Publications

Sorption Materials Design, Synthesis & Characterization [44]

  • “Designing Adsorbents for CO2 Capture From Flue Gas – Hyperbranched Aminosilicas Capable of Capturing CO2” J. C. Hicks, J. Drese, D. J. Fauth, M. Gray, G. G. Qi and C. W. Jones Journal of the American Chemical Society 2008, 130, 2902-2903.
  • “Synthesis-Structure-Property Relationships for Hyperbranched Aminosilica CO2 ” J. H. Drese, S. Choi, R. Lively, W. J. Koros, D. J. Fauth, M. L. Gray, C. W. Jones Advanced Functional Materials 2009, 19, 3821-3832.
  • “Steam-Stripping for Regeneration of Supported Amine-Based CO2” W. Li, S. Choi, J. H. Drese, M. Hornbostel, G. Krishnan, P. M. Eisenberger, C. W. Jones, ChemSusChem, 2010, 3, 899-903.
  • “Application of Amine-Tethered Solid Sorbents for Direct CO2 Capture from the Ambient Air.” S. Choi, J. H. Drese, P. M. Eisenberger, C. W. Jones, Environmental Science Technology, 2011, 45, 2420-2427.
  • “Amine-tethered Solid Adsorbents Coupling High Adsorption Capacity and Regenerability for CO2 Capture from Ambient Air.” S. Choi, M. L. Gray, C. W. Jones, ChemSusChem, 2011, 4, 628-635.
  • “Poly(L-lysine) Brush – Mesoporous Silica Hybrid Material as a Biomolecule-Based Adsorbent for CO2 Capture from Simulated Flue Gas and Air.” W. Chaikittislip, J. D. Lunn, D. F. Shantz, C. W. Jones, Chemistry, A European Journal, 2011, 17, 10556-10661.
  • “Mesoporous Alumina-Supported Amines as Potential Steam-Stable Adsorbents for Capturing CO2 from Simulated Flue Gas and Ambient Air.” W. Chaikittisilp, H.-J. Kim, C. W. Jones, Energy & Fuels, 2011, 25, 5528-5537.
  • “Poly(allylamine)-Mesoporous Silica Composite Materials for CO2 Capture from Simulated Flue Gas or Ambient Air.” W. Chaikittisilp, R. Khunsupat, T. T. Chen, W. Jones,  Industrial & Engineering Chemistry Research, 2011, 50, 14203-14210.
  • “Effect of Support Structure and on CO2 Adsorption Properties of Hyperbranched Aminosilica Adsorbents.” J. H. Drese, S. Choi, M. L. Gray, C. W. Jones, Microporous and Mesoporous Materials, 2012, 151, 231-240.
  • “Modification of Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultra-Dilute Gases.” S. Choi, T. Watanabe, T.-H. Bae, D. S. Sholl and C. W. Jones, Journal of Physical Chemistry Letters, 2012, 3, 1136-1141.
  • “Dramatic Enhancement of CO2 Uptake by Poly(ethyleneimine) Using Zirconosilicate Supports.” Y. Kuwahara, D.-Y. Kang, J. R. Copeland, N. A. Brunelli, S. A. Didas, P. Bollini, C. Sievers, T. Kamegawa, H. Yamashita, C. W. Jones, Journal of the American Chemical Society 2012, 134, 10757-10760.
  • “Role of Amine Structure on CO2 Adsorption from Ultra-Dilute Gas Streams such as Ambient Air.” S. A. Didas, A. R. Kulkarni, D. S. Sholl, C. W. Jones, ChemSusChem, 2012, 5, 2058-2064.
  • “Tuning Cooperativity by Controlling the Linker Length of Silica-Supported Amines in Catalysis and CO2” N. A. Brunelli, S. A. Didas, K. Venkatasubbaiah, C. W. Jones, Journal of the American Chemical Society 2012, 134, 13950-13953.
  • “Enhanced CO2 Adsorption over Polymeric Amines Supported on Heteroatom-incorporated SBA-15 Silica: Impact of Heteroatom Type and Loading on Sorbent Structure and Adsorption Performance.” Y. Kuwahara, D.-Y. Kang, J. R. Copeland, P. Bollini, C. Sievers, T. Kamegawa, H. Yamashita, C. W. Jones, Chemistry, A European Journal, 2012, 18, 16649-16664.
