedKNN-
ECUSUM control chart in details and then provide the
guideline for practical use. For the purpose of easy under-
standing, the remainder of this section is divided into
four subsections. Section 3.1 presents the construction
of the transformation z(x) based on the KNN algorithm,
and Section 3.2 discusses the estimation of the empir-
ical p.m.f. of the transformed variable. In Section 3.3,
the classical CUSUM procedure is applied to the one-
dimensional data z(xi) for detecting changes. Section 3.4
gives a summary and practical guidance for our proposed
KNN-ECUSUM control chart.

3.1. Construction of one-dimensional data z(x)

In this subsection, we discuss the transformation of the
p-dimensional data x to the one-dimensional data z(x)
by applying the KNN algorithm. In order to train the
KNN classifier, we randomly select some training data,
Xknn
IC and Xknn

OC , from the provided IC and OC histor-
ical datasets XIC and XOC. As a classification method,
the KNN algorithm is then applied to the datasets Xknn

IC
and Xknn

OC to predict the label of any p-dimensional data
x based on its nearest k neighbours. Here we extend
the binary classification output of the conventional KNN
algorithm to k-category probability outputs.

When using the KNN algorithm, a crucial task is how
to define the distance between two p-dimensional vectors
xi and xj. In our simulations and case study, we adopt the
Mahalanobis distance (cf., Varmuza and Filzmoser 2010)
defined by

dis(xi, xj) = [(xi − xj)TC−1(xi − xj)]1/2, (6)

whereC is the p × p sample covariance matrix. Themain
benefit of using the Mahalanobis distance is that it takes
into account the covariance structure and standardises

different components of p-dimensional random vectors.
Moreover, the Mahalanobis distance is equivalent to the
Euclidean distance when different components are scaled
to become standardised and also independent of each
other. We should also emphasise that there are many
other ways to define the distance dis(xi, xj) for the KNN
algorithms, e.g. by kernels or Pearson’s correlation coeffi-
cients, etc.

For any given p-dimensional vector x, let V(x, k)
denote the k nearest points of x in the training datasets
Xknn
IC and Xknn

OC under the distance criterion dis(·, ·). Note
that the k points in the set V(x, k) may contain both IC
and OC training samples. Then the transformed vari-
able z(x) is defined as the probability output of the KNN
algorithm:

z(x) = # of points in the intersection V(x, k) ∩ Xknn
IC

k
,
(7)

i.e. z(x) is the proportion of IC samples in the k neigh-
bours of x. Since the value of the transformed vari-
able z(x) can only be i/k for i = 0, 1, 2, . . . , k, it is a
one-dimensional categorical variable with k+ 1 possible
values. Therefore, the problem of monitoring the multi-
variate observation x now becomes a problem of moni-
toring the one-dimensional categorical variable z(x).

We acknowledge that intuitively it will lose infor-
mation when using the KNN algorithm to reduce p-
dimensional data into one-dimensional data. However,
we want to emphasise that in the context of monitor-
ing or SPC, most, if not all, control charts raise alarms
if some real-valued monitoring statistic is large, and
such monitoring statistic is one-dimensional based on
the probability distributions or the likelihood ratio test
statistics of the multivariate data. In other words, we
need to summarise the p-dimensional data over time as
a single one-dimensional random variable for the evi-
dence of changes. The traditional SPC approaches often
first approximate the distributions of p-dimensional vari-
ables and then compute the one-dimensional monitoring
statistics, see, empirical likelihood (Owen 2001) and ker-
nel density estimation (Terrell and Scott 1992). Here we
propose to approximate the one-dimensional monitor-
ing statistics directly by the likelihood ratio statistics of
the transformed one-dimensional random variable z(x).
Our simulation studies indicate that the loss information
seems to bemarginal in the context of onlinemonitoring.

3.2. Estimation of the empirical probabilitymass
function

After using the KNN algorithm to convert the p-
dimensional variable x to a one-dimensional categorical
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variable z(x), we now face the problem of monitor-
ing one-dimensional categorical data. Existing methods
for monitoring categorical data are available from Mar-
cucci (1985), Woodall (1997) and Montgomery (2009).
However, these methods require counting the number of
data points in each category, and are not suitable for our
problem where the categorical variable z(x) is calculated
from a single observation x. Here our proposed method
applies the classical CUSUM procedure to z(x), and for
that purpose, we need to estimate the p.m.f. of z(x) under
the IC and OC states.

First, we briefly review how the empirical p.m.f. of
a categorical variable Y is estimated. Assume that Y
takes k+ 1 possible values, say, t0 ≤ t1 ≤ . . . ≤ tk, and
we observe G i.i.d. random samples y1, y2, . . . , yG of Y.
The empirical p.m.f. of Y is

f̂ (tj) = 1
G

n∑
i=1

I(yi = tj)

= # of yi in j − th category
G

, j = 0, 1, . . . , k (8)

where I(·) denotes the indicator function. Next, let us
illustrate how this empirical p.m.f. can be adapted to our
problem by applying the boostrap or random sampling
method to the IC and OC datasets. Taking the IC dataset
as an example. Each time a subset of m IC observations
are randomly (and possibly repeatedly) sampled from
Xemp
IC . After this subset of m pieces of IC data are input

into the KNN classifier, we collectm transformed outputs
z(x)s. This re-sampling and transformation procedure is
repeated B times, and we obtain a total of Bm categori-
cal observations z(x)s. As in Equation (8), the empirical
p.m.f. of z(x) under the IC scenario is simply the propor-
tion of Bm observations that fall under each category and
can be calculated as

f̂ic(z) =
{

# of z(x)′s =z
Bm if z = j

k , j = 0, 1, . . . , k
0 otherwise

(9)

Note that this empirical IC p.m.f. satisfies
∑k

i=0 f̂ic(i/k) =
1, which is the fundamental requirement for a probability
mass function. Similarly, we can derive the empirical OC
p.m.f., f̂oc(z), of the categorical variable z(x) under the
OC scenario by applying the above procedure to the OC
dataset Xemp

OC . Some issues on IC or OC samples for cal-
culating the empirical densities will be discussed in more
detail later in Subsection 3.4.

