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Abstract. We provide a formal theoretical analysis on the PDE identification via `1-regularized Pseudo Least
Square method from the statistical point of view. In this article, we assume that the differential
equation governing the dynamic system can be represented as a linear combination of various linear
and nonlinear differential terms. Under noisy observations, we employ the Local-Polynomial fitting
for estimating state variables and apply the `1 penalty for model selection. Our theory proves
that the classical mutual incoherence condition on the feature matrix F and β∗min-condition for the
ground-truth signal β∗ are sufficient for the signed-support recovery of `1-PsLS method. We run
numerical experiments on two popular PDE models, viscous Burgers and KdV equations, and the
results from the experiments corroborate our theoretical predictions.
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1. Introduction. Differential equations are widely used to describe many interesting phe-
nomena arising in scientific fields, including physics [1], social sciences [2], biomedical sci-
ences [3], and economics [4], just to name a few. The forward problem of solving equations
or simulating state variables for differential models has been extensively studied either the-
oretically or numerically in literature. We consider an inverse problem of learning a Partial
Differential Equations (PDE) model.

More specifically, we assume that the governing PDE is a multi-variate polynomial of
a subset of a prescribed dictionary containing different differential terms. Let u(x, t) : R ×
[0,+∞)→ R be a real-valued function, where x be the spatial and t be the temporal variables.
Suppose that within a bounded region of R× [0,+∞), u(x, t) satisfies an evolutionary PDE:

∂tu =F(u, ∂xu, ∂
2
xu, . . . , ), ∀(x, t) ∈ Ω ⊆ R× [0,+∞).(1.1)

Here, ∂tu (or ut) denotes the partial derivative of u with respect to temporal variable, t; for p =
0, 1, 2, . . . , ∂pxu denotes the p-th order partial derivative of u with respect to spatial variable,
x; F is an unknown polynomial mapping, and Ω is a bounded open subset of space-time
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domain. This format encloses various important classes of PDEs, e.g., advection-diffusion-
decay equation characterizing pollutant distribution in fluid, Burgers’ equation modeling the
traffic flow [5], Kolmogorov-Petrovsky-Piskunov equation describing phase transitions [6], and
Korteweg-de-Vries equation simulating the shallow water dynamics [7].

In our work, F is assumed to be a linear map, parametrized by a sparse vector β∗ ∈ RK :
that is, ut is represented as a linear combination of the arguments of F , and only a few from
a large set of potential functions are relevant with ut. Our goal is to estimate the correct non-
zero indices of β∗, given a single noisy trajectory of the function u(x, t). Readers can refer
to Subsection 3.1 for more detailed descriptions on the structural assumptions on F , β∗, and
noisy trajectory. This problem setting naturally leads us to develop a two-stage method for
the PDE identification based on Local-Polynomial smoothing and the `1-regularized Pseudo
Least Square (`1-PsLS) method. In the first stage, from a given noisy observation, we propose
to estimate the underlying bi-variate function u(x, t) and its partial derivatives with respect
to its spatial and temporal dimensions via the Local-Polynomial fitting [8, 9]. In the second
stage, with the constructed functions through Local-Polynomial regression, we propose to
identify the correct differential terms and estimate model parameters via an `1-regularized
Pseudo Least-Square method.

We note that the two-stage method with Local-Polynomial regression has been applied
in the Ordinary Differential Equations (ODE) setting. Specifically, the paper [10] established
the consistency and asymptotic normality of the pseudo least square estimator in the ODE
setting, where they used Local-Polynomial regression to estimate the state variables from the
noisy data. Similarly, [11, 12] studied the parameter estimation of ODE models with varying
coefficients. However, these literature focused on estimating model parameters, rather than
on selecting correct differential models. In the context of PDE, [13] studied PDE identification
problems, using two-stage method. Authors of the paper modeled unknown PDEs using mul-
tivariate polynomials of sufficiently high order, and the best fit was chosen by minimizing the
least squares error of the polynomial approximation. Nonetheless, `1 penalization for model
selection was not used, and theoretical justification for their method remains underdeveloped.

From the theoretical point of view, our paper is the first work to propose the method,
`1-PsLS, with a provable guarantee in the PDE recovery problem. Our main theoretical
contribution is to establish sufficient conditions for signed-support recovery of the proposed
`1-PsLS in PDE identification problems. It is worth noting that the signed-support recovery
is a slightly stronger criterion than the support recovery, where its primary goal is not limited
to finding the non-zero indices of β∗, but also aims at recovering the correct signs of the
selected coefficients. Ensuring the correct signed-support recovery of governing dynamical
system has an important practical implication since many PDEs are sensitive to the signs of
coefficients. For example, changing the sign of the advection term in the transport equation
reverses the moving direction, and inverting the sign of the Laplacian term of heat equation
leads to instability of the system of interest.

Our theorem states that following two main conditions are sufficient for the signed-support
recovery of `1-PsLS: (i) mutual incoherence condition among the arguments of the map
F , and (ii) β∗min-condition on β∗. The first condition states that a large number of irrelevant
predictors cannot exhibit an overly strong influence on the subset of relevant predictors. The
second condition says that the minimum absolute value of non-zero entries of β∗ should be
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greater than a certain threshold. These conditions appear in the statistical literature on the
signed-support/support recovery of Lasso [14, 15, 16, 17] in linear regression problems, and
our work rigorously shows that these are also essential for the signed-support recovery of PDE
identification problems.

We employ Primal-Dual Witness (PDW) construction [15] as the main proof technique for
the theorem. PDW construction is a popular mathematical technique for certifying variable-
selection consistency of `1-penalized M-estimation problems including Lasso. See [18, 19,
20, 21, 22, 23]. For reader’s convenience, we provide a brief introduction of the technique
in the supplementary material SM1. However, we want to emphasize that our Theorem is
not a direct result of the trivial application of the PDW construction. Our problem settings
are different from those of the work [15] in two aspects, which add some delicacies to our proof:

• As will be detailed in Subsection 3.3, the distribution of residual vector τ is unknown,
and neither mean 0 nor independent in our setting. On the contrary, in the work
of [15], each entry of the residual vector is assumed to follow centered Gaussian with
σ2 > 0 variance and independent with the others.

• In the `1-PsLS method, the feature matrix obtained via Local-Polynomial fitting from
noisy data is always random and has dependent rows uniquely determined through the
underlying PDE. On the other hand, [15] divided their analysis into two cases, where
the feature matrix X is either deterministic or random. When X is random, it is
assumed to be a Gaussian ensemble with independent rows, whose covariance matrix
that satisfies mutual incoherence condition.

Organization. The remainder of the paper is organized as follows. Some related literature
with our work are reviewed in Section 2. In Section 3, we formally define our problem by
imposing some specific structural assumptions on F and propose a `1-PsLS method for PDE
identification. In Section 4, the main theorem of our work is given on the signed-support
recovery of `1-PsLS with the mutual incoherence assumption on the feature matrix F, and we
provide a high-level outline of the proof. Section 5 is devoted to provide a similar result with
that of the one in the main theorem in Section 4 under milder assumption: that is, mutual
incoherence assumption is imposed on the estimated feature matrix F̂; an overview of proof is
furnished. Related technical difficulties for the proof and main technical contribution of the
paper are also given. Section 6 provides two Lemmas for completing the proof of the main
Theorem by linking the mutual incoherence assumption with ground-truth F to its sampled
version. In Section 7, we show various numerical examples to validate and demonstrate dif-
ferent aspects of our method. We conclude this paper in Section 8 with some discussion.

Notation. For sufficiently large n, we write f(n) = O(g(n)), if there exists a constant
K > 0 such that f(n) ≤ Kg(n), and f(n) = Ω(g(n)) if f(n) ≥ K ′g(n) for some constant
K ′ > 0. The notation f(n) = Θ(g(n)) means that f(n) = O(g(n)) and f(n) = Ω(g(n)). We
adopt bold lower-case letters for vectors and bold upper-case letters for matrices. For a vector

v ∈ Rn, ‖v‖1 :=
∑n

i=1|vi|, ‖v‖2 :=
√∑n

i=1 v2
i , and ‖v‖∞ := max

1≤i≤n
|vi|. For a matrix A ∈
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Rn×m, AT denotes its transpose, �A�2 := max∀‖x‖2=1 ‖Ax‖2, �A�∞ := max
1≤i≤n

∑m
j=1 |Ai,j |,

�A�∞,∞ := max
1≤i,j≤n

|Ai,j |, and �A�F :=
√∑n

i=1

∑m
j=1 A2

i,j .