  • “A New Approach of Ionic Liquid Containing Polymer Sorbents for Post-Combustion CO2” J.S. Lee, R.P. Lively, D. Huang, P.C. Hillesheim, S. Dai, W.J. Koros, Polymer 2012, 53, 891-894.
  • “Hollow Fiber-Supported Designer Ionic Liquid Sponges for Post-Combustion CO2Polymer 2012, 53, 5806-5815. J.S. Lee, P.C. Hillesheim, D. Huang, R.P. Lively, K.H. Oh, S. Dai., W.J. Koros.
  • “Vapor-Phase Transport as A Novel Route to Hyperbranched Polyamine–Oxide Hybrid Materials.” W. Chaikittisilp, S. A. Didas, H.-J. Kim, C. W. Jones, Chemistry of Materials, 2013, 25, 613-622.
  • “Guanidinylated Poly(allylamine) Supported on Mesoporous Silica for CO2 Capture from Flue Gas.” M. AlKhabbaz, R. Khunsupat, C. W. Jones, Fuel, 2014, 21, 61-71.
  • “Aminosilanes Grafted to Basic Alumina as CO2 Adsorbents – Role of Grafting Conditions in Creation of Materials with Unique Surface Sites and Improved CO2 Adsorption Properties.” Bali, J.  Leisen, G. S. Foo, C. Sievers, C. W. Jones, ChemSusChem 2014, 7, 3146-3156.
  • “Shaping Amine-based Solid CO2 Adsorbents: Effects of Pelletization Pressure on the Physical and Chemical Properties.” F. Rezaei, M. A. Sakwa-Novak, S. Bali, D. M. Duncanson, C. W. Jones, Microporous and Mesoporous Materials 2015, 204, 34-42.
  • “Post-Grafting Amination of Alkylhalide-Functionalized Silica for Applications in Catalysis, Adsorption and 15N NMR Spectroscopy.” E. G. Moschetta, M. A. Sakwa-Novak, J. L. Greenfield, C. W. Jones, Langmuir, 2015, 31, 2218-2227.
  • “Probing the Role of Zr Addition vs. Textural Properties in Enhancement of CO2 Adsorption Performance in Silica/PEI Composite Sorbents.” M. A. Sakwa-Novak, A. P. Holewinski, C. B. Hoyt, C.-J. Yoo, S.-H. Chai, S. Dai, C. W. Jones, Langmuir 2015, 31, 9356-9365.
  • “Potassium Incorporated Alumina based CO2 Capture Sorbents: Comparison with Supported Amine Sorbents under Ultra-dilute Capture Conditions.” S. Bali, M. A. Sakwa-Novak, C. W. Jones, Colloids & Surfaces A. Physicochemical and Engineering Aspects 2015, 486, 78-85.
  • “An Efficient Low-Temperature Route to Nitrogen-Doping and Activation of Mesoporous Carbon for CO2” K. Huang, S.-H. Chai, R. T. Mayes, G. M. Veith, M. A. Sakwa-Novak, M. Potter, C. W. Jones, Y.-T. Wu, S. Dai, Chemical Communications 2015, 51, 17261-17264.
  • “Role of Additives in Composite PEI/Oxide CO2 Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO2 Capture from Simulated Ambient Air.” M. A. Sakwa-Novak, S. Tan, C. W. Jones, ACS Applied Materials & Interfaces 2015, 7, 24728-24759.
  • “PIM-1 as a Solution-Processable “Molecular Basket” for CO2 Capture from Dilute Sources.” S. H. Pang, M. L. Jue, J. Leisen, C. W. Jones, R. P. Lively, ACS Macro Letters 2015, 4, 1415-1419.
  • “Direct Air Capture of CO2 using Amine Functionalized MIL-101(Cr).”L. A. Darunte, A. D. Oetomo, K. S. Walton, D. S. Sholl, C. W. Jones, ACS Sustainable Chemistry & Engineering, 2016, 4, 5761-5768.