3.3. Monitoring the transformed variables z(xi)

After data transformation and p.m.f. estimation, our pro-
posed control chart is to apply the classical CUSUM pro-
cedure to the transformed variables with the estimated

IC and OC p.m.f.s. Specifically, when monitoring the p-
dimensional data xi in real time, we first use the KNN
algorithm in Step 1 to obtain the transformed variable
z(xi). In Step 2, the corresponding p.m.f.s of the trans-
formed variable z(xi) can be estimated as f̂ic(z) or f̂oc(z).
Thus the problem of monitoring the p-dimensional data
xi can be simplified into the problem of monitoring the
transformed one-dimensional variable z(xi) with a pos-
sible p.m.f. change from f̂ic(z) to f̂oc(z).

At the high-level, our proposed KNN-ECUSUM con-
trol chart applies the classical CUSUM control chart to
the transformed one-dimensional variable z(xi). To be
more specific, our method defines the CUSUM statistic
recursively as

Wn = max

(
Wn−1 + f̂oc(z(xi))

f̂ic(z(xi))
, 0

)
(10)

for n ≥ 1 with the initial value W0 = 0, and then raises
an alarm whenever Wn exceeds a pre-specified control
limit L > 0. Recall that the CUSUM procedure is exactly
optimalwhen the p.d.f.s/p.m.f.s under the IC andOC sce-
narios are completely specified. In our context, we utilise
the historical IC and OC datasets to estimate the p.m.f. of
the transformed variable.When the OC patterns are sim-
ilar to those in the historical data, the empirical p.m.f. will
be similar to the true p.m.f., and thus the performance
of our proposed KNN-ECUSUM control chart would be
similar to that of the optimal CUSUM procedure with
the true density functions, which is also verified in the
simulation results in Section 4.

In summary, our proposed KNN-ECUSUM con-
trol chart can be summarised in Table 1. The novelty
of our proposed control chart lies in combining four
well-established methods together: the KNN algorithm,
the empirical probability mass function, bootstrapping,
and CUSUM, and the fundamental idea is to use the
KNN algorithm as a dimension reduction tool. Rather
than directly estimating the distributions of the raw p-
dimensional variables, we monitor the transformed one-
dimensional categorical variables, whose distributions
can be easily estimated from their empirical densities.

Finally, it is also useful to discuss the computational
complexity of our proposed KNN-ECUSUM control
chart, which includes three steps. The first two steps of
training the KNN classifier and estimating the p.m.f.s
only need to be done once in the off-line Phase I stage.
The third step is the online Phase II stage and involves
the computational complexity ofO((p2 + k)nknn) at each
time step. To see this, for each training data in KNN,
we need to compute the Mahalanobis distance from the
newobservation to training set observations. EachMaha-
lanobis computation involves O(p2) runtime, and so it
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Table 1. Procedures for implementing the KNN-ECUSUM control chart.

Algorithm 1: Our proposed KNN-ECUSUM control chart

Step 1 Goal: To Build the KNN classifier for data transformation.
Input: Training Samples Xknn

IC and Xknn
OC ; a given testing sample x.

Output: The categorical variable z(x).
Step 2 Goal: To calculate the empirical p.m.f. of the transformed categorical variable.

Input: Samples Xemp
IC and Xemp

OC .
Model: The KNNmodel z(x) built in Step 1.
Iterate: For the IC scenario, t = 1, 2, . . . B times.
1. Randomly selectm IC samples from Xemp

IC .
2. The selected IC samples serve as input to z(x); collect the model outputs.
Output: For the IC scenario, the estimated IC p.m.f. of z(x), f̂ic(z).
Repeat: Using the same model, repeat the same iterative procedure for the
OC scenario and get the estimated OC p.m.f. of z(x), f̂oc(z).

Step 3 Goal: To monitor online multivariate observations.
Input: Online samples {x1, x2, . . .}; control limit L.

Charting Statistic:Wn = max(Wn−1 + f̂oc(z(xi))
f̂ic(z(xi))

, 0),W0 = 0.

Output: IfWn > L, the control chart raises an OC alarm;
otherwise, the process is considered to be operating normally.

requires O(p2nknn) runtime to compute all distances.
Next, the KNN algorithms select k smallest distance and
involves O(nknnk)) runtime to loop though all nknn dis-
tances. Moreover, it involves O(k) time to update the
CUSUM statistics Wt . Thus at each time step during
the Phase II stage, the computational complexity of our
proposed KNN-ECUSUM control chart is O(p2nknn +
knknn + k), which is the same order as O((p2 + k)nknn).

3.4. Design issues of the KNN-ECUSUM chart

Our proposed KNN-ECUSUM control chart involves
several important tuning parameters, whichmust be cho-
sen carefully when applied in practice. Below we will
discuss how to choose these tuning parameters appropri-
ately.

3.4.1. Selecting k in the KNN classifier
When building the KNN model, the number of neigh
bours, k, is an important tuning parameter. Generally
speaking, a small kmay overfit the KNN training dataset
and decrease the prediction accuracy. For the categorical
variable z(x), a small k will also lead to imprecise output.
On the other hand, a large k increases the computational
load and may not necessarily bring a significant increase
in the classification rate for prediction. Often people use
cross-validation to achieve an appropriate k. Following
the empirical rule of thumb, k is often chosen to be of
order

√
nknn, where nknn is the number of observations in

the training IC and OC datasets reserved for training the
KNN classifier. This is used as the starting point in some
KNN software packages. Our empirical results from sim-
ulation and real-data studies suggest that k = α ∗ √

nknn
with α ∈ [0.5, 3] is a reasonable choice.