2. Related Works. Our work is relevant to various topics in applied mathematics and
statistics. Among them, we provide two most closely related topics: (i) Regression-based
framework for PDE identification, and (ii) Some theoretical results of support-recovery of
Lasso [14] in linear regression setting. In this Section, we denote K as the problem dimension,
s as the number of non-zero entries of model parameter, and n as the number of observations.

Regression-based Methods. Recently, various regression-based frameworks have been
developed and applied for model selection and parameter estimation of dynamic data. A
sparsity-promoting method was proposed in [24] for extracting the governing dynamical sys-
tem, by comparing the computed velocity to a large set of potential trial functions. Under the
over-determined systems of linear equations (i.e., n� k), the authors developed a sequential-
thresholded least-square method to select the correct nonlinear functions. In the follow-up
study, [25] devised a weighted-`1-regularized least squares solver for improving the accuracy
and robustness of the approach introduced by [24] in the presence of state-measurement noise.
Several papers [26, 27, 28] also suggested sparse regression frameworks for PDE identification
problems over spatial-temporal data. Specifically, [27] studied the model selection problem
via Lasso under the PDE context. The author empirically showed that the method works
well in various important equations such as Burgers’ equation, Navier-Stokes equation, Swift-
Hohenberg equation. Recently, [26] considered PDE identification problem using numerical
time evolution. The authors utilized Lasso to select candidate monomials, then proposed the
time evolution error to select the underlying true model. Unlike the previously mentioned
literature, which was mostly empirical, [29] provided a provable guarantee on the usage of
`1-norm for PDE identification problems, based upon the theoretical results from compressive
sensing. Interestingly, this work imposed the incoherence property on the feature matrix and
employed the Legendre-transform on the columns of the matrix to ensure that the property
holds for every PDE recovery problem of interest. Our work imposes mutual incoherence
assumption on the feature matrix, which is an analogous notion of the incoherence property.
However, the important difference between our paper and [29] is that our work only allows
a single trajectory, whereas [29]’s theorem requires Ω(s logK) bursts of initialization for the
exact recovery of the underlying PDE.

Support Recovery in Statistics. Support recovery or variable selection problems of
Lasso have a long history in the statistical literature. In the noiseless setting, many re-
searchers [30, 31, 32, 33, 34, 35] established sufficient conditions for either the deterministic
or random predictors for the support recovery problems of linear systems via the `1-norm.

Since our work falls into the category of noisy setting, we focus more on reviewing the
body of work in the noisy setting. In [36], authors studied the asymptotic behavior of the
Lasso-type estimator with fixed dimension K under the general centered i.i.d. noises with
variance σ2 > 0. Both [37] and [32] independently developed sufficient conditions for the
support of Lasso estimator to be contained within true support of the sparse model. Under
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a more general setting, when the exterior noise is i.i.d. with finite moments, [38] showed that
the Irrepresentable Condition [39] is almost necessary and sufficient for Lasso’s signed-support
recovery for fixed K and s. Furthermore, under the Gaussian noise assumption, they showed
that Lasso can still achieve signed-support recovery when K is allowed to grow exponentially
faster than n. In a non-asymptotic setting, [15] established the sharp relationship of n, K,
and s, required for the exact sign consistency of Lasso, where K and s are allowed to grow
as n increases under mutual incoherence condition. Using a similar technique in [15], the
paper [16] studied Lasso under Poisson-like model with heteroscedastic noise and show that
irrepresentable condition can serve as a necessary and sufficient condition for signed-support
recovery in their setting. In the context of graphical model, [40, 41] analyzed the model selec-
tion consistency of Gaussian graphical models, and [18] showed the signed-support recovery
of Ising models. See [42] for a more comprehensive overview on this topic.

Remark 2.1. Our work is of asymptotic nature with fixed K and s, while the number of
grid points of the observed trajectory tends to infinity in both space and time.

3. PDE Identification via `1-PsLS. In Subsection 3.1, we provide concrete problem set-
tings on the governing PDE of (1.1) and the observed trajectory. Then, specific settings of the
Local-Polynomial regression for the estimations of state variables in our paper are provided
in Subsection 3.2. Lastly, we propose a two-stage `1-regularized Pseudo Least Square method
for PDE identification in Subsection 3.3.

3.1. Problem Setting and Notations. Based on the general form (1.1), we take (x, t) ∈
[0, Xmax) × [0, Tmax) for some finite constants 0 < Xmax, Tmax < ∞. It is assumed that the
underlying mapping F is a degree 2 polynomial in terms of u and its partial derivatives ∂pxu
for 1 ≤ p ≤ Pmax, 1 parametrized by a coefficient vector β∗ = (β∗0 , β

∗
1 , . . . , β

∗
p,q, . . . ) with real

entries; that is,

ut(x, t) = β∗0 + β∗1u+ β∗2ux + β∗3uxx + · · ·+ β∗p,q∂
p
xu∂

q
xu+ . . . .(3.1)

We call the monomials in the right-hand side of (3.1) as feature variables. We set a finite integer
upper-bound, Pmax > 0, for the possible orders of the partial derivatives of u with respect to x
in (3.1). Hence, We assume that β∗ ∈ RK , with K = 1+2(Pmax+1)+

(
Pmax+1

2

)
; consequently,

constant and any term of the form ∂pxu or ∂pxu∂
q
xu, for 0 ≤ p, q ≤ Pmax, are contained in (3.1).

Notice that many entries of β∗ can be zero. We denote S(β∗) := {0 ≤ j ≤ K | β∗j 6= 0}, or
simply S, as the support of the coefficient vector β∗, i.e., the set of indices of the non-zero
entries. Additionally, we denote s as the cardinality of the set S, i.e., s := |S(β∗)|.

The given data D = {
(
Xi, tn, U

n
i

)
| i = 0, . . . ,M − 1;n = 0, . . . , N − 1} ⊆ Ω× R consists

of M ×N data, where M,N ∈ R, M,N ≥ 1. Each (Xi, tn) ∈ Ω represents a space-time point,
and Uni is a representation of u(Xi, tn) contaminated by additive Gaussian noise:

Uni = u(Xi, tn) + νni , νni
i.i.d.∼ N (0, σ2) ,

1It should be noted that our setting can be generalized to higher-degrees of polynomials and functions with
multiple spatial dimensions.
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whose second moment is uniformly bounded as follows: supN,M∈R maxn,iE |Uni |
2 := η2 <∞.

Here N (0, σ2) denotes the centered normal distribution with variance σ2 > 0.

3.2. Local-Polynomial Regression Estimators for Derivatives. Given data {(Xi, tn, U
n
i )}

with i = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1, we employ a local quadratic regression to
estimate ut(Xi, ·) for each fixed space point Xi and use a Local-Polynomial with degree p+ 1
to estimate ∂pxu(·, tn) at each temporal point tn, for each degree p = 0, 1, . . . , Pmax. More
specifically, we solve the following optimization problems:{

b̂j(Xi, t)

}
j=0,1,2

= arg min
bj(t)∈R,0≤j≤2

N−1∑
n=0

(
Uni −

2∑
j=0

bj(t)(tn − t)j
)2

KhN
(
tn − t

)
,

for i = 0, 1, . . . ,M − 1 ;
(3.2)

{
ĉpj (x, tn)

}
j=0,1,...,p+1

= arg min
cj(t)∈R,0≤j≤p+1

M−1∑
i=0

(
Uni −

p+1∑
j=0

cpj (t)(Xi − x)j
)2

KwM
(
Xi − x

)
,

for n = 0, 1, . . . , N − 1 and p = 0, 1, . . . , Pmax.
(3.3)

and set ût(Xi, t) = b̂1(Xi, t) and ∂̂pxu(x, tn) = p!ĉpp(x, tn). Here hN and wp,M denote the
window width parameters, and Kw(z) := K(z/w)/w for some kernel function K with window

width w > 0. Specific choices of the order of polynomial fit for the functions ût and ∂̂pxu are
to strike the balance between modeling bias and variance. See Subsections 3.1 and 3.3 of Fan
and Gijbels [8] for more rigorous treatments on this topic. Also the kernel K is assumed to
be uniformly continuous and absolutely integrable with respect to Lebesgue measure on the
real-line; K(z)→ 0 as |z| → +∞; and

∫
|z ln |z‖1/2|dK(z)| < +∞.