  • “Facilely Synthesized Meso-Macroporous Polymer as Support ofPoly(ethyleneimine) for Highly Efficient and Selective Capture of CO2.” F. Liu, K. Huang, C.-J.Yoo, C. Okonkwo, D.-J. Tao, C. W. Jones, S. Dai, Chemical Engineering Journal 2017, 314, 466-476.
  • “Design of Aminopolymer Structure to Enhance Performance and Stability of CO2 Sorbents: Poly(propylenimine) vs. Poly(ethylenimine).” S. H. Pang, L.-C. Lee, M. A. Sakwa-Novak, R. P. Lively, C. W. Jones, Journal of the American Chemical Society, 2017, 139, 3627-3630.
  • “Role of Alumina Basicity in CO2 Uptake in 3-Aminopropylsilyl-graftedAlumina Adsorbents.” M. E. Potter, K. M. Cho, J. J. Lee, C. W. Jones, ChemSusChem, 2017, 10, 2192-2201.
  • “Insights into Azetidine Polymerization for the Preparation of Poly(propylenimine)-based CO2” M. L. Sarazen, C. W. Jones, Macromolecules 2018 50, 9135-9143.
  • “Oxidatively-Stable Linear Poly(propylenimine)-Containing Adsorbents for CO2 Capture from Ultra-Dilute Streams.” S. H. Pang, R. P. Lively, C. W. Jones, ChemSusChem, 2018, 11, 2628-2637.
  • “Effect of Different Acid Initiators on Branched Poly(propyleneimine) Synthesis and CO2 Sorption Performance.” M. L. Sarazen, M. A. Sakwa-Novak, E. W. Ping, C. W. Jones, ACS Sustainable Chemistry & Engineering, 2019, 7, 7338-7345.
  • “Aminopolymer-Impregnated Hierarchical Silica Structures: Unexpected Equivalent CO2 Uptake under Simulated Air Capture and Flue Gas Capture Conditions.” H. T. Kwon, M. A. Sakwa-Novak, S. H. Pang, A. R. Sujan, E. W. Ping, C. W. Jones, Chemistry of Materials 2019, 31, 5229-5337.
  • “Silica Supported Hindered Aminopolymers for CO2”J. J. Lee, C. Sievers, C. W. Jones, Industrial & Engineering Chemistry Research 2019, 58, 22551-22560.
  • “Poly(glycidyl amine)-Loaded SBA-15 Sorbents for CO2 Capture fromDilute and Ultradilute Gas Mixtures.” A. R. Sujan, D. R. Kumar, M. A. Sakwa-Novak, E. W. Ping, B. Hu, S. J. Park, C. W. Jones, ACS Applied Polymer Materials 2019, 1, 3137-3147.
  • “Silica Supported Poly(propylene guanidine) as a CO2 Sorbent in Simulated Flue Gas and Direct Air Capture.” S. J. Park, J. J. Lee, C. B. Hoyt, D. R. Kumar, C. W. Jones, Adsorption 2020, 26, 89-101.
  • “NaNO3 Promoted Mesoporous MgO for High Capacity CO2 Capture from Simulated Flue Gas with Isothermal Regeneration.” J. Park, Y. Kim, C. W. Jones, ChemSusChem 2020, 13, 2988-2995.
  • “Alkyl-Aryl Amine-Rich Molecules for CO2 Removal via Direct Air Capture.” D. R. Kumar, C. Rosu, A. R. Sujan, M. A. Sakwa-Novak, E. W. Ping, C. W. Jones, ACS Sustainable Chemistry & Engineering 2020, 8, 10971–10982.
  • “Porosity and Hydrophilicity Modulated Quaternary Ammonium-based Sorbents for CO2” C. Hou, D. R. Kumar, Y. Jin, Y. Wu, J. J. Lee, C. W. Jones, T. Wang, Chemical Engineering Journal 2020, in press.
  • “Bayesian design of experiments for adsorption isotherm modeling.” J. Kalyanaraman, Y. Kawajiri, M.J. Realff, Computers & Chemical Engineering, 2020. 135.
  • “Hierarchical Bayesian estimation for adsorption isotherm parameter determination.” C.J. Shih, Park, D.S. Sholl, M.J. Realff, T. Yajima, Y. Kawajiri, Chemical Engineering Science, 2020. 214.