3.4.2. Selecting the control limit L
When constructing the control chart, it is crucial to find
an accurate control limit L for themonitoring or charting
statistics to satisfy the IC ARL constraint defined in (2).
In our proposed KNN-ECUSUM chart, we propose a re-
sampling method to find its value. For a given control
limit L, we randomly select an observation from the IC
historical dataset XIC, and the CUSUM statistic W1 is
calculated as in (10). If the CUSUM statistic W1 < L,
another observation will be randomly selected from XIC
and the CUSUM statisticW2 will be calculated. This pro-
cedure is repeated until the CUSUM statistic WT ≥ L.
This completes one Monte Carlo simulation, and the
number T of IC observations are recorded and is often
called one realisation of the run length. Then, we repeat
the above steps n0 times and obtain n0 realizations of
the run length, denoted by T1, . . . ,Tn0 . The ARL of our
proposed KNN-ECUSUM control chart with the con-
trol limit L is then estimated as ˆARL(L) = (T1 + · · · +
Tn0)/n0. The control limit L is then adjusted through
bisection search so that the obtained ˆARL(L) is close to
the preset ARL constraint γ . In this paper, n0 is chosen
as 10,000.

3.4.3. Sample size considerations
The sample size is another important factor that can affect
the performance of our proposed KNN-ECUSUM con-
trol chart. There are two kinds of sample sizes in our pro-
posed KNN-ECUSUM chart: one for training the KNN
algorithm, and the other for estimating the p.m.f.s of the
one-dimensional categorical variable. Both need enough
data for good performance, and ideally data are disjoint
for these two steps.

In Step 1 of the KNN-ECUSUM chart, it is crucial to
have enough samples for training the KNN algorithm,
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since the quality of the transformed categorical vari-
able z(x) will affect the monitoring performance of the
KNN-ECUSUM chart. The number of samples for KNN
algorithm is very dependent on the specific problem,
e.g. the dimension p of the data and the smoothness of
underlying true model, see Chapter 2.5 of the classical
statistical learning book by Hastie, Tibshirani, and Fried-
man (2009). Meanwhile, due to the need to reserve suf-
ficient historical data for calculating empirical densities,
it is inappropriate for the KNN classifier to use too many
training data. Under the setting of our simulation studies
in Section 4,we empirically found that some good choices
of the size of training data for the KNN algorithm are
nknn ∈ [0.25, 0.75]N, where N is the total size of the his-
torical dataset. For the case study in Section 5, we choose
nknn ≈ 0.4N. Of course, in other real-world applications,
the choice of nknn will likely depend on the applications
and the availability of training data.

In Step 2, more samples will lead to more precise
estimates of the p.m.f.s of the transformed categorical
variable. We suggest making use of possibly all of the
historical data especially when the historical IC or OC
dataset is not large enough. For large historical datasets
containingmillions of observations, it is acceptable to use
a subset to estimate the p.m.f.s. It is important to note
that the training data for building the KNN classifier in
Step 1 should not overlap with those for estimating the
empirical p.m.f.s.

In many fields such as machine learning, if one has a
balanced dataset, then the classification problem is often
easy to solve, including our proposed KNN-ECUSUM
chart. However, we often face the unbalanced data in
the field of SPC. For Phase I analysis in SPC, we often
have many IC samples, but generally have few OC sam-
ples. In such a situation, to address the unbalanced issue,
one possible solution is to apply oversampling (or the
so-called bootstrapping method) that replicates samples
from the OC dataset in order to increase its cardinality.

3.4.4. Whenmultiple OC patterns exist
So far, we have only considered the binary classification
when constructing the KNN classifier in Step 1, as it
is assumed that the historical OC dataset exhibits only
one single OC pattern. However, sometimesmultiple OC
patterns may exist, and the historical OC dataset may
contain more than one OC cluster. In such a situation,
more efforts should be made to investigate different OC
clusters.

It turns out that the proposed KNN-ECUSUM chart
can be easily extended to handle the case of multiple OC
clusters. To this end, we need to divide the historical OC
dataset into several clusters. This clustering procedure
might be available during Phase I analysis, or can be done

by standard unsupervised learning methods such as the
k-means clustering method, principal component analy-
sis (PCA) and so on. Based on our experience, while the
proposed method can be extended to any number C of
OC clusters, a smaller number of clusters will generally
lead to better performance in monitoring changes. Thus,
a small number C ≤ 4 of OC clusters is suggested.

Nowwe briefly describe the extension of our proposed
control chart. Denote the historical IC data and the C
OC clusters by Xic,X1

oc . . . ,XC
oc. As in Step 1 in Table 1,

we also build a KNN classifier but now it is a multi-
class KNN classifier based on the subsets of these C+ 1
training datasets. Next, we calculate the empirical p.m.f.s,
f̂ic(·), f̂ 1oc(·), . . . , f̂ Coc(·), using boostrap in Step 2. Notice
that there are C+ 1 probability densities to be calculated,
rather than two densities in the case of one single OC
cluster. In Step 3, we construct the CUSUM statistic for
each OC cluster and obtain C CUSUM statistics with

W1,n = max

(
W1,n−1 + f̂ 1oc(z(xi))

f̂ic(z(xi))
, 0)

)
, . . . ,WC,n

= max

(
WC,n−1 + f̂ Coc(z(xi))

f̂ic(z(xi))
, 0)

)
.