Optimization problems (3.2) and (3.3) have closed-form solutions in the form of weighted
least square estimator. See supplementary material SM2. However, for theoretical investiga-
tion, we employ the notion of equivalent kernel [8, 9] to write the solutions as follows: for any
fixed spatial point Xi, i = 0, 1, . . . ,M − 1, ût(Xi, t) can be written as:

ût(Xi, t) =
1

Nh2N

N−1∑
n=0

K∗2
(
tn − t
hN

)
Uni
{

1 + oP(1)
}
.(3.4)

Similarly, for any fixed temporal point tn, n = 0, 1, . . . , N − 1, the estimation for the p-th
order partial derivative takes the form:

∂̂pxu(x, tn) =
p!

Mwp+1
M

M∑
i=1

K∗p
(
Xi − x
wM

)
Uni
{

1 + oP(1)
}
.(3.5)

Here, K∗j (z) = e>j S
−1(1, z, . . . , zp)>K(z) is called an equivalent kernel, where ej denotes a unit

vector with 1 on the jth position; S = (
∫
zl+sK(z)dz)0≤l,s≤p is the moment matrix associated

with kernel K; and oP(1) denotes a random quantity tending to zero as either N or M tends
to infinity. From here, we will omit the dependency on j for the simplicity of notation when
using the equivalent kernel.
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Remark 3.1. The most important reason for using the Local-Polynomial fitting for the
estimation of state variables and their derivatives is its rich literature in asymptotic properties
and uniform convergence of the estimator [8, 43, 44, 9]. Specifically, these results allow us to
explore the behavior of the tail-probability of the measurement error τ , which is essential for
the analysis of the `1-PsLS estimator. See Subsection 5.2 for more information.

3.3. `1-regularized Pseudo Least Square Model. First, we introduce matrix-vector no-
tations for compact expressions of the problem. We let ut ∈ RNM denote the vectoriza-
tion of {ut(Xi, tn)}n=0,...,N−1

i=0,...,M−1 in a dictionary order prioritizing the spatial dimension; that is,

uTt =
[
ut(X0, t0) ut(X1, t0) · · ·

]
. Define the feature matrix, F ∈ RNM×K , as the collection

of values of feature variables organized as follows:

F :=



1 u(X0, t0) ∂xu(X0, t0) · · · ∂pxu(X0, t0)∂
q
xu(X0, t0) · · ·

1 u(X1, t0) ∂xu(X1, t0) · · · ∂pxu(X1, t0)∂
q
xu(X1, t0) · · ·

...
...

...
. . .

... · · ·
1 u(XM−1, t0) ∂xu(XM−1, t0) · · · ∂pxu(XM−1, t0)∂

q
xu(XM−1, t0) · · ·

1 u(X0, t1) ∂xu(X0, t1) · · · ∂pxu(X0, t1)∂
q
xu(X0, t1) · · ·

...
...

...
. . .

... · · ·
1 u(XM−1, tN−1) ∂xu(XM−1, tN−1) · · · ∂pxu(XM−1, tN−1)∂

q
xu(XM−1, tN−1) · · ·


.

With these notations, (3.1) can be written as ut = Fβ∗. Note that before estimating the cor-
rect signed-support of β∗, ut and F need to be estimated. Conventional regression techniques
such as Local-Polynomial regression, smoothing spline, and regression spline, among others,
can be used to estimate ut and columns of F. In this paper, we employ the Local-Polynomial
approach. We denote ût ∈ RNM and F̂ ∈ RNM×K by replacing the entries of ut and F

respectively with the corresponding estimators. (i.e., (̂ut)ni , (̂∂pxu)ni , and (̂∂pxu)ni (̂∂qxu)ni .)

Let ∆ut = ût − ut, ∆F = F̂ − F denote the difference between the obtained estimators
ût and F̂ via Local-Polynomial regression and their ground-truth counterparts. With these
notations, we formally obtain a regression model

ût = F̂β∗ + τ , where τ = ∆Fβ∗ −∆ut .(3.6)

The natural extension for inducing sparsity of the parameter of interest is to add positively
weighted `1-penalty term ‖β‖1 to the squared loss ‖ût − F̂β‖22, leading to an estimator:

β̂λ = arg min
β∈RK

{
1

2NM

∥∥∥ût − F̂β
∥∥∥2
2

+ λN ‖β‖1
}
,(3.7)

where λN > 0 is a regularization hyper-parameter. Note that we normalize the columns of F̂
such that 1√

NM
maxj=1,...,K ‖F̂j‖2 ≤ 1 while solving (3.7).

Observe that (3.7) is formally identical to LASSO [14] for high-dimensional sparsity recov-
ery. Meanwhile, we should also emphasize that β̂λ is not a true `1-least square estimator, but
a minimizer of the `1-least square fit with the estimated ût and F̂, instead of the ground-truth
ut and F. Hence, we use the word “pseudo” as in [10] to emphasize the approximations of the
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solutions and derivatives of measurements, and call our method `1-Pseudo Least Square
method. Additionally, the residual vector τ violates conventional assumptions on residuals in
linear regression, where they are assumed to be centered and independent among entries. See
[38, 15, 36]. If ût and F̂ are unbiased estimators of ut and F, τ is a residual vector with mean
zero, but its entries are not independent. However, if ût and F̂ are biased estimators such as
Local-Polynomial estimators in our case, τ is not a mean zero random vector. Moreover, the
unknown signal β∗ makes the distribution of τ completely inaccessible. These complexities
make the study of the proposed estimator β̂λ challenging.

4. Recovery Theory for `1-PsLS based PDE Identification. In subsection 4.1, we for-
mally describe a signed-support recovery problem. In subsection 4.2, two regularity assump-
tions on feature matrix F are given for the proof of the main theorem. Then, the main theorem
of this work is presented with some important remarks in subsection 4.3. Lastly, we provide
a proof sketch of the main Theorem in subsection 4.4.

4.1. Signed-Support Recovery. The main goal of this paper is to provide provable guar-
antees that the proposed `1-PsLS method gives asymptotically consistent estimator of β∗ in
the sense of signed-support recovery. We can formally state this problem with the adoption
of S±(β) notation, that is: for any vector β ∈ RK , we define its extended sign vector, whose
each entry is written as:

S±(βi) :=


+1 if βi > 0

−1 if βi < 0

0 if βi = 0,

for i ∈ {1, . . . ,K}. This notation encodes the signed-support of the vector β. Denote β̂λ as
the unique solution of `1-PsLS. Under some regularity conditions on F, we will show,

P
[
S±(β̂λ) = S±(β∗)

]
→ 1 as N,M → +∞,

where N and M denote the grid size of temporal and spatial dimensions, respectively.

4.2. Assumptions. We introduce two sufficient conditions frequently assumed in `1- reg-
ularized regression models for the signed-support recovery of the true signal β∗.

1. Minimal eigenvalue condition. There exists some constant Cmin > 0 such that:

Λmin

(
1

NM
F>SFS

)
≥ Cmin.(A1)

Here Λmin(A) denotes the minimal eigenvalue of a square matrix A ∈ Rn×n, and FS
is made of columns of F when the column index is in the support set S. Note that
if this condition is violated, the columns of FS would be linearly dependent, and it
would be impossible to estimate the true signal β∗ even in the “oracle case” when the
support set S is known a priori.

2. Mutual incoherence condition. For some incoherence parameter µ ∈ (0, 1]:���(F>ScFS)(F>SFS
)−1���

∞
≤ 1− µ.(A2)
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This condition states that the irrelevant predictors cannot exhibit an overly strong
influence on the relevant predictors. More specifically, for each index j ∈ Sc, the vec-
tor (FT

SFS)−1FT
SFj is the regression coefficient of Fj on FS , thus, it is a measure of

how well the column Fj aligns with the columns of FS . A large µ close to 1 indicates
that the columns {Fj , j ∈ Sc} are nearly orthogonal to the columns of FS , which is
desirable for support recovery.

For future reference, we define Q∗ :=
(
F>ScFS

)(
F>SFS

)−1
, and name it as population

incoherence matrix. Also, define its estimated counterpart as Q̂N :=
(
F̂>ScF̂S

)(
F̂>S F̂S

)−1
, and

call it sample incoherence matrix. Note that the dependence of the support set S on quantities
Q∗ and Q̂N is suppressed for notational simplicity.