Sorption Materials Stability [10]

  • “Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO2 Adsorbents Upon Exposure to Steam and Oxygen.” W. Li, S. Didas, P. Bollini Choi, J. H. Drese, P. M. Eisenberger, C. W. Jones, ACS Applied Materials and Interfaces, 2010, 2, 3363-3372.
  • “Oxidative Degradation of Aminosilica Adsorbents Relevant to Post-Combustion CO2” P. Bollini, S. Choi, J. H. Drese, C. W. Jones, Energy & Fuels, 2011, 25, 2416-2425.
  • “Oxidative Stability of Aminopolymer-Alumina Hybrid Adsorbents for Carbon Dioxide Capture.” S. Bali, T. Chen, W. Chaikittisilp, C. W. Jones, Energy & Fuels, 2013, 27, 1547-1555.
  • “Stability of Supported Amine Adsorbents to SO2 and NOx in Post-Combustion CO2 Capture Process-1. Single Component Adsorption.” F. Rezaei, C. W. Jones, Industrial & Engineering Chemistry Research, 2013, 52, 12192-12201.
  • “Thermal, Oxidative and CO2 Induced Degradation of Primary Amines used for CO2 Capture: Effect of Alkyl Linker on Stability.” S. A. Didas, R. Zhu, N. A. Brunelli, D. S. Sholl, C. W. Jones, Journal of Physical Chemistry C 2014, 118, 12302-12311.
  • “Steam Induced Structural Changes of a Poly(ethyleneimine) Impregnated γ- Alumina Sorbent for CO2 Extraction from Ambient Air.” M. Sakwa-Novak, C. W. Jones, ACS Applied Materials and Interfaces 2014, 6, 9245-9255.
  • “Stability of Supported Amine Adsorbents to SO2 and NOx in Postcombustion CO2 2. Multi-Component Adsorption.” F. Rezaei, C. W. Jones, Industrial and Engineering Chemistry Research 2014, 53, 12103-1210.
  • “Stability of Amine-Based Hollow Fiber CO2 Adsorbents in the Presence of NO and SO2.” Y. Fan, F. Rezaei, Y. Labreche, R. P. Lively, W. J. Koros, C. W. Jones, Fuel 2015, 160, 153-164.
  • “Exploring Steam Stability of Mesoporous Alumina Species for Improved Carbon Dioxide Sorbent Design.” M. E. Potter, J. J. Lee, L. A. Darunte, C. W. Jones, Journal of Materials Science 2019, 54, 7563-7575.
  • “The Effect of Extended Aging & Oxidation on Linear Poly(propylenimine)-Mesoporous Silica Composites for CO2 Capture from Simulated Air and Flue Gas Streams.” C. Rosu, S. Pang, A. Sujan, M. Sakwa-Novak, E. W. Ping, C. W. Jones, ACS Applied Materials & Interfaces 2020, 12, 38085-38097.

Structural Insights into CO2 Adsorption and Diffusion Mechanisms [18]

  • “Prediction of CO2 adsorption properties in zeolites using force fields derived from periodic dispersion-corrected DFT calculations.” Fang, P. Kamakoti, J. Zang, S. Cundy, C. Paur, P. I. Ravikovitch, D. S. Sholl, J. Phys. Chem. C, 2012, 116, 10692-10701.
  • “Important Roles of Enthalpic and Entropic Contributions to CO2 Capture from Simulated Flue Gas and Ambient Air using Mesoporous Silica Grafted Amines.” M. Alkhabbaz, P. Bollini, G. S. Foo, C. Sievers, C. W. Jones, Journal of the American Chemical Society 2014, 136, 13170-13173.
  • “Effect of Amine Surface Coverage on the Co-Adsorption of CO2 and Water: Spectral Deconvolution of Adsorbed Species.” S. A. Didas, M. A. Sakwa-Novak, G. S. Foo, C. Sievers, C. W. Jones, Journal of Physical Chemistry Letters 2014, 5, 4194-4200.