Then we define the monitoring statistics based on
the maximum of all the C CUSUM statistics, Wn =
max(W1,n,W2,n, . . . ,WC,n), and raise anOC alarmwhen
Wn > L.

4. Simulation studies

In this section, we conduct extensive simulation studies
to demonstrate the efficiency and robustness of the pro-
posedKNN-ECUSUMchart. For the purpose of compar-
ison, three alternative control charts are also considered:
(i) the nonparametric MSEWMA chart in (5) proposed
by Zou and Tsung (2011), (ii) the traditional parametric
MEWMAmethod (Hotelling’sT2 type), and (iii) the clas-
sical parametric CUSUM chart which is optimal when
the underlying IC and OC distributions are known (cf.,
Qiu 2014).

To better present our simulation results, we split this
section into three subsections. In Section 4.1, the KNN-
ECUSUM chart is compared with competitors when
there is only one OC cluster in the historical OC dataset.
It is extended to the case of multiple OC clusters in
Section 4.2. Section 4.3 contains a sample size analysis.
Throughout the simulation, the IC ARL is fixed at 600.
TheMATLAB code for implementing the proposed chart
is available from the authors upon request.
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4.1. When only one cluster exists in historical OC
data

In this subsection, we will investigate the case when only
one cluster exists in the historical OC data. Here we focus
on detecting a change in the mean vector, and consider
three different generative models of the p-dimensional
multivariate data xi in order to evaluate the robustness
of the control charts:

• the multivariate normal distribution N(0p×1,�p×p).;
• the multivariate t distribution tζ (0p×1,�p×p) with ζ

degrees of freedom;
• the multivariate mixed distribution, rN(μ1,�p×p) +

(1 − r)N(μ2,�p×p), i.e. a mixture of two multivari-
ate normal distributions. In our simulation, we set
r = 0.5, and the p × 1mean vectorμ1 (μ2) is 3(−3) in
the first component but is 0 for all other components.

For all three generative models, the covariance matrix
is chosen as �p×p = (σij)p×p = 0.5|i−j|, and we consider
the OC generative model with a mean shift δ in the first
component of the observations unless stated otherwise,
where the shift magnitude δ ranges from 0.2 to 2 with the
step size of 0.2. In addition,we consider two choices of the
dimension p: p = 6 and p = 20. The tuning parameter λ

in theMEWMAand theMSEWMAcharts is set to 0.2 for
simplicity.We emphasise that our proposed control chart
does not use any information pertaining to the generative
IC or OCmodel and will only use the historical data gen-
erated from the IC or OC model: the KNN algorithm in
Step 1 is based on 1000 pieces of IC and OC training data
with the number of nearest neighbours k = 30, and the
p.m.f. estimation in Step 2 is based on 100, 000 pieces of
IC and OC data with B = 1000 loops for bootstrap.

To gain a deeper insight of our proposed control chart,
Figure 1 plots the estimated p.m.f.s of the transformed
one-dimensional categorical data z(x) under the three
generative models with the OC shift size δ equals 1. From
the plots, it is clear that the estimated IC p.m.f.s (f̂ic) are
concentrated on the right of the figure as the KNN out-
put increases (except in some extreme situations), while
the estimatedOC p.m.f.s (f̂oc) are concentrated on the left
of the figure. This is consistent with our intuition that
the neighbouring samples of an IC sample are likely from
the IC distribution, and vice versa. The significant dif-
ferences in the estimated IC and OC p.m.f.s in Figure 1
demonstrate that the transformed one-dimensional cat-
egorical variable z(x) can be used to detect changes in
the original multivariate data x, and thus our proposed
KNN-ECUSUM control chart should be effective.

Tables 2–4 summarise the simulated ARL
performance of the four control charts under the three

Figure 1. Estimated empirical densities of KNN output for multi-
variate normal, t and mixed data in IC and OC scenarios.

generative models. Table 2 presents the efficiency of our
proposed KNN-ECUSUM chart in the case of detect-
ing mean shifts for the multivariate normal distribution.
First, subject to the same IC ARL value, the OC ARL
values of our proposed KNN-ECUSUM chart are only
slightly larger than those of the CUSUM chart, which is
the optimal one under the normality assumption. Sec-
ond, the KNN-ECUSUM chart has much smaller OC
ARL values as compared to theMEWMAandMSEWMA
charts for all mean shift magnitudes. The major reason
is that the KNN-ECUSUM chart uses the precious OC
information in the historical dataset, which is overlooked
in the MEWMA and MSEWMA charts. Thus, it is not
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Table 2. (OC) ARL performance comparison for multivariate normal data.

Dimension p Shift Size δ KNN-ECUSUM MEWMA MSEWMA CUSUM

0 602 (595) 600 (601) 602 (594) 599 (597)
0.2 128 (126) 318 (314) 322 (323) 122 (120)
0.4 38.2 (34.3) 101 (95.3) 104 (97.3) 35.5 (31.7)
0.6 17.3 (13.5) 36.7 (30.8) 39.5 (33.0) 15.1 (11.6)

6 0.8 9.67 (6.47) 18.0 (12.5) 20.2 (13.4) 8.67 (5.72)
1 6.78 (3.76) 11.0 (6.48) 13.3 (7.24) 5.87 (3.30)
1.2 5.08 (2.44) 7.84 (3.83) 9.80 (4.36) 4.43 (2.15)
1.4 4.16 (1.74) 6.08 (2.63) 7.97 (2.87) 3.58 (1.60)
1.6 3.55 (1.32) 4.97 (2.00) 6.93 (2.18) 3.00 (1.21)
1.8 3.19 (1.09) 4.25 (1.56) 6.24 (1.78) 2.62 (0.98)
2 2.86 (0.89) 3.69 (2.66) 5.76 (1.45) 2.31 (0.80)
0 600 (586) 599 (606) 599 (589) 601 (589)
0.2 130 (127) 410 (408) 396 (400) 118 (114)
0.4 40.1 (36.0) 171 (167) 163 (158) 33.1 (29.6)
0.6 17.2 (13.6) 62.9 (57.5) 62.1 (54.1) 14.2 (11.0)