4.3. Statement of Main Result.

Theorem 4.1. Given the observed data set D whose spatial resolution is related to the

temporal resolution via M = Θ(N
2Pmax+5

7 ), we take the bandwidths of the kernels in (3.2)

and (3.3) as hN = Θ(N−
1
7 ), wM = Θ(M−

1
7 ), respectively. Under the assumptions (A1)

and (A2) imposed on the ground-truth feature matrix F, suppose that the sequence of regular-

ization hyper-parameters {λN} satisfies λN = Ω

(√
K lnN

µN2/7−c

)
for some constant 0 < c < 2

7

independent of N . Then, the following properties hold with probability greater than 1 −
O
(
N

2Pmax+5
7 exp

(
− 1

6N
c
))
→ 1 as N →∞:

(i) The `1-PsLS method (3.7) has a unique minimizer β̂λ ∈ RK with its support contained
within the true support, that is S(β̂λ) ⊆ S(β∗), and the estimator satisfies the `∞ bound:∥∥∥β̂λS − β∗S

∥∥∥
∞
≤ K3/2Cmin (oN (1) + λN ) .(4.1)

(ii) Additionally, if the minimum value of the model parameters supported on S is greater
than the upper-bound of (4.1), that is min1≤i≤s |(β∗S)i| > K3/2Cmin (oN (1) + λN ), then

β̂λ has a correct signed-support. i.e., S±(β̂λ) = S±(β∗).

The overall proof sketch of Theorem 4.1 is described in the Subsection 4.4, and relevant
technical propositions and Lemmas are further provided in Sections 4 and 5. Here, we give
some important remarks about Theorem 4.1.

1. The uniqueness claim of β̂λ in (i) seems trivial since the objective function in (3.7) is
strictly convex in the regime of K being fixed and NM → ∞. However, we need to
ensure that the minimal eigenvalue condition hold over the estimated feature matrix F̂,
given the assumption (A1) for some Cmin > 0. We defer this statement as Lemma 6.2
in Section 6 with the detailed proof.

2. The item (i) claims that `1-PsLS does not select the arguments that are not in the
support of β∗. The item (ii) is a consequence of the sup-norm bound from (4.1): as
long as |β∗i | over indices i ∈ S is not small, `1-PsLS is signed-support recovery consis-
tent.
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3. The asymptotic orders of M , hN , and wM are specifically chosen for simplicity. Al-
though there is certain flexibility, the spatial resolution M and the temporal resolu-
tion N (as well as hN and wM ) need to be coordinated well to guarantee the support
recovery property. This was expected in practice since we need sufficient sampling
frequencies both in temporal and space to estimate the underlying dynamics. Here,
the Theorem 4.1 present a rigorous justification for a combination of these resolutions
which is sufficient for the support recovery.

4. The quantity c is derived from the Tusnády’s strong approximation [44] where the
error of an empirical distribution is compared with a Brownian bridge in tail proba-
bility. See supplementary material SM3.1. With a larger value of c, the regularization
hyper-parameter λN needs to remain relatively large, but the convergence is faster.
Whereas for a smaller value of c, we can relax the regularization in the cost of a slower
probability convergence rate.

5. The threshold of λN in the statement of the Theorem shows that when the number
of data increases, there is more flexibility in tuning this parameter. If the incoherence
parameter µ is small, or equivalently, the group of correct feature variables and the
group of the others are similar, to guarantee that the support of the estimated coeffi-
cient vector is contained in the correct one, it suffices to use a large value of λN . Such
behavior of the threshold is consistent with that described in Theorem 1 of [15].

6. The upper-bound for the `∞-norm of the coefficient error in (4.1) consists of two com-
ponents. The first term oN (1) denotes a deterministic sequence converging to 0 as N
increases to ∞. We want to note that this term is involved with the underlying func-
tion u as well as the choice of regression kernels and independent with the choice of
feature variables selected by `1-PsLS. The second component is simple: K3/2CminλN .
When N increases, this part does not vary. This indicates that asymptotically, `1-PsLS
recovers signed-support of governing PDE, as long as min1≤i≤s |(β∗S)i| > K3/2CminλN .

4.4. Proof Strategy of Theorem 4.1. The analysis for the proof of Theorem 4.1 is nat-
urally divided into two steps as follows: In the first step, we prove a result analogous to
that of the Theorem 4.1 by imposing incoherence assumption on the estimated feature matrix
F̂. Specifically, since F̂ is a random matrix, we assume that for some µ ∈ (0, 1], the event,
{�Q̂N�∞ ≤ 1 − µ}, holds with some probability at least Pµ, for some Pµ ∈ (0, 1]. Under
this assumption, we prove that the success probability of signed-support recovery of `1-PsLS
converges to Pµ with an exponential decay rate. This is formally stated as Proposition 5.1 in
Subsection 5.1.

In the second step, we show that the success probability Pµ goes to 1, given that the ground-
truth matrix F satisfies assumptions (A1) and (A2). This is equivalent to proving that, given
the assumptions (A1) and (A2) for F for some Cmin > 0 and µ ∈ (0, 1], the same assumptions



ASYMPTOTIC THEORY OF PDE IDENTIFICATION VIA `1-PSLS 11

hold for the estimated F̂ in probability. We state these results formally in Lemmas 6.2 and
6.3 in Section 6.

5. Analysis Under Sample Incoherence Matrix Assumptions. In this section, we provide
a proof overview of Proposition 5.1 and the key technical contribution of our paper. All the
detailed statements and proofs of the Proposition 5.1 and its relevant Lemmas are relegated
to the supplementary material for the conciseness.

5.1. Statement of Proposition. We establish the signed-support consistency of `1-PsLS
estimator when the assumptions are directly imposed on the estimated feature matrix F̂,
instead on the ground-truth feature matrix F. More specifically, we assume that there exist
some constants µ ∈ (0, 1] and Cmin > 0, such that the followings hold:

(A3) P
[���Q̂N���

∞
≤ 1− µ

]
≥ Pµ and Λmin

( 1

NM
F̂T
S F̂S

)
≥ Cmin almost surely .

Here, Pµ ∈ [0, 1] denotes some probability that Q̂N satisfies the incoherence assumption.
Equipped with this assumption, we have the following proposition:

Proposition 5.1. Given the observed data set D, where the spatial resolution is related to

the temporal resolution via M = Θ(N
2Pmax+5

7 ), we take the bandwidths of the kernels in (3.2)

and (3.3) as hN = Θ(N−
1
7 ), wM = Θ(M−

1
7 ), respectively. Under the assumptions in (A3)

imposed on the estimated feature matrix F̂, suppose that the sequence of regularization hyper-

parameters {λN} satisfies λN = Ω

(√
K lnN

µN2/7−c

)
for some constant 0 < c < 2

7 independent of N .

Then, the following properties hold :

(i) With probability greater than Pµ − O
(
N

2Pmax+5
7 exp

(
− 1

6N
c
))
→ Pµ as N → ∞, the

`1-PsLS method (3.7) has a unique minimizer β̂λ ∈ RK with its support contained within
the true support, that is S(β̂λ) ⊆ S(β∗).

(ii) With probability greater than 1−O
(
N

2Pmax+5
7 exp

(
− 1

6N
c
))
→ 1 as N →∞, β̂λ satisfies

the `∞ bound: ∥∥∥β̂λS − β∗S

∥∥∥
∞
≤ K3/2Cmin (oN (1) + λN ) .(5.1)

(iii) Additionally, if the minimum value of model parameter supported on S is greater than
the upper-bound of (5.1), that is min1≤i≤s |(β∗S)i| > K3/2Cmin (oN (1) + λN ), then β̂λ has

a correct signed-support. (i.e., S±(β̂λ) = S±(β∗))

We remark that the first item (i) in Proposition 5.1 holds with probability Pµ ≤ 1 asymp-
totically, while the second item (ii) holds with probability 1 asymptotically. They are not
contradictory, since (i) describes the support recovery of the coefficient vector over all indices,
whereas (ii) focuses on the estimation errors on entries within the true support S. Technically
speaking, proof of (i) is involved with mutual incoherence condition in (A3), whereas (ii) is
involved with minimum-eigen value condition on F̂ in (A3).
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5.2. Proof Overview of Proposition 5.1. Readers can find the proof of (5.1) in the
supplementary material SM 3.6. Here, we focus on providing the high-level idea on the proof
of (i) of Propostion 5.1. The most important ingredient for the success of PDW construction is
to establish the strict dual feasibility of the dual vector ẑ, when ẑ ∈ ∂‖β̂λ‖1, where ∂‖β̂λ‖1 is a
sub-differential set of ‖·‖1 evaluated at β̂λ. In other words, we need to ensure that ‖ẑSc‖∞ < 1
with high probability. (See supplementary material SM1.) Through Karush–Kuhn–Tucker
(KKT) condition of the optimal pair (β̂λ, ẑ) of (3.7) and settings of PDW construction, we
can explicitly derive the expression of the dual vector ẑ supported on the complement of the
support set S as follows:

ẑSc = F̂T
ScF̂S(F̂T

S F̂S)−1ẑS +
1

λNMN
F̂T
ScΠS⊥(∆ut −∆FSβ

∗
S)︸ ︷︷ ︸

:=Z̃Sc

,(5.2)

where ΠS⊥ is an orthogonal projection operator on the column space of F̂S . By the mutual
incoherence condition in (A3), the first term of the right-hand side in (5.2) is upper-bounded
by 1 − µ for some µ ∈ (0, 1], with some probability Pµ ∈ [0, 1]. The remaining task is to
control the tail probability of Z̃j for j ∈ Sc: that is to ensure P

[
maxj∈Sc |Z̃j | ≥ µ

]
→ 0 with

some exponential decay rate. With the help of Lemma SM3.1 in the supplementary material,
controlling the probability P

[
‖Z̃Sc‖∞ ≥ µ

]
reduces to controlling P

[
‖∆FSβ

∗
S − ∆ut‖∞ ≥

µ λN√
K

]
. Controlling the bound on P

[
‖τ‖∞ ≥ ε

]
for some ε > 0 is challenging, since the

exact form of the residual distribution τ is unknown. (Note that τ = ∆FSβ
∗
S − ∆ut since

ut = Fβ∗.)
We circumvent this difficulty by using the following inequality: for some thresholds εN > 0

and εM > 0, both of which go to 0 as N and M tends to ∞, we have,

P
[
‖τ‖∞ ≥ εN + εM

]
≤ P

[
max

0≤i≤M−1
sup

t∈[0,Tmax)
|∆ut(Xi, t)| ≥ εN

]
+ P

[
max
1≤k≤s

0≤n≤N−1

sup
x∈[0,Xmax)

|∆Fk(x, tn)| ≥ εM
s‖β∗‖∞

]
≤M · P

[
sup

t∈[0,Tmax)
|∆ut(Xi, t)| ≥ εN

]
+ sN · P

[
sup

x∈[0,Xmax)
|∆Fk(x, tn)| ≥ εM

s‖β∗‖∞

]
.

The above inequality naturally leads us to study the uniform convergence of Local-Polynomial
estimator to its ground-truth function of interest. Say, for sufficiently large enough grid size of
temporal dimension N , for some εN ≥ 0 that is hN -dependent threshold and Xi ∈ [0, Xmax),
we will achieve

(5.3) P

[
sup

t∈[0,Tmax)
|ût(Xi, t)− ut(Xi, t)| > εN

]
→ 0,

with an exponential decay rate. As for obtaining the exponential decay rate in (5.3), we defer
the detailed explanation with some intuitions in the following Subsection. It turns out that
thresholds εN and εM are functions of bandwidth parameters hN and wM in (3.4) and (3.5).
We choose correct orders of hN and wM so that we can ensure that the thresholds εN and εM
go to zero. Then, with the proper choice on the order of λN together with P

[
‖τ‖∞ ≥ µ λN√

K

]
,

we conclude the proof.
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5.3. Technical Contribution. Several researchers have tried to achieve uniform conver-
gence of Local-Polynomial or kernel smoothing estimators in almost sure sense. See the
works [45] and [46]. However, to the best of the authors’ knowledge, uniform convergence of
Local-Polynomial estimator with an explicit decaying probability rate has not been studied
in the literature. We provide it as a technical contribution of the present paper. Readers can

find the exact statements of these results for the estimators ût and ∂̂pxu for 0 ≤ p ≤ Pmax in
the supplementary material stated as Lemma SM3.2 and Lemma SM3.3, respectively.

Here, we provide a high-level idea of the proof of Lemma SM3.2. First, we observe that the
higher-order Local-Polynomial smoothing is asymptotically equivalent to higher-order kernel
smoothing through equivalent kernel theory [8]. See (3.4) and (3.5) for their equivalences in
mathematical form with kernel smoothing estimators. Second, we employ the truncation idea
in [43] on the Local-Polynomial estimator and decompose ût(Xi, t)−ut(Xi, t) into three parts
as follows:

ût − ut =

(
ût − ût

B′N − E
(
ût − ût

B
′
N
))

︸ ︷︷ ︸
Asymptotic deviation of truncation error

+

(
ût
B
′
N − Eût

B
′
N

)
︸ ︷︷ ︸
Asymptotic deviation of

truncated estimator

+

(
Eût − ut

)
︸ ︷︷ ︸
Asymptotic bias

,

where B′N is some increasing sequence in N , and ût
B′N denotes the truncated Local-Polynomial

estimator of ut. We control the sup over t ∈ [0, Tmax) on each of these three components.
The last component, Asymptotic bias of ût can be obtained through the classical result from
[8, 9]. The exponential decay rate comes from the first two components as follows:

1. Asymptotic deviation of truncation error can be decomposed into two parts. The first
part, which is ût− ût

B′N , can be easily controlled via Chernoff bound of Gaussian ran-
dom variable. by using the definition of truncated estimator ût

B′N . The second part,

which is the expected difference E
(
ût− ût

B
′
N
)
, can be bounded by some deterministic

function of B′N and hN using the similar arguments in Proposition 1 of [43].

2. Asymptotic deviation of truncated estimator is decomposed into two components as
well: (i) Brownian bridge and (ii) difference between some two-dimensional empirical
process and the Brownian bridge. (i) can be controlled via uniform convergence of
Gaussian Process using the arguments similar to [47], together with simple Markov
inequality. (ii) can be controlled via Tusnády’s strong uniform approximation theory
[43, 44], stating that the two-dimensional empirical process can be well approximated
by a certain solution path of two-dimensional Brownian bridge.

Same ideas can be employed for the uniform convergence of (̂∂pxu)ni to (∂pxu)ni and of (̂∂pxu)ni (̂∂qxu)ni
to (∂pxu)ni (∂qxu)ni for 0 ≤ p, q ≤ Pmax.

6. Uniform Convergence of Sample Incoherence Matrix. In this section, we provide
two Lemmas 6.2 and 6.3 that can complete the proof of Theorem 4.1. Here, the minimum-
eigenvalue and incoherence assumptions are imposed on the ground-truth feature matrix F,
instead on the estimated feature matrix F̂. See (A1) and (A2). That is, there exist Cmin > 0
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and µ ∈ (0, 1] such that the followings hold for the unknown support set S:

Λmin

( 1

NM
FT
SFS

)
≥ Cmin and

��Q∗��∞ ≤ 1− µ.

Equipped with the above assumptions, we can formally show that success probability of the
sample incoherence condition Pµ in (A3) tends to 1 as N →∞.

The key step of the proofs in the following Lemmas is to control the tail probability of
difference between inner-product of two arbitrary columns of F̂ and inner-product of the two
corresponding columns of ground-truth F. This problem is challenging even if the exact distri-
bution of any entries of F̂ is known, since the distribution of

∑NM
k=1 F̂kiF̂kj needs to be derived.

In order to circumvent this problem, we take the advantage of the uniform convergence result

of (̂∂pxu)ni for any 0 ≤ p ≤ Pmax proved in Lemma SM3.3. Additionally, we need the uniform

convergence results of (̂∂pxu)ni (̂∂qxu)ni , (̂∂pxu)ni (̂∂qxu)ni (̂∂kxu)ni , and (̂∂pxu)ni (̂∂qxu)ni (̂∂kxu)ni (̂∂lxu)ni for
0 ≤ p, q, k, l ≤ Pmax. These convergence results are explicitly stated as Corollaries SM3.7,
SM4.1, and SM4.2, with proofs in the supplementary material.

Equipped with the convergence results, we introduce a following Lemma stating that the
distance between the matrices F̂>ScF̂S and F>ScFS are close enough under operator norm for
large enough grid sizes.

