Center for the Study of Systems Biology

  • Home
  • About us
    • Members
  • Skolnick Research Group
    • Jeffrey Skolnick
    • Maximilian Brogi
    • Sophia Broxterman
    • Brendon Cara
    • Brice Edelman
    • Jonathan Feldman
    • Jessica Gilmore Forness
    • Bartosz Ilkowski
    • Preetam Jukalkar
    • Hargobind Singh
    • Yu-Hong A. Wang
    • Kyle Xu
    • Hongyi Zhou
    • Former Group Members
  • Publications
    • Publications
    • Preprints
  • Software and Services
    • Services
      • DESTINI
      • DR. PRODIS
      • ENTPRISE
      • ENTPRISE-X
      • FINDSITEcomb
      • FINDSITEcomb2.0
      • FRAGSITE
      • FRAGSITE2
      • FRAGSITEcombM
      • Know-GENE
      • LeMeDISCO
      • MEDICASCY
      • MOATAI-VIR
      • PHEVIR
      • PICMOA
    • Downloads
      • AF2Complex
      • AF3Complex
      • APoc
      • Cavitator
      • DBD-Hunter
      • DBD-Threader
      • EFICAz2.5
      • Fr-TM-align
      • GOAP
      • iAlign
      • IS-score
      • LIGSIFT
      • MENDELSEEK
      • PULCHRA
      • SAdLSA
      • Valsci
    • Databases
      • Apo and Holo Pairs
      • New Human GPCR Modeling and Virtual Screening
      • PDB-like Structures
    • Simulations
      • E. coli Intracellular Dynamics
  • News & Events
    • News
    • ARCHIVE: Distinguished Lecture Series in Systems Biology
  • Jobs

Preprints

Edelman, E, H Kim, Skolnick J. 2025. Trajectories matter: Discovery and validation of ordered EHR sequences that inform clinical risk predictions. medRxiv 2025.09.14.25335720; doi: https://doi.org/10.1101/2025.09.14.25335720. PDF

Zhao, H, Velez C, Naravane A, Saha A, Feldman J, Skolnick J, Murray D, Honig B. 2025. Combining structural modeling and deep learning to calculate the E. coli protein interactome and functional networks. bioRxiv 2025.05.07.652715; doi: https://doi.org/10.1101/2025.05.07.652715. PDF

Zhou, H, Edelman B, Skolnick J. 2025. MENDELSEEK: An algorithm that predicts Mendelian Genes and elucidates what makes them special. bioRxiv 2025.04.06.647432; doi: https://doi.org/10.1101/2025.04.06.647432. PDF

Feldman, J, Skolnick J. 2025. AF3Complex Yields Improved Structural Predictions of Protein Complexes. bioRxiv 2025.02.27.640585; doi: https://doi.org/10.1101/2025.02.27.640585. PDF

Ban, D, Housley S N, Matyunina L V, McDonald L D, Bae-Jump V L, Benigno B, Skolnick J, McDonald J F. 2023. A Personalized Probabilistic Approach to Ovarian Cancer Diagnostics. medRxiv 2023.11.24.23298971; doi: https://doi.org/10.1101/2023.11.24.23298971. PDF

Gao, M, Nakajima An D, Skolnick J. 2022. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria. bioRxiv 2022.08.25.505253; doi: https://doi.org/10.1101/2022.08.25.505253. PDF

Guo, Z, Liu J, Skolnick J, Cheng J. 2022. Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks. bioRxiv 2022.06.19.496734; doi: https://doi.org/10.1101/2022.06.19.496734. PDF

Gao, M, Nakajima An D, Parks J M, Skolnick J. 2021. Predicting direct physical interactions in multimeric proteins with deep learning. bioRxiv 2021.11.09.467949; doi: https://doi.org/10.1101/2021.11.09.467949. PDF

Astore, C, Zhou H, Skolnick J. 2021. LeMeDISCO: A computational method for large-scale prediction & molecular interpretation of disease comorbidity. medRxiv 2021.06.28.21259559; doi: https://doi.org/10.1101/2021.06.28.21259559 PDF

Gao, M, Skolnick, J. 2021. A general framework to learn tertiary structure for protein sequence annotation. bioRxiv 2021.04.01.438098; doi: https://doi.org/10.1101/2021.04.01.438098. PDF

Astore, C, Zhou H, Jacob J, Skolnick J. 2021. MOATAI-VIR – an AI algorithm that predicts severe adverse events and molecular features for COVID-19’s complications. medRxiv 2021.01.29.21250712; doi: https://doi.org/10.1101/2021.01.29.21250712. PDF

Yamashita, D, Botta D, Cho HJ, Guo X, Ozaki S, Flanary V L, Sirota I, Gao M, Yamaguchi S, Nakano M A, Zhou F, Zhou H, Kondo T, Kunieda T, Crossman D K, Kornblum H I, Gorospe M, Nam D, Zamboni N, Skolnick J, Gu Z, Lund F E, Nakano I. 2020. Spatial heterogeneity of glioblastoma cells reveals sensitivity to NAD+ depletion at tumor edge. bioRxiv 2020.11.26.399725; doi: https://doi.org/10.1101/2020.11.26.399725. PDF

Publications

  • Skolnick Research Group
    • Jeffrey Skolnick
    • Maximilian Brogi
    • Sophia Broxterman
    • Brendon Cara
    • Brice Edelman
    • Jonathan Feldman
    • Jessica Gilmore Forness
    • Bartosz Ilkowski
    • Preetam Jukalkar
    • Hargobind Singh
    • Yu-Hong A. Wang
    • Kyle Xu
    • Hongyi Zhou
    • Former Group Members
  • Software and Services
    • Services
      • DESTINI
      • DR. PRODIS
      • ENTPRISE
      • ENTPRISE-X
      • FINDSITEcomb
      • FINDSITEcomb2.0
      • FRAGSITE
      • FRAGSITE2
      • FRAGSITEcombM
      • Know-GENE
      • LeMeDISCO
      • MEDICASCY
      • MOATAI-VIR
      • PHEVIR
      • PICMOA
    • Downloads
      • AF2Complex
      • AF3Complex
      • APoc
      • Cavitator
      • DBD-Hunter
      • DBD-Threader
      • EFICAz2.5
      • Fr-TM-align
      • GOAP
      • iAlign
      • IS-score
      • LIGSIFT
      • MENDELSEEK
      • PULCHRA
      • SAdLSA
      • Valsci
    • Databases
      • Apo and Holo Pairs
      • New Human GPCR Modeling and Virtual Screening
      • PDB-like Structures
    • Simulations
      • E. coli Intracellular Dynamics

Copyright © 2025 · Minimum Pro on Genesis Framework · WordPress · Log in