20 0.8 9.97 (6.37) 28.6 (22.2) 29.1 ( 21.7) 7.91 (5.18)
1 6.91 (3.91) 15.9 (10.3) 16.8 (10.2) 5.41 (2.98)
1.2 5.19 (2.50) 10.6 (5.58) 11.7 (5.71) 4.10 (1.96)
1.4 4.32 (1.86) 7.93 (3.54) 8.94 (3.68) 3.31 (1.44)
1.6 3.65 (1.74) 6.26 (2.47) 7.41 (2.59) 2.77 (1.08)
1.8 3.21 (1.16) 5.25 (1.94) 6.40 (1.97) 2.41 (0.88)
2 2.86 (0.93) 4.57 (1.57) 5.71 (1.58) 2.17 (0.76)

Note: Standard deviations are in parentheses.

Table 3. OC performance comparison for multivariate t data.

Dimension p Shift size δ KNN-ECUSUM MEWMA MSEWMA CUSUM

0 599 (603) 600 (606) 600 (587) 600 (603)
0.2 146 (146) 578 (568) 342 (339) 135 (132)
0.4 45.2 (41.4) 479 (480) 115 (108) 41.3 (36.7)
0.6 19.1 (14.7) 348 (350) 44.7 (37.4) 17.7 (13.7)
0.8 11.0 (7.33) 228 (228) 23.1 (16.6) 10.0 (6.63)

6 1 7.54 (4.10) 133 (128) 15.1 (8.74) 6.89 (3.75)
1.2 5.89 (2.86) 73.3 (65.4) 11.1 (5.32) 5.31 (2.54)
1.4 4.86 (2.04) 40.0 (32.3) 9.05 (3.86) 4.43 (1.90)
1.6 4.25 (1.64) 23.7 (16.0) 7.77 (2.88) 3.85 (1.48)
1.8 3.81 (1.27) 15.5 (8.80) 6.94 (2.36) 3.42 (1.22)
2 3.53 (1.10) 11.6 (5.55) 6.38 (1.95) 3.19 (1.04)
0 601 (589) 599 (603) 600 (589) 599 (597)
0.2 137 (135) 595 (602) 420 (414) 129 (126)
0.4 43.1 (39.6) 564 (578) 180 (171) 35.5 (32.7)
0.8 10.3 (14.4) 492 (479) 33.1 (25.8) 8.48 (5.60)

20 1 7.16 (4.04) 430 (348) 19.1 (12.5) 5.91 (3.29)
1.2 5.51 (2.67) 346 (348) 13.1 (7.19) 4.54 (2.25)
1.4 4.48 (1.94) 282 (281) 10.0 (4.63) 3.70 (1.69)
1.6 3.90 (1.49) 211 (205) 8.25 (3.35) 3.21 (1.38)
1.8 3.45 (1.25) 149 (144) 7.10 (2.59) 2.89 (1.17)
2 3.15 (1.10) 99.9 (91.0) 6.34 (2.09) 2.63 (1.01)

Note: Standard deviations are in parentheses.

surprising that our method can detect mean shift more
efficiently than these two alternatives. Third, it is inter-
esting to see the effect of data dimension: as the data
dimension increases from 6 to 20, both the MEWMA
andMSEWMA charts have a much larger OCARL when
the mean shift δ is small, e.g. δ ∈ [0.4, 0.8], whereas the
performance of our proposedKNN-ECUSUMchart does
not change much. This demonstrates the effectiveness of
our proposedKNN-ECUSUMchart under themultivari-
ate normal distribution.

Table 3 and 4 report the robustness of the KNN-
ECUSUM chart under different distribution assump-
tions: Table 3 is for the multivariate t distribution,

whereas Table 4 is for multivariate mixed distribution.
The superiority of our method is still maintained in
the sense that the KNN-ECUSUM chart still works
muchmore effectively than theMEWMAandMSEWMA
charts. Note that both the MEWMA and MSEWMA
charts fail to detect the shift under the mixed distri-
bution, partly because the mixed data is not elliptically
distributed, which is a fundamental requirement for the
MEWMA and MSEWMA charts. It is also interesting
to compare the results in Tables 2 and 3: when the true
underlying distribution changes from multivariate nor-
mal to multivariate t, the performance of the baseline
MEWMAchart deteriorates significantly.Meanwhile, the
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Table 4. OC performance comparison for multivariate mixed data.

Dimension p Shift size δ KNN-ECUSUM MEWMA MSEWMA CUSUM

0 599 (600) 600 (597) 601 (583) 600 (594)
0.2 131 (128) 598 (598) 584 (583) 124 (120)
0.4 39.4 (36.3) 609 (615) 565 (562) 35.3 (32.2)
0.6 17.2 (13.5) 591 (573) 528 (530) 15.0 (11.6)
0.8 9.75 (6.39) 600 (593) 516 (514) 8.52 (5.50)

6 1 6.66 (3.76) 597 (605) 471 (467) 5.85 (3.28)
1.2 5.19 (2.44) 595 (591) 455 (446) 4.42 (2.14)
1.4 4.14 (1.73) 596 (604) 427 (423) 3.58 (1.57)
1.6 3.58 (1.38) 599 (591) 414 (407) 3.04 (1.20)
1.8 3.17 (1.11) 603 (593) 382 (381) 2.65 (0.95)
2 2.87 (0.92) 605 (605) 377 (373) 2.37 (0.76)
0 602 (594) 599 (602) 600 (581) 600 (590)
0.2 130 (128) 609 (605) 604 (615) 122 (122)
0.4 41.1 (37.1) 591 (596) 595 (589) 33.5 (29.5)
0.6 17.4 (13.3) 612 (617) 585 (580) 14.0 (11.2)
0.8 10.0 (6.68) 588 (582) 584 (583) 7.97 (5.09)