Lemma 6.1. Let ε∗M , ε
∗∗
M , ε

∗∗∗
M , ε∗∗∗∗M be the thresholds defined in SM3.3, SM3.7, SM4.1,

and SM4.2. Then for any εmax
′

M such that

εmax
′

M >
√
s(K − s) max

{
ε∗M , ε

∗∗
M , ε

∗∗∗
M , ε∗∗∗∗M

}
,

then, for 0 < c < 2
7 , and for sufficiently large enough N , we have

P

[
1

NM

���F̂>ScF̂S − F>ScFS
���
2
> εmax

′

M

]
≤ O

(
N exp

(
− 1

6
N c
))
.

Now, we are ready to prove our main claims, Lemmas 6.2 and 6.3. We first state and prove
the Lemma 6.2 asserting that if there exists Cmin > 0 such that the minimum eigen-value
condition holds for FS , then the sample minimum eigen-value condition holds with probability
converging to 1 with an exponential decay rate.

Lemma 6.2. Suppose that the assumption (A1) holds with some constant Cmin > 0 and
0 < c < 2

7 , then with probability at least 1−O(N exp(−1
6N

c))→ 1 as N →∞, we have,

Λmin

( 1

NM
F̂T
S F̂S

)
≥ Cmin .
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Proof. Observe that we can write:

Λmin

(
1

NM
F>SFS

)
:=

1

NM
min
‖x‖2=1

x>
(

F>SFS

)
x

=
1

NM
min
‖x‖2=1

{
x>
(

F̂>S F̂S

)
x+ x>

(
F>SFS − F̂>S F̂S

)
x

}
≤ 1

NM

{
y>
(

F̂>S F̂S

)
y + y>

(
F>SFS − F̂>S F̂S

)
y

}
where y ∈ RK is a unit-norm minimal eigen-vector of 1

NMF>SFS . Therefore, we can write,

Λmin

(
1

NM
F̂>S F̂S

)
≥ Λmin

(
1

NM
F>SFS

)
− 1

NM

���F>SFS − F̂>S F̂S
���
2

≥ Cmin −
1

NM

���F̂>S F̂S − F>SFS
���
2
.

By using a similar argument used in Lemma 6.1, we can prove 1
NM

���F̂>S F̂S − F>SFS
���
2
→ 0

with high-probability as N →∞. For any εmax
M such that,

(6.1) εmax
M > smax

{
ε∗M , ε

∗∗
M , ε

∗∗∗
M , ε∗∗∗∗M

}
,

Then, we can bound the probability as follows:

P

[
1

NM

���F̂>S F̂S − F>SFS
���
2
> εmax

M

]

≤ P

[���F̂>S F̂S − F>SFS
���
F
> NMεmax

M

]
≤ P

[���F̂>S F̂S − F>SFS
���
∞,∞

> NM
εmax
M

s

]

≤ P

[
max

n=0,...,N−1
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

M

s

]

≤
N−1∑
n=0

P

[
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

M

s

]

≤ O
(
N exp

(
− 1

6
N c
))

.

With the help of Lemma 6.2, we can show that the sample incoherence condition holds with
high probability, given that there exists µ ∈ (0, 1] for the ground-truth version of (A2).

Lemma 6.3. Suppose that the assumption (A2) holds with some constant µ ∈ (0, 1] and
0 < c < 2

7 , then with probability at least 1−O(N exp(−1
6N

c))→ 1 as N →∞, we have,���Q̂N���
∞
≤ 1− µ .



16 Y.HE, N.SUH, X.HUO, S.H.KANG, AND Y.MEI.

Proof. Motviated from [18], we begin the proof by decomposing the matrix
(
F̂>ScF̂S

)(
F̂>S F̂S

)−1
into four parts:

(
F̂>ScF̂S

)(
F̂>S F̂S

)−1
= F>ScFS

((
F̂>S F̂S

)−1 − (F>SFS
)−1)

︸ ︷︷ ︸
:=T1

+

(
F̂>ScF̂S − F>ScFS

)(
F>SFS

)−1
︸ ︷︷ ︸

:=T2

+

(
F̂>ScF̂S − F>ScFS

)((
F̂>S F̂S

)−1 − (F>SFS
)−1)

︸ ︷︷ ︸
:=T3

+
(
F>ScFS

)(
F>SFS

)−1︸ ︷︷ ︸
:=T4

.

Since we know �T4�∞ ≤ 1 − µ for some µ ∈ (0, 1], the decomposition reduces the proof
showing �Ti�∞ → 0 with probability 1−O(N exp(−1

6N
c)) for i = 1, 2, 3.

1. Control of T1: Observe that we can re-factorize T1 as follows:

T1 =
(
F>ScFS

)(
F>SFS

)−1[
F>SFS − F̂>S F̂S

](
F̂>S F̂S

)−1
.

Then, by taking the advantage of sub-multiplicative property �AB�∞ ≤ �A�∞�B�∞ and the
fact �T4�∞ ≤ 1−µ and �C�∞ ≤

√
N�C�2 for C ∈ RM×N , we can bound �T1�∞ as follows:

��T1

��
∞ ≤

���(F>ScFS)(F>SFS
)−1���

∞

���F>SFS − F̂>S F̂S
���
∞

���(F̂>S F̂S
)−1���

∞

≤ s(1− µ)

(
1

NM

���F>SFS − F̂>S F̂S
���
2

)(
NM

���(F̂>S F̂S
)−1���

2

)
≤ s(1− µ)

Cmin

(
1

NM

���F>SFS − F̂>S F̂S
���
2

)
.

Note that we use �(F̂>S F̂S
)−1�2 ≤ 1

NMCmin
with probability 1−O(N exp(−1

6N
c)) in the last

inequality from Lemma 6.1.

2. Control of T2: With similar techniques employed for controlling �T1�∞, we can bound
�T2�∞ as follows:��T2

��
∞ ≤

���F̂>ScF̂S − F>ScFS
���
∞

���(F>SFS
)−1���

∞

≤ s
���F̂>ScF̂S − F>ScFS

���
2

���(F>SFS
)−1���

2

= s

(
1

NM

���F̂>ScF̂S − F>ScFS
���
2

)(
NM

���(F̂>S F̂S
)−1���

2

)
≤ s

Cmin

(
1

NM

���F̂>ScF̂S − F>ScFS
���
2

)
.
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3. Control of T3: To bound
��T3

��
∞, we re-factorize the second argument of product in

T3: (
F̂>S F̂S

)−1 − (F>SFS
)−1

=
(
F>SFS

)−1[(
F>SFS

)
−
(
F̂>S F̂S

)](
F̂>S F̂S

)−1
With the factorization, we bound �(F̂>S F̂S

)−1 − (F>SFS
)−1�∞ by using sub-multiplicative

property and the fact �C�∞ ≤
√
N�C�2 for any C ∈ RM×N again:���(F̂>S F̂S

)−1 − (F>SFS
)−1���

∞
=

���(F>SFS
)−1[(

F>SFS
)
−
(
F̂>S F̂S

)](
F̂>S F̂S

)−1���
∞

≤
√
s

���(F>SFS
)−1[(

F>SFS
)
−
(
F̂>S F̂S

)](
F̂>S F̂S

)−1���
2

≤
√
s

���(F>SFS
)−1���

2

���[(F>SFS
)
−
(
F̂>S F̂S

)]���
2

���(F̂>S F̂S
)−1���

2

≤
√
s

NMC2
min

(
1

NM

���F>SFS − F̂>S F̂S
���
2

)
.(6.2)

In the last inequality, we use the result of Lemma 6.1. Now we can bound
��T3

��
∞ as follows:

��T3

��
∞ =

����(F̂>ScF̂S − F>ScFS

)((
F̂>S F̂S

)−1 − (F>SFS
)−1)����

∞

≤
���F̂>ScF̂S − F>ScFS

���
∞

���(F̂>S F̂S
)−1 − (F>SFS

)−1���
∞

≤ s

Cmin

(
1

NM

���F̂>ScF̂S − F>ScFS
���
2

)(
1

NM

���F>SFS − F̂>S F̂S
���
2

)
,

where in the last inequality, we use (6.2) and �C�∞ ≤
√
N�C�2 for any C ∈ RM×N . Take

εmax
′′

M such that,

εmax
′′

M > max

{
Cmin

s(1− µ)
εmax
M ,

Cmin

s
εmax

′

M

}
,

with εmax
M in (6.1) and with εmax′

M in Lemma 6.1, respectively. Then, we have

P

[
∀i = 1, 2, 3 :

��Ti

��
∞ > εmax

′′

M

]
≤ O

(
N exp

(
− 1

6
N c
))

.