  • “Interrogating the Carbon and Oxygen K-edge NEXAFS of a CO2-dosedHyperbranched Aminosilica.” L. Espinal, M. L. Green, D. A. Fischer, D. M. DeLongchamp, C. Jaye, J. C. Horn, M. A. Sakwa-Novak, W. Chaikittisilp, N. A. Brunelli, C. W. Jones, Journal of Physical Chemistry Letters, 2015, 6, 148-152.
  • “Linking CO2 Sorption Performance to Polymer Morphology in Amino-polymer/Silica Composites through Neutron Scattering.” A. Holewinski, M. A. Sakwa-Novak, C. W. Jones, Journal of the American Chemical Society 2015, 137, 11749-11759.
  • “Characterization of a Mixture of CO2 Adsorption Products in Hyperbranched Aminosilica Adsorbents by 13C Solid-State NMR.” J. K. Moore, M. Sakwa-Novak, W. Chaikittisilp, A. K. Mehta, M. S. Conradi, C. W. Jones, S. E. Hayes, Environmental Science & Technology 2015, 49, 13684-13691.
  • “Probing Intramolecular versus Intermolecular CO2 Adsorption on Amine-grafted SBA-15.” C.-J. Yoo, L.-C. Lee, C. W. Jones, Langmuir, 2015, 31, 13350-13360.
  • “Unraveling the Dynamics of Aminopolymer/Silica Composites.” J.-M. Y. Carrillo, M. A. Sakwa-Novak, A. Holewinski, M. E. Potter, G. Rother, C. W. Jones, B. G. Sumpter, Langmuir, 2016, 32, 2617-2625.
  • “Identification of high-CO2-capacity cationic zeolites by accurate computational screening.” H. Fang, A. Kulkarni, P. Kamakoti, R. Awati, P. I. Ravikovitch, D. S. Sholl, Chemistry of Materials 2016, 28, 3887-3896.
  • “Spectroscopic Investigation of the Mechanisms Responsible for the Superior Stability of Hybrid Class 1/Class 2 CO2 Sorbents: A New Class 4 Category.” W. C. Wilfong, B. W. Kail, C. W. Jones, C. Pacheco, M. L. Gray, ACS Applied Materials & Interfaces 2016, 8, 12780-12791.
  • “Elucidation of Surface Species via In-Situ FTIR Spectroscopy of CO2 Adsorption on Amine-Grafted SBA-15.” G. S. Foo, J. J. Lee, C.-H. Chen, S. E. Hayes, C. Sievers, C. W. Jones, ChemSusChem, 2017, 10, 266-276.
  • “Adsorption Microcalorimetry of CO2 in Confined Aminopolymers.” E. Potter, S. H. Pang, C. W. Jones, Langmuir, 2017, 33, 117-124.
  • “Spectroscopic Characterization of Adsorbed CO2 on 3-Aminopropylsilyl-modified SBA15 Mesoporous Silica” C.-H. Chen, D. Shimon, J. Lee, A. Mehta, C. Sievers, C. W. Jones, S. Hayes, Environmental Science Technology, 2017, 61, 6153-6159.
  • “Linking Silica Support Morphology to the Dynamics of Aminopolymers in Composites.” J.-M. Y. Carrillo, M. E. Potter, M. A. Sakwa-Novak, S. H. Pang, C. W. Jones, B. G. Sumpter, Langmuir 2017, 33, 5412-5422.
  • “Aminopolymer Mobility and Support Interactions in Silica-PEI Composites for CO2 Capture Applications: A Quasielastic Neutron Scattering Study.” A. Holewinski, M. A. Sakwa-Novak, J.-M. Y. Carrillo, M. E. Potter, N. Ellebracht, G. Rother, B. G. Sumpter, C. W. Jones, Journal of Physical Chemistry B 2017, 121, 6721-6731.
  • “Effect of Humidity on the CO2 Adsorption of Tertiary Amine Grafted SBA-15.” J. J. Lee, C.-H. Chen, D. Shimon, S. E. Hayes, C. Sievers, C. W. Jones, Journal of Physical Chemistry C 2017, 121, 23480-23487.
  • 15N Solid State NMR Spectroscopic Study of Surface Amine Groups for Carbon Capture: 3-Aminopropylsilyl grafted to SBA15 Mesoporous Silica” D. Shimon, C.-H. Chen, J. J. Lee, S. A. Didas, C. Sievers, C. W. Jones, S. E. Hayes, Environmental Science & Technology, 2018, 52, 1488-1495.