20 1 6.94 (3.88) 593 (586) 568 (564) 5.41 (3.00)
1.2 5.31 (2.57) 608 (607) 556 (546) 4.06 (1.92)
1.4 4.29 (1.84) 593 (596) 549 (559) 3.32 (1.41)
1.6 3.67 (1.41) 608 (600) 539 (546) 2.80 (1.10)
1.8 3.20 (1.13) 594 (601) 528 (529) 2.46 (0.86)
2 2.89 (0.96) 598 (605) 524 (525) 2.23 (0.70)

Note: Standard deviations are in parentheses.

performance of our proposed KNN-ECUSUM charts
does not change much, and so does the MSEWMA. All
these results illustrate that our proposed KNN-ECUSUM
control chart, as a nonparametric method, is indeed
robust to the model distribution assumption.

4.2. Whenmultiple clusters exist in historical OC
data

In this subsection, we conduct additional simulation
studies to illustrate the effectiveness of the proposed
KNN-ECUSUM chart in cases when multiple OC clus-
ters exist in the historical OC dataset. Here we only
report the results ofmultivariate normal andmultivariate
t distributions for simplicity. The dimension ranges from
p = 6, p = 20 to p = 40, and the number of clusters is
chosen asC = 2 or 3. Themean and covariancematrix of
the IC data are still 0p×1 and�p×p), and for eachOCclus-
ter, the shift magnitude is 1 but the shift occurs in various
dimensions in different clusters. For example, when the
number of OC clustersC = 2 and data dimension p = 2,
the mean vectors of the two OC clusters are [1, 0] and
[0, 1], respectively. The MEWMA and MSEWMA charts
are still considered for comparison. The other settings
are similar to those under one OC cluster in the previous
section.

The simulation results are reported in Table 5. From
this table, we can see that the performance of our pro-
posed KNN-ECUSUM chart is still desirable regardless
of the number C of OC clusters. In particular, while all
charts have similarOCperformance under themultivari-
ate normal distribution, our proposed KNN-ECUSUM

chart generally has smaller OC ARL than the baseline
MEWA and MSEWMA charts under the multivariate t
distribution. Moreover, while the performances of both
the MEWMA and MSEWMA charts are still affected by
data dimension, ourmethod ismore robust to the dimen-
sion. Combining the results in Sections 4.1 and 4.2, we
conclude that our proposed KNN-ECUSUM chart is a
powerful tool for monitoring multivariate data, and is
suitable for practical use when it is non-trivial to model
the data distributions.

4.3. Sample size analysis

When implementing the KNN-ECUSUM chart, a prac-
tical issue is the sample size. As mentioned before, the
sample size can affect the choice of the number k of neigh-
bours and the accuracy of the estimated density func-
tions. Although the number of required samples depends
on multiple factors such as data dimension and the true
data distribution, it is still necessary to investigate how
large a sample size is generally appropriate and how the
estimated densities change as the sample size increases.
In this subsection, We perform simulation studies to
demonstrate the effect of the sample size.

As the KNN classifier delivers a probability estimator,
let us first consider how to achieve the “theoretical true”
probability. According to the conditional probability for-
mulation, the true probability that sample x is of IC status
can be written as

P(x) = P(x ∈ IC|x ∈ IC or OC) = gic(x)
gic(x) + goc(x)

.

(11)
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Table 5. OC performance comparison for the case of multiple clusters.

Multivariate Normal Multivariate t

Dimenson p # of Clusters C Historical OC Mean KNN-ECUSUM MEWMA MSEWMA KNN-ECUSUM MEWMA MSEWMA

[1,0,0,0,0,0] 12.7 (7.68) 11.9 (6.94) 13.2 (7.09) 13.6 (7.93) 136 (130) 15.0 (8.90)
6 2 [0,1,0,0,0,0] 9.89 (5.57) 12.0 (6.97) 13.4 (7.19) 12.2 (7.25) 132 (124) 15.3 (9.10)

[1,0,0,0,0,0] 12.6 (7.31) 11.9 (6.94) 13.2 (7.09) 13.7 (7.65) 136 (130) 15.0 (8.90)
6 2 [0,1.5,0,0,0,0] 4.43 (2.23) 5.74 (2.37) 7.47 (2.55) 5.61 (2.93) 30.5 (22.8) 8.45 (3.38)

[1,0,0,0,0,0] 19.9 (13.4) 11.9 (6.94) 13.2 (7.09) 17.6 (10.9) 136 (130) 15.0 (8.90)
6 3 [0,1,0,0,0,0] 14.5 (8.76) 12.0 (6.97) 13.4 (7.19) 17.7 (10.6) 132 (124) 15.3 (9.10)

[0,0,1,0,0,0] 16.4 (10.5) 11.9 (6.99) 13.5 (7.32) 17.9 (10.7) 133 (127) 15.4 (9.08)
1 in the 1st com 12.8 (7.84) 15.9 (10.3) 16.8 (10.2) 10.7 (6.30) 420 (424) 19.1 (12.3)

20 2 1 in the 2nd com 11.6 (6.83) 16.0 (10.3) 17.4 (10.7) 12.7 (7.70) 419 (413) 19.7 (13.1)
1 in the 1st com 11.3 (6.66) 15.9 (10.3) 16.8 (10.2) 11.3 (6.67) 420 (424) 19.1 (12.3)

20 2 1.5 in the 2nd com 4.88 (2.66) 6.96 (3.00) 8.17 (3.11) 4.88 (2.66) 248 (243) 9.20 (4.03)
1.5 in the 1st com 10.1 (6.11) 8.79 (4.07) 9.82 (4.18) 10.1 (6.11) 405 (408) 11.1 (5.42)

40 3 1.5 in the 2nd com 8.57 (4.84) 8.73 (4.00) 10.2 (4.42) 8.57 (4.84) 408 (409) 11.1 (5.47)
1.5 in the 3rd com 7.68 (4.19) 8.77 (4.02) 9.97 (4.26) 7.68 (4.19) 407 (411) 11.2 (5.44)

Note: Standard deviations are in parentheses.