Verification of Lemma 6.3 automatically leads to the complete proof of Theorem 4.1,
together with Proposition 5.1. Therefore, as long as the two assumptions (A1) and (A2) hold
for F, with sufficiently fine-grained grid points over the function u(X, t), `1-PsLS can always
find the correct signed-support of the given PDE model, with the minimum absolute value of
β∗S not too close to zero.

7. Numerical Experiments. In the first subsection, two PDE models and data-generating
processes of respective models are introduced. In the next subsection, we verify the main
statements of the Theorem 4.1 through numerical experiments over the PDE models described
in Subsection 7.1. The impact of β∗min-condition in the signed-support recovery of `1-PsLS is
numerically explored in subsection 7.3.
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7.1. Experimental Setting. In this subsection, we provide detailed descriptions on (i) two
popular PDE models that we are going to work on throughout the Section 7, and on (ii) how
to generate the data from respective models, and (iii) how to design the regression problem
for the experiments to be presented.

7.1.1. Model Specification and Data Generation. Viscous Burgers’ equation is a
fundamental second-order semilinear PDE which is frequently employed to model physical
phenomena in fluid dynamics [48] and nonlinear acoustic in dissipative media [49]. Its general
form is

ut = −uux + νuxx

where ν > 0 is the diffusion coefficient which characterizes physical quantities such as viscosity
of fluid. Specifically, when ν = 0, it becomes an inviscid Burgers’ equation, which is a con-
servative system that can form shock waves. Here we consider the following viscous Burgers’
equation:

ut = −uux + νuxx , 0 < x < 1, 0 < t < 0.1(7.1)

u(x, 0) = sin2(2πx) + cos3(3πx) , 0 ≤ x ≤ 1 , u(0, t) = u(1, t) , 0 ≤ t ≤ 0.1.

Korteweg–de Vries equation is well known for its solution that demonstrates the phe-
nomenon of superposition of nonlinear waves [50], and for modeling fluid dynamics of shallow
water surfaces in long and narrow channels [51]. Its dimensionless form is given as

ut + uxxx + 6uux = 0 .(7.2)

In this Section, we consider the form of (7.2), whose initial solution is as follows:

u(x, 0) = 3.5 sin3(4πx) + 1.5 exp
(
− sin(2πx)(1− x)

)
,

0 ≤ x ≤ 1 , u(0, t) = u(1, t) , 0 ≤ t ≤ 0.1.

Data Generation For N -size sampling in the temporal dimension, by Theorem 4.1, we take
M = bN (2×Pmax+5)/7c sample size in the space dimension. We numerically solve Viscous
Burgers’ equation (7.1) by the Lax-Wendroff scheme on a grid with interval width δt =
0.1/(100N) in temporal and δx = 1/M in space, then we downsampled the data in the
temporal dimension by a factor of 100; thus the resulted clean data is distributed over a grid
with N nodes in time and M nodes in space. Lastly, we added i.i.d. Gaussian noise with

standard deviation σ = 0.25 to the data. i.e., νni
i.i.d.∼ N (0, 0.252). As for solving the KdV

equation (7.2), the same approaches with Viscous Burger’s equation are applied, with i.i.d.
Gaussian noises with standard deviation σ = 0.025.

7.1.2. Constructions of Regression Problems. We employ the Local-Polynomial smooth-
ing for estimating ût and F̂ as described in Subsection 3.2. Regarding a choice of kernel for
constructing ût and F̂, we use the Epanechnikov kernel defined by:

K(z) =
3

4
(1− z2)+ , z ∈ R ,
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Table 1
Specific choices of the constants in the order of hN = Θ(N−

1
7 ) and wM = Θ(M−

1
7 ) for the experiments

on Viscous Burgers equation and KdV equation are presented.

wM hN

Viscous Burgers 0.75M−
1
7 0.25N−

1
7

KdV 0.1M−
1
7 0.01N−

1
7

where (·)+ := max(0, ·). Bandwidth parameters hN and wM in (3.2) and (3.3) are chosen

in the order of hN = Θ(N−
1
7 ) and wM = Θ(M−

1
7 ), respectively. As displayed in Table 1,

for the experiments presented in this Section, we choose specific constant factors in the order
expressions of hN and wM for Viscous Burgers equation and KdV equation. Regarding more
detailed issues on the choices of these constants, readers can refer to Section 8. It is also worth
noting that we do not use (3.4) and (3.5) as solutions of the optimization problems (3.2) and
(3.3) for the experiments, since the expressions in (3.4) and (3.5) are derived in asymptotic
settings. For the reader’s convenience, We provide the closed form solutions of (3.4) and (3.5)
in supplementary material SM2.

For Viscous Burgers’ equation with noisy data, Local-Polynomial fitting with Pmax = 2 is
applied to construct ût and F̂. Our goal is to identify the fifth and the sixth coefficients, β5

and β6, of a following linear measurement via the proposed `1-PsLS model (3.7):

ût = β0 + β1û + β2û
2 + β3ûx + β4û

2
x + β5ûûx + β6ûxx + β7û

2
xx + β8ûxûxx + β9ûûxx.

For KdV equation, after generating the data-points, ût and F̂ are fitted through Local-
Polynomial with Pmax = 3. We want `1-PsLS to select β5 and β10 as non-zero coefficients in
a following linear measurement:

ût = β0 + β1û + β2û
2 + β3ûx+β4û

2
x + β5ûûx + β6ûxx + β7û

2
xx + β8ûxûxx + β9ûûxx

+ β10ûxxx + β11û
2
xxx + β12ûxûxxx + β13ûxxûxxx + β14ûûxxx.

7.2. Numerical Verifications of Main Statements. In this subsection, we design an ex-
periment to numerically verify following two main statements of this paper. 2

1. Under assumptions (A1) and (A2), and with large enough data points, there exist some
λN ≥ 0 such that `1-PsLS model (3.7) recovers a signed-support

(
S±(β̂λ) = S±(β∗)

)
of an unique PDE that admits the underlying function as a solution in probability.

2. Given assumption (A2) for some µ ∈ (0, 1], sampled incoherence parameter µ′ con-
verges to ground-truth µ in probability with large enough data points.

The experiment is conducted over two PDE models, Viscous Burgers’ equation and
KdV equation introduced in Subsection 7.1. We generate the data by setting ν = 0.03 in
(7.1). In Figure 1, the probability of signed-support recovery P[S±(β̂) = S±(β∗)] versus the
grid size of temporal dimension N , and ‖ẑSc‖∞ versus N are recorded on the same plot for

2Results provided in Subsections 7.2 and 7.3 can be reproduced via MATLAB codes in
https://github.com/namjoonsuh/PDE-identification.
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(a) Viscous Burgers (b) KdV
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Figure 1. Probability of signed-support recovery P[S±(β̂) = S±(β∗)] versus the grid size of temporal dimen-
sion N , and ‖ẑSc‖∞ versus N are recorded on the same plot for Viscous Burger’s equation in panel (a) and
for KdV equation in panel (b), respectively.

respective models. Each point on each curve, which represents P[S±(β̂) = S±(β∗)], in (a)
and (b) corresponds to the average over 100 trials. For each iteration, the hyper-parameter
λN is chosen in an “optimal” way: we used the value yielding the correct number of nonzero
coefficient. With the chosen λN , ẑSc is calculated as given in (5.2). Note that (5.2) can be
calculated only when the `1-PsLS finds λN that gives the minimizer of (3.7) β̂λ such that
β̂λSc = 0 and S(β̂λ) ⊆ S(β∗). For this reason, boxplots of ‖ẑSc‖∞ in (a) and (b) are drawn

from the point when `1-PsLS starts to find such λN . For both models, P[S±(β̂) = S±(β∗)]
goes to 1, as we observe more data points on finer grid. Furthermore, it is worth noting
that the strict dual feasibility condition (i.e., ‖ẑSc‖∞ < 1) holds for both cases. In Figure 2,

boxplots of �Q̂N�∞ versus N are displayed for Viscous Burgers’ equation and kDV equation
respectively. A dotted horizontal line in each panel represents 1 − µ calculated from the
ground-truth feature matrix F. Notice that as the number of observed data gets larger, the
sampled incoherence parameter goes below the dotted lines for both models.

7.3. Impact of β∗min in Signed-Support Recovery of `1-PsLS. Theorem 4.1 states that
as long as β∗min := mini∈S |β∗i | is beyond certain threshold, `1-PsLS is signed-support recovery
consistent. In this subsection, we design an experiment to numerically confirm this claim.
The experiment is performed over Viscous Burgers’ equation by varying the coefficient ν in
(7.1) : we set ν = 0.03, 0.02, 0.01, 0.005 The Figure 3 (a) displays the curves representing
P[S±(β̂) = S±(β∗)] versus N for each of the four cases. Each point on each curve represents
the average over 100 trials. The Figure 3 (b) exhibits the range of λN for which `1-PsLS finds
the support of β̂λ that is contained within the true support, when ν is set as 0.005. More
specifically, boxplots in (b) record the range of λN that picks ûxx as the selected argument.
In (a), we can check that, as the magnitude of mini∈S |β∗i | decreases from 0.03 to 0.01, `1-
PsLS requires more data-points for the signed-support recovery, and when mini∈S |β∗i | drops
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(a) Viscous Burgers (b) KdV
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Figure 2. Boxplots of �Q̂N�∞ versus N are displayed for Viscous Burgers’ equation in panel (a) and KdV
equation in panel (b), respectively.
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Figure 3. Left panel (a) displays the curves representing P[S±(β̂) = S±(β∗)] versus N , when ν =

0.03, 0.02, 0.01, 0.005. Right panel (b) exhibits the range of λN for which `1-PsLS gives the solution β̂λ such

that S(β̂λ) ⊆ S(β∗) with respect to N , when ν is set as 0.005.

to 0.005, `1-PsLS fails to recover the governing PDE. On the other hand, (b) says that there
exists a range of λN for which `1-PsLS can still recover a subset of β∗, while the perfect
signed-support recovery is difficult.

8. Discussion. We present future directions that can be further explored based on our
`1-PsLS method.

1. Recall that our theory utilizes the equivalent kernel theory for Local-Polynomial regres-
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sion [8], stating that the higher-order Local-Polynomial smoothing is asymptotically
equivalent to higher-order kernel smoothing. Due to this construction, our theory
cannot characterize the convergence behavior of signed-support recovery of `1-PsLS,
when the number of observations is small. We conjecture that the uniform convergence
rate of the Local-Polynomial estimator with exponential decay can be obtained in a
non-asymptotic sense, by using a similar technique employed in [52]. They impose an
assumption that the regression function belongs to the Hölder class. They manipulate
the closed-form solution of the Local-Polynomial estimator so that the difference of
the estimator and the regression function has a special form that can be controlled by
the Bernstein’s inequality. It would be an interesting research direction to see whether
this technique can be employed in our setting.

2. The choice of the bandwidth parameter is essential in Local-Polynomial fitting, thereby
having a significant impact on support recovery of PDE problem via `1-PsLS. It is
worth noting that [10] employed the substitution method in [53] based on the asymp-
totic Mean Integrated Squared Error for the specific choices of the constant factors of
the bandwidth parameter. However, the method is only limited to the local-quadratic
estimator and is not applicable to our setting, which requires a higher-order smoothing
estimator. In our numerical experiments, we choose the constant factors of bandwidth
parameters hN and wM manually. It only provides an ad-hoc guidance of bandwidth
selection. Developing a data-driven bandwidth selection procedure for `1-PsLS is a
worthy topic for future research.

3. In practice, we need to set Pmax large so as to avoid the model misspecification.
Specifically, when Pmax is set to be very large, the dimension of columns of F̂ can
be approximated as K ≈

(
Pmax + 1

)2
in our problem setting. (Recall that we set

K = 1 + 2(Pmax + 1) +
(
Pmax+1

2

)
.) Under finite grid size NM , it is a possible scenario

in which we have K � NM . Can we reduce the computational burdens in this case?
As one possible direction, we can think of using the Sure Independence Screening (SIS)
process [54] before solving `1-PsLS in (3.7). SIS is a dimension reduction technique be-
fore implementing variable selection algorithms, such as Lasso, SCAD, LARS, etc. In
our case, for implementing SIS, we need to compute the marginal correlation between
the response vector ut and columns in F̂, denoted as ω = F̂>ût ∈ RK . The paper [54]
proved that with a certain choice of d, it is guaranteed that all the relevant predictors
in F̂ with ût are included under regularity conditions on F̂. Then, we may choose
the largest d entries of the vector |ω|, such that K � NM � d. The computational
complexities of solving (3.7) via the well-known LARS algorithm [55] is known to be
in the order of O

(
NMp ·min(NM, p)

)
, where p is set to be K before implementing the

SIS and d after implementing the SIS. However, we need further studies on whether
SIS will work well in the PDE identification problem, with theoretical guarantees. We
leave this as a future work.

4. As one of the referees mentioned, the Theorem 4.1 cannot provide a guideline in prac-
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tice, whether the selected model excludes crucial terms or even includes the irrelevant
terms. To the best of the our knowledge, this is largely an open problem in the PDE
identification context. From statisticians’ viewpoint, we can suggest constructing a
hypothesis testing, for j ∈ {1, 2, . . . ,K}, H0 : β̂λj = 0 v.s. H1 : β̂λj 6= 0. However,
this is a challenging problem since we need to derive the distribution of the estimated
coefficient β̂λj for each j ∈ {1, . . . ,K}. We are aware of the work [56] on constructing

the confidence intervals of the Lasso estimator β̂λj under the classical i.i.d. centered
normal error distribution. Nonetheless, this assumption is not applicable in our prob-
lem setting, and requires further investigations. We leave this problem as a future
work.

5. It is worth noting that our paper is about model selection consistency of PDEs under
noisy data and we consider the study on the estimation accuracy of the selected model
is beyond the scope of our work. Nevertheless, it is still of importance to investigate
whether the regression-based PDEs give a solution that closely resembles the original
one. In practice, we suggest using the least-square estimate with the the selected
features through `1-PsLS; that is, given that the `1-PsLS selects the true support set
S, then the least-square estimate has a form: β̂LS :=

(
F̂>S F̂S

)−1
F̂>S ût. Note that β̂LS

can avoid the bias introduced from λN and gives the consistent estimate than `1-PsLS.
Although not reported in the paper, we verify that the least-square estimate β̂LS works
pretty well for the cases of KdV and viscous Burger’s equations in section 7 in terms
of estimation. We leave the study on the theoretical properties of this estimator as
the future work. For more specific application with smaller data, there are related
work with more refined model selection procedure, including [26] and [57]. We refer
the readers these works and references therein.
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[51] Joseph Boussinesq. Essai sur la théorie des eaux courantes. Impr. nationale, 1877.
[52] Jean-Yves Audibert and Alexandre B Tsybakov. Fast learning rates for plug-in classifiers. The Annals

of statistics, 35(2):608–633, 2007.
[53] David Ruppert, Simon J Sheather, and Matthew P Wand. An effective bandwidth selector for local least

squares regression. Journal of the American Statistical Association, 90(432):1257–1270, 1995.
[54] Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature space. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):849–911, 2008.
[55] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The Annals

of statistics, 32(2):407–499, 2004.
[56] Adel Javanmard and Andrea Montanari. Confidence intervals and hypothesis testing for high-dimensional

regression. The Journal of Machine Learning Research, 15(1):2869–2909, 2014.
[57] Yuchen He, Sung Ha Kang, Wenjing Liao, Hao Liu, and Yingjie Liu. Robust PDE identification from

noisy data. arXiv preprint arXiv:2006.06557, 2020.


	Introduction
	Related Works
	PDE Identification via 1-PsLS
	Problem Setting and Notations
	Local-Polynomial Regression Estimators for Derivatives
	1-regularized Pseudo Least Square Model

	Recovery Theory for 1-PsLS based PDE Identification
	Signed-Support Recovery
	Assumptions
	Statement of Main Result
	Proof Strategy of Theorem 4.1

	Analysis Under Sample Incoherence Matrix Assumptions
	Statement of Proposition
	Proof Overview of Proposition  5.1
	Technical Contribution

	Uniform Convergence of Sample Incoherence Matrix
	Numerical Experiments
	Experimental Setting
	Model Specification and Data Generation
	Constructions of Regression Problems

	Numerical Verifications of Main Statements
	Impact of *min in Signed-Support Recovery of 1-PsLS

	Discussion