  • “The “Missing” Bicarbonate in CO2 Chemisorption Reactions on Solid Amine Sorbents.” C.-H. Chen, D. Shimon, J. J. Lee, F. Mentink-Vigier, I. Hung, C. Sievers, C. W. Jones, S. E. Hayes, Journal of the American Chemical Society, 2018, 140, 8648-8651.
  • “Silica Supported Sterically Hindered Amines for CO2” J. J. Lee, C.-J. Yoo, C.-H. Chen, S. E. Hayes, C. Sievers, C. W. Jones, Langmuir 2018, 34, 12279–12292.
  • ”CO2 Adsorption and Oxidative Degradation of Silica-supported Branched and Linear Aminosilanes.” C.-J. Yoo, S.-J. Park, C.W. Jones, Industrial & Engineering Chemistry Research 2020, 59, 7061-7071.

Carbon Capture Contactor Design, Fabrication & Performance [15]

  • “Hollow Fiber Adsorbents for CO2 Removal from Flue Gas.” R. P. Lively, R. R. Chance, B. T. Kelley, J. H. Drese, C. W. Jones, W. J. Koros, Industrial & Engineering Chemistry Research 2009, 48, 7314-7324.
  • “Hollow Fiber Adsorbents for CO2 Capture: Kinetic Sorption Performance.” R.P. Lively, D.P. Leta, B.A. DeRites, R.R. Chance, W.J. Koros, Chemical Engineering Journal 2011, 171, 801-810.
  • “Enhanced Cryogenic CO2 Capture using Dynamically Operated Low-Cost Fiber Beds.” R.P. Lively, W.J. Koros, J.R. Johnson, Chemical Engineering Science 2012, 71, 97-103.
  • “Post-Spinning Infusion of Poly(ethyleneimine) into Polymer/Silica Hollow Fiber Sorbents for Carbon Dioxide Capture.” Labreche, R. P. Lively, F. Rezaei, G. Chen, C. W. Jones, W. J. Koros, Chemical Engineering Journal, 2013, 221, 166-175.
  • “Aminosilane-Grafted Polymer/Silica Hollow Fiber Adsorbents for CO2 Capture from Flue Gas.” Rezaei, R.P. Lively, Y. Labreche, G. Chen, Y.F. Fan, W. J. Koros, C. W. Jones, ACS Applied Materials & Interfaces, 2013, 5, 3921-3931.
  • “Evaluation of CO2 Adsorption Dynamics of Polymer/Silica Supported Poly(ethylenimine) Hollow Fiber Sorbents in Rapid Temperature Swing Adsorption.” Y. F. Fan, R. P. Lively, Y. Labreche, F. Rezaei, W. J. Koros, C. W. Jones, International Journal of Greenhouse Gas Control, 2014, 21, 61-71.
  • “Poly(ethyleneimine) Infused and Functionalized Torlon®-silica Hollow Fiber Sorbents for Post-Combustion CO2” F. S. Li, Y. Labreche, R. P. Lively, J. S. Lee, C. W. Jones, W. J. Koros, Polymer 2014, 55, 1341-1346.
  • “Poly(amide-imide)/Silica Supported PEI Hollow Fiber Sorbents for Post-combustion CO2 Capture by RTSA.” Y. Labreche, Y.F. Fan, F. Rezaei, R. P. Lively, C. W. Jones, W. J. Koros, ACS Applied Materials and Interfaces 2014, 6, 19336-19346.
  • “Direct Dual Layer Spinning of Aminosilica/Torlon® Hollow Fiber Sorbents with a Lumen Layer for CO2 Separation by Rapid Temperature Swing Adsorption.” Y. Labreche, Y. Fan, R. P. Lively, C. W. Jones, W. J. Koros, Journal of Applied Polymer Science, 2015, 132, 41845.
  • “Poly(ethyleneimine) Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air.” M. A. Sakwa-Novak, C.-J. Yoo, S. Tan, F. Rashidi, C. W. Jones, ChemSusChem, 2016, 9, 1859-1868.