Then the corresponding density function can be derived
as

g(t) = dP(P(x) ≤ t)
dt

(12)

and we call g(·) the true probability density.
In the simulation, both the IC and OC samples are

assumed to be normally distributed with p = 6, μ0 =
0, μ1 = [1, 1, 1, 0, 0, 0], and the covariance matrix equals
the identity matrix. Following Equations (11) and (12),
the true density can be obtained after simple calculations
(provided in the appendix) as

g(t) = 1√
π
exp

(
−1
6

(
3
2

− log
t

1 − t

)2
)

×
(

1
1 − t

+ 1
t

)
. (13)

As we are interested in how the estimated densities
approximate the true densities, various sample sizes are
considered and the results are shown in Figures 2 and 3.
In the plots, “num-train” and “num-test” denote the sam-
ple sizes for training theKNNclassifier and for estimating
the densities, respectively. In Figure 2, we fix “num-train”
and discuss the effect of “num-test” and the choice of k,
while in Figure 3, the effect of these three factors is all
discussed. From Figure 2, we can observe that fewer test
samples may lead to unstable density estimation, and the
density curve becomes smoother as the number of test
samples increases. FromFigure 3, we can observe that the
estimated density approximates the true one better with
more training samples. Combining the results from all
the plots, we suggest that at least 1000 training samples
and 10,000 test samples are required for practical use.

Another interesting finding from Figures 2 and 3 is
the choice of k. Recall that we suggested k = α ∗ √

nknn
before. This general suggestion is validated by the results

in these two figures. We can observe that when the
training sample size equals 1000, the density curve with
k = 50 is the closest one to the true curve. Also, as the
sample size increases to 4000, the estimated curves with
k = 50 and k = 100 are quite similar. Furthermore, when
the training sample size is not large enough, it is inap-
propriate to choose a large k, such as k = 500. Thus, the
selection of k relies heavily on the training sample size.

5. A real data application

In this section, we use a real-world example from
the HDDMS to demonstrate the effectiveness of our
proposed KNN-ECUSUM chart. The HDDMS records
various attributes and provides early warnings of disks
failure. The provided datasets (the IC and OC datasets)
consist of the 14 attributes observed from 23010 IC
disks and 270 OC disks that were constantly monitored
once every hour for one week. Since the values of some
attributes are constant or barely change in some disks,
we select their average values to denote the working sta-
tus (we also tried the full dataset in our experiment, and
the results are similar). After the necessary data prepro-
cessing, we delete four useless attributes, which leads to a
final dataset with p = 10 attributes. The 10 attributes are
summarised in Table 6. To reveal the nature of unknown
distribution of the collected data, we pick three attributes
and 200 random samples from the IC dataset for demon-
stration. The 200 samples are plotted in Figure 4(a–c),
while their normal Q-Q plots are shown in Figure 4(d–f).
From the plots, we can conclude that the attributes do not
follow the normal distribution, or any other commonly
used distributions. Thus, our method is suitable in this
scenario.

In phase I analysis, although the IC and OC datasets
are provided separately, we still need to cluster the histor-
ical OC dataset to find out possible shift patterns. To this
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Figure 2. Empirical density approximates the true density: Effect of test sample size and the choice of k.

Figure 3. Empirical density approximates the true density: Effect of training sample size, test sample size and the choice of k.

Table 6. The attributes used for the real-data analysis.

ID Attribute Name Description

1 Read Error Rate The rate of hardware read errors that occurred when reading data
2 Reallocated Sector Count The count of the bad sectors that have been found and remapped
3 Current Pending Sector Count The count of unstable sectors
4 Airflow Temperature The temperature of airflow
5 Spin-Up Time Average time from zero RPM to fully operational
6 Spin Retry Count The count of the spin start attempts to reach the fully operational speed
7 Seek Time Performance Average time of seek operations of the magnetic heads
8 Throughput Performance Overall read/write throughput performance
9 Available Reserved Space Number of physical erase cycles completed as a percentage of the maximum physical erase cycles designed
10 Soft Read Error Rate The number of uncorrectable software read errors
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Figure 4. (a–c) Plots of the three attributes of 200 pieces of randomly picked data; (d–f) the normal Q–Q plots for the three attributes.

Figure 5. Empirical densities of the KNN output estimated from the real data.

end, the k-means clustering algorithm is applied in this
study, in which the number of clusters k is chosen to be
2 by using the well-known “elbow” method. As a result,
the 270 disks are divided into two groups that contain
185 and 85 disks, respectively. Since more than one OC
pattern exists in the historical data, we apply the multi-
cluster strategy and build the KNN-ECUSUM chart in
phase II monitoring.

After clustering the historical OC data, the KNN clas-
sifier can be constructed easily following Step 1 in Table 1.
The number of training samples in each cluster is selected
to be 50, and the number of nearest neighbours k equals
15. In Step 2, the empirical densities can be computed
immediately when the KNN classifier is provided. The
estimated p.m.f.s of the categorical variable are shown in
Figure 7. As in the simulation studies, Figure 7 also shows
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Table 7. OC performance comparison with the real data.Empirical densities of
the KNN output estimated from the real data.

Control Limit IC ARL OC Cluster 1 OC Cluster 2

KNN-ECUSUM 6.14 1000 (1000) 4.21 (1.67) 2.28 (0.45)
MEWMA 285.7 1000 (997) 22.0 (21.5) 1.99 (0.08)
MSEWMA 27.94 1000 (983) 28.9 (21.3) 4.26 (0.66)

that the empirical density of the IC cluster is concentrated
on the right of the figure, whereas that of the OC clusters
is concentrated on the left of the figure. In particular, for
the second OC cluster, its empirical density values are all
0 when the KNN output is larger than 2/15, indicating
that the shift size of this cluster is quite large compared to
that of the first OC cluster.

In Step 3, the KNN-ECUSUM chart can be imple-
mented for onlinemonitoring.Wefix the ICARL to 1000,
and the control limit of our chart is found to be 6.14.
We compare our chart with the traditional MEWMA
method and nonparametric MSEWMA chart through a
steady-state simulation, where 30 IC samples are selected
before the change point. The ARL values are obtained
from 5,000 replicated simulations. The results are shown
in Table 7. From the table, we can see that in detecting the
firstOC cluster, ourmethod outperforms the competitors
significantly. For the second OC cluster, the performance
levels of our method and the MEWMA chart are close,
and they both work slightly better than the MSEWMA
chart. This demonstrates the advantage of our proposed
KNN-ECUSUM chart in this real dataset.

6. Conclusions and future work

In this paper, we propose a novel nonparametric charting
scheme for monitoring multivariate data with unknown
distribution by using the KNN learning algorithm. The
proposed KNN-ECUSUM control chart is derived by
employing the empirical density function of the KNN
output. It is implemented by making full use of histor-
ical OC data, and transforming the multivariate data
into a one-dimensional categorical variable. Our method
achieves satisfactory detection performance, and can also
be adapted to various multivariate distributions, which is
statistically appealing and easy to implement. Its useful-
ness has been demonstrated through extensive numerical
simulations and a real case study.

There are still some theoretical and practical issues
needed to be studied further. First, since our method is
completely constructed from clustered data, Phase I anal-
ysis is particularly important in our method. Although
we have suggested the traditional K-means clustering
method, it is still essential to select a useful dataset that
is able to capture the major historical OC shifts before
online monitoring. Second, it is useful to provide more

specific suggestions for determining a proper sample size,
which is crucial to the effectiveness of our proposed
KNN-ECUSUM control chart. While we have discussed
the potential effects of sample size through simulation
analysis, this may not be adequate, and it is important
to determine the dependence of the sample size on the
data distribution, the actual shifts and the number of OC
clusters. Finally, in many real-world applications, it will
be important to investigate how to deal with both spa-
tial and temporal correlations in the context of online
monitoring spatial-temporal data, which will be one of
the main research directions in the future. Note that our
proposed method focuses on the spatial correlation by
utilising the KNN algorithm for dimension reduction to
transform multi-attribute data into univariate data, and
then conduct online monitoring under the assumption
of temporal independence. It will be interesting to com-
bine our proposed KNN-based method with the existing
univariate control charts designed for monitoring seri-
ally correlated data (cf., e.g. Qiu, Li, and Li 2020; Li and
Qiu 2020), so that we can effectively address both spa-
tial and temporal correlation. This is beyond the scope of
this paper and will be investigated systematically in the
future.
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Appendix. Derivation of Equation (13)

By Equation (11), the true probability that a test sample x is in
the IC status is given by

P(x) = P(x ∈ IC|x ∈ IC or OC) = gic(x)
gic(x) + goc(x)

.

As x = [x1, x2, x3, x4, x5, x6] is a IC sample, it follows a nor-
mal distribution (with μ = [0, 0, 0, 0, 0, 0] and the covariance
matrix equals to the identity matrix). Thus, the c.d.f of P(x) is

P(P(x) ≤ t)

= P
(

gic(x)
gic(x) + goc(x)

≤ t
)

= P
(

exp(−0.5 ∗ ||x||2)
exp(−0.5 ∗ ||x||2) + exp(−0.5 ∗ ||x − μ1||2)

≤ t
)

= P
(

(||x||2 − ||x − μ1||2 ≥ 2 ∗ log
1 − t
t

)

= P

⎛
⎝ 6∑

i=1
x2i −

3∑
i=1

(xi − 1)2 −
6∑

j=4
x2j ≥ 2 ∗ log

1 − t
t

⎞
⎠

= P
(
2 ∗ (x1 + x2 + x3) − 3 ≥ 2 ∗ log

1 − t
t

)

= P
(
x1 + x2 + x3 ≥ 3

2
+ log

1 − t
t

)
.

Since x1, x2 and x3 are normal i.i.d random variables, x1 + x2 +
x3 is also a normal variable with mean 0 and variance 3. Then
the above equation becomes:

P(P(x ∈ IC) ≤ t) = P
(

gic(x)
gic(x) + goc(x)

≤ t
)

= P
(
x1 + x2 + x3 ≥ 3

2
+ log

1 − t
t

)

= P

(
Z ≥

√
3
2

+ 1√
3
log

1 − t
t

)

= 1 − �

(√
3
2

+ 1√
3
log

1 − t
t

)
,

where �(z) = P(Z ≤ z) is the cumulative distribution func-
tion of a standard normal variable Z ∼ N(0, 1). Therefore, the
true density for P(x) is:

g(t) = dP(P(x ∈ IC) ≤ t)
dt

= 1√
6π

exp

(
−1
6

(
3
2

− log
t

1 − t

)2
)(

1
1 − t

+ 1
t

)
.
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