  • “Monolith Supported Amine Functionalized Mg2(dobpdc) Adsorbents for CO2” L. A Darunte, Y. Terada, C. R. Murdock, K. S. Walton, D. S. Sholl, C. W. Jones, ACS Applied Materials & Interfaces, 2017, 9, 17042-17050.
  • “Critical Comparison of Structured Contactors for Adsorption-based Gas Separations.” S.J.A. DeWitt, A. Sinha, J. Kalyanaraman, F. Zhang, M.J. Realff, R.P. Lively, Annual Review of Chemical and Biomolecular Engineering 2018, 9, 129-152.
  • “Direct CO2 Capture from Air Using Poly(ethyleneimine) Loaded Polymer/Silica Fiber Sorbents.” A. R. Sujan, S. H. Pang, G. Zhu, C. W. Jones, R. P. Lively, ACS Sustainable Chemistry & Engineering 2019, 7, 5264-5273.
  • “Self-supported branched Poly(ethyleneimine) Materials for CO2 Adsorption from Simulated Flue Gas.” C.-J. Yoo, P. Narayanan, C. W. Jones, Journal of Materials Chemistry A 2019, 7, 19513-19521.
  • “Development of Phase-Change-Based Thermally Modulated Fiber Sorbents.” S.J.A. DeWitt, H.O.R. Landa, Y. Kawajiri, M.J. Realff, R.P. Lively, Industrial and Engineering Chemistry Research 2019, 58, 5768-5776.

Carbon Capture Dynamics, System Design and Analysis [14]

  • “Enabling Low-Cost CO2 Capture via Heat Integration.”, R.P. Lively, R.R. Chance, W.J. Koros, Industrial and Engineering Chemistry Research 2010, 49, 7550-7562.
  • “Analysis of equilibrium-based TSA processes for direct capture of CO2 from air.” Kulkarni, D. S. Sholl, Ind. Eng. Chem. Res. 2012, 51, 8631-8645
  • “Dynamics of CO2 Adsorption on Amine Adsorbents. 1. Impact of Heat Effects.” P. Bollini, N. A. Brunelli, S. A. Didas, C. W. Jones, Industrial & Engineering Chemistry Research, 2012, 51, 15145-15152.
  • “Dynamics of CO2 Adsorption on Amine Adsorbents. 2. Insights into Adsorbent Design.” P. Bollini, N. A. Brunelli, S. A. Didas, C. W. Jones, Industrial & Engineering Chemistry Research, 2012, 51, 15153-15162.
  • “CO2 Sorption and Desorption Performance of Thermally Cycled Hollow Fiber Sorbents.” R.P. Lively, R.R. Chance, J.A. Mysona, V.P. Babu, H.W. Deckman, D.P. Leta, H. Thomann, W.J. Koros, International Journal of Greenhouse Gas Control 2012, 10, 285-294.
  • “Dynamic CO2 Adsorption Performance of Internally Cooled Silica Supported Poly(ethylenimine) Hollow Fiber Sorbents.” Y. Fan, Y. Labreche, R. P. Lively, C. W. Jones, W. J. Koros, AIChE Journal 2014, 60, 3878-3887.
  • “Modeling and Experimental Validation of Carbon Dioxide Sorption on Hollow Fibers Loaded with Silica-supported Poly(ethylenimine).” J. Kalyanaraman, Y. Fan, R. P. Lively, W. J. Koros, C. W. Jones, M. J. Realff, Y. Kawajiri, Chemical Engineering Journal 2015, 259, 737-751.
  • “CO2 Sorption Performance of Composite Polymer/Aminosilica Hollow Fiber Sorbents: An Experimental and Modeling Study.” Y. Fan, J. Kalyanaraman, Y. Labreche, F. Rezaei, R. P. Lively, M. J. Realff, W. J. Koros, C. W. Jones, Y. Kawajiri, Industrial & Engineering Chemistry Research, 2015, 54, 1783-1795.
  • “System Design and Economic Analysis of Direct Air Capture of CO2 through Temperature Vacuum Swing Adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF Adsorbents” A. Sinha, L. Darunte, C. W. Jones, M. J. Realff, Y. Kawajiri, Industrial & Engineering Chemistry Research 2017, 56, 750-764.
  • “Establishing Upper Bounds on CO2 Swing Capacity in Sub-Ambient Pressure Swing Adsorption via Molecular Simulation of Metal-Organic Frameworks.” J. Park, R.P. Lively, D.S. Sholl, Journal of Materials Chemistry A 2017, 5, 12258-12265.
  • “Moving Beyond Adsorption Capacity in Design of Adsorbents for CO2 Capture from Ultra-dilute Feeds: Kinetic Analysis of Adsorbents with Stepped Isotherms.” L. A. Darunte, T. Sen, C. Bhawanani, K. S. Walton, D. S. Sholl, M. J. Realff, C. W. Jones, Industrial & Engineering Chemistry Research 2019, 58, 366-377.
  • “A parametric study of the techno-economics of direct CO2 air capture systems using solid adsorbents.” A. Sinha, and M.J. Realff, AIChE Journal, 2019, 65(7).
  • “How Well Do Approximate Models of Adsorption-Based CO2 Capture Processes Predict Results of Detailed Process Models?” J. Park, H.O.R. Land, Y. Kawajiri, M.J. Realff, R.P. Lively, D.S. Sholl, Industrial and Engineering Chemistry Research 2020, 59, 7097-7108.
  • “Life cycle greenhouse gas emissions of different CO2 supply options for an algal biorefinery.” P. Arora, R. Chance, H. Hendrix, M.J. Realff, V.M. Thomas, and Y.H. Yuan, Journal of CO2 Utilization, 2020, 40.
  • “Analysis of Energetics and Economics of Sub-Ambient Hybrid Post-Combustion CO2” S.J.A. DeWitt, R. Awati, H.O.R. Landa, J. Park, Y. Kawajiri, D.S. Sholl, M.J. Realff, R.P. Lively, Authorea 2021, preprint: https://doi.org/10.22541/au.160970659.92451458/v1

Critical Reviews, Analyses & Commentaries [12]

  • “Solid Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources.” S. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2009, 2, 796-854.
  • “Global Warming and Carbon-Negative Technology: Prospects for a Lower-Cost Route to a Lower-Risk Atmosphere.” P. M. Eisenberger, R. W. Cohen, G. Chichilnisky, N. M. Eisenberger, Ronald R. Chance, and C. W. Jones, Energy & Environment, 2009, 20, 973-984.
  • “CO2 Capture from Dilute Gases as a Component of Modern Global Carbon Management.” C. W. Jones, Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 31-52.
  • “Amine-Oxide Hybrid Materials for Acid Gas Separations.” P. Bollini, S. A. Didas, C. W. Jones, Journal of Materials Chemistry, 2011, 21, 15100-15120.
  • “Water and Beyond: Expanding the Spectrum of Large-Scale Energy Efficient Separation Processes.” W.J. Koros, R.P. Lively, AIChE Journal 2011, 58, 2624-2633.
  • “Flawed analysis of the possibility of air capture.” M.J. Realff and P. Eisenberger, Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(25): p. E1589-E1589.
  • “SOx/NOx Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions.” F. Rezaei, A. A. Rownaghi, S. Monjezi, R. P. Lively, C. W. Jones, Energy & Fuels 2015, 29, 5467-5486.
  • “Amine-Oxide Hybrid Materials for CO2 Capture from Ambient Air.” S. A. Didas, S. Choi, W. Chaikittisilp, C. W. Jones, Accounts of Chemical Research 2015, 48, 2680-2687.
  • “CO2 Capture via Adsorption in Amine-Functionalized Sorbents.” A Darunte, K. S. Walton, D. S. Sholl, C. W. Jones, Current Opinion in Chemical Engineering, 2016, 12, 82-90.
  • “Direct Capture of CO2 from Ambient Air.” E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, C. W. Jones, Chemical Reviews, 2016, 116, 11840-11876.
  • “Seven chemical separations to change the world.” D.S. Sholl, R.P. Lively, Nature 2016, 532, 435-438.
  • “On thermodynamic separation efficiency: Adsorption processes.”, R.P. Lively, M.J. Realff, AIChE Journal 2016, 62, 3699-3